
Getting Started with Artix Java

Version 1.3, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Artix Relay,
Artix Encompass, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive
Runtime Technology, Transparent Enterprise Deployment, and Total Business Integra-
tion are trademarks or registered trademarks of IONA Technologies PLC and/or its sub-
sidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001�2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 12-Dec-2003

emjohnso
M3179

Contents

List of Figures v

Preface vii

Chapter 1 Artix Java Concepts 1
Introduction to Artix 2
Artix Contracts 5
Solving Problems with Artix Java 8
The Artix Designer 9
Using the Artix Library 16

Chapter 2 Artix Java in Action: A Demo 19
The Hello World Demo 20

Setting the Environment 21
Compiling and Running the Java Server 22
Compiling and Running the C++ Client 23

Building an Artix Java Server 24
Setting the Environment 25
Generating the Java Code 26
Editing and Compiling the Code 27
Testing the Server 29

Glossary 31

Index 35
iii

CONTENTS
 iv

List of Figures

Figure 1: Artix High-Performance Architecture 4

Figure 2: Welcome Dialog 9

Figure 3: Project Tree 10

Figure 4: The System Diagram 11

Figure 5: The Contract Editor 12

Figure 6: The Contract Editor - WSDL View 13

Figure 7: Development Tool, Showing Java Code Generation Options 14

Figure 8: Deployment Tool 15
v

LIST OF FIGURES
 vi

Preface
Overview Getting Started with Artix Java is for use by anyone who needs to

understand the concepts and terms used in the IONA Artix product, but
more specifically with Artix Java, the Java flavor of Artix Encompass.

Audience This manual is geared for first time Artix users. It is assumed that the reader
is familiar with the middleware systems discussed in this manual.

Organization of this guide This guide is divided as follows:

� �Artix Java Concepts� provides general information about Artix Java
and how it is used.

� �Artix Java in Action: A Demo� presents a walk through of how to solve
an integration problem with Artix Java, using a mixture of the
command line tools and the Artix Designer.

Related documentation The document set for IONA Artix includes the following:

� Getting Started with Artix Encompass

� Getting Started with Artix Relay

� Designing Artix Solutions

� Deploying and Managing Artix Solutions

� Artix Installation Guide

� Artix Tutorial

� Developing Artix Applications in C++

� Developing Artix Applications in Java
vii

PREFACE
� Artix Security Guide

� Artix Thread Library Reference

The latest updates to the Artix documentation can be found at http://
iona.com/support/docs/artix/1.3/index.xml.

Online help The Artix Designer includes comprehensive online help, providing:

� Detailed step-by-step instructions on how to perform important tasks.

� A contextual description of each screen.

� A comprehensive index and glossary.

� A full search feature.

There are two ways to access the online help: via the Help menu in the Artix
Designer, or by clicking the Help button on any interface dialog.

Additional resources The IONA Knowledge Base contains helpful articles, written by IONA
experts, about Orbix and other products. You can access the knowledge
base at the following location: (http://www.iona.com/support/
knowledge_base/index.xml)

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
 viii

PREFACE
Keying conventions This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
ix

PREFACE
 x

CHAPTER 1

Artix Java Concepts
Artix Java enables your organization to realize all the benefits
of a C++ runtime environment, without having to write any
C++ code.

In this chapter This chapter discusses the following topics:

Introduction to Artix page 2

Artix Contracts page 5

Solving Problems with Artix Java page 8

The Artix Designer page 9

Using the Artix Library page 16
1

CHAPTER 1 | Artix Java Concepts
Introduction to Artix

Overview Artix is a new approach to application integration, one that exploits the
middleware technologies and products already present within an enterprise.
Artix provides a rapid integration approach that increases operational
efficiencies and makes it easier for an enterprise to adopt or extend a Service
Oriented Architecture (SOA).

The Artix Product family is a suite of Enterprise Middleware Integration
(EMI) products built on a proven infrastructure and designed to help lower
operating costs and improve corporate efficiency. The products are:

� Artix Encompass - an enterprise Web Service product that extends
enterprise qualities of service (transactions, security, routing, high
availability, and management, for example) to Web Services
applications and enables the rapid creation and deployment of EMI
solutions using Web Services technology.

� Artix Relay - a middleware interoperability product, whch enables the
seamless interoperability of diverse middleware platforms without the
use of messaging hubs or intermediate formats, and without changing
those systems.

Artix Java - an innovation Everyone knows that Web Services are THE big thing in application
integration. Not surprisingly, this shift towards Web Services has resulted in
companies being well endowed with Java programmers. Until now this has
been a potential problem when trying to address enterprise integration, in
that the majority of enterprise applications are written in C++ - an
uncharted world for the majority of Java developers.

Enter Artix Java, providing all the benefits of a C++ runtime environment
without having to retrain your current Java developers, or worse still,
supplement them with a team of C++ developers. Even better, Artix Java
enables painless integration with C++ APIs for a variety of message
transports.

Put simply, Artix Java provides a Java "wrapper" around the Artix C++
libraries. It enables your developers to use Java to create Artix-based
applications and gain the full advantages of Artix C++ runtime features.
 2

Introduction to Artix
Supported transports/protocols A transport is an on-the-wire format for messages. A protocol is a transport
that is defined by an open specification. Thus MQ and Tuxedo are
transports, while HTTP and IIOP are protocols. Throughout the Artix
interface and documentation, both protocols and transports are referred to
as transports. Artix supports the following message transports:

� HTTP

� BEA Tuxedo

� IBM WebSphere MQ (formerly MQSeries)

� TIBCO Rendezvous�

� IIOP

� IIOP Tunnel

� Java Messaging Service

An in-depth discussion of the differences between IIOP and IIOP Tunnel is
beyond the scope of this chapter. Basically, IIOP Tunnel lets you use IONA�s
Application Server Platform infrastructure (if present in your enterprise) and
exploit its qualities of service in support of non-CORBA payloads. Usage of
all these transports is described fully in Designing Artix Solutions.

Supported payload formats Artix can automatically transform between the following payload formats:

� G2++

� FML � Tuxedo format

� CORBA (GIOP) � CORBA format

� FRL � fixed record length

� VRL � variable record length

� SOAP

� TibrvMsg - TIBCO/Rendezvous format

The mapping of logical data items between payload formats is supported by
Artix tools.

Benefits of Artix The Artix approach differs from the approach used by Enterprise Application
Integration (EAI) products. The EAI approach typically uses a �canonical�
format in an EAI hub. All messages are transformed from a source
3

CHAPTER 1 | Artix Java Concepts
application�s native format to this canonical format, and then transformed
again to the format of the target application. Each application requires two
adapters that translate to and from the canonical format.

However, requiring two translations for every message incurs high overhead.
Many enterprises prefer high-performance solutions that directly transform a
small set of message types over a more general solution with lower
performance.

Because Artix connects applications at the middleware transport level, Artix
connections resemble the way network switches connect telephones. Like
network switching, Artix hides the details of the connection and provides
very high performance.

Figure 1: Artix High-Performance Architecture

Tuxedo MQSeries

Transport of Choice

Artix

binding binding

No Canonical Format: Direct On-The-Wire Transformation
 4

Artix Contracts
Artix Contracts

Overview The Web Services Definition Language (WSDL) is used to describe the
characteristics of the Service Access Points (SAPs) of an Artix connection.
The SAP is the mechanism, and the points at which individual service
providers and consumers connect to the service bus.

By defining characteristics like service operations and messages in an
abstract way � independent of the actual transport or protocol used to
implement the SAP � these characteristics can be bound to a variety of a
specific protocols and formats. In fact, Artix allows an abstract definition to
be bound to multiple specific protocols and formats. This means that the
same definitions can be reused in multiple implementations of a service.

Artix contracts define the services exposed by a set of systems, the payload
formats and transports available to each system, and the rules governing
how the systems interact with each other. The most simple Artix contract
defines a set of systems with a shared interface, payload format, and
transport. Artix contracts, however, can define very complex integration
scenarios.

WSDL concepts Understanding Artix contracts requires some familiarity with WSDL,
including the definitions of the following terms:

A WSDL type provides data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated
and each part of a message is associated with defined types.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL Port Type is a set of abstract operation descriptions.

A WSDL binding associates a specific protocol and data format for
operations defined in a port type.

A WSDL Port specifies a network address for a binding, and defines a single
communication endpoint.

A WSDL service specifies a set of related ports.
5

CHAPTER 1 | Artix Java Concepts
The Artix contract An Artix contract is specified in WSDL and conceptually divided into logical
and physical components. The logical contract specifies things that are
independent of the underlying transport and wire format; it fully specifies
the data structure and the possible operations or interactions with the
interface. The Logical contract allows Artix to generate skeletons and stubs
without having to define the physical characteristics of the connection (wire
format and transport).

The physical component of an Artix contract defines:

� The wire format, middleware transport, and service groupings

� The connection between the PortType �operations� and wire formats

� Buffer layout for fixed formats

� Artix extensions to WSDL

Payload Formats A payload format controls the layout of a message delivered over a
transport. The WSDL definition of a Port and its binding together associate a
payload format with a transport. A binding can be specified in the logical

Example 1: Artix WSDL Contract Elements

Logical Contract:

<Schema>

<Type> (analogous to typedefs)

<Message> (analogous to parameters)

<PortType> (analogous to class or CORBA interface definition)

 <Operations> (analogous to methods)

Physical Contract:

<Binding> (payload format)

<Services> (groups of ports)

 <Port> (transport)

<Route> (rules governing system interaction)
 6

Artix Contracts
portion of an Artix contract (portType), which allows for a logical contract to
have multiple bindings and thus allow multiple on-the-wire formats to use
the same contract.
7

CHAPTER 1 | Artix Java Concepts
Solving Problems with Artix Java

Overview Artix Java allows you to easily solve the problems of how to expose your
existing backend systems as Web services or develop new Web services and
retianing all of the enterprise levels of service you require. The process of
building Artix solutions has three phases:

� Design

� Development

� Deployment

Design phase In the design phase, you decide what services you want to build, what
operations each service will need, and the data that the services will need to
exchange. After making these decisions, you will map the information into
Artix contracts that describe the services, operations, and data-types. As
part of this step, you will also map out the transports used by each service
and any routing rules that will be used.

The Artix designer and command line tools automate the mapping of your
service descriptions into WSDL based Artix contracts.

Development phase In the development phase, you use the contracts created in the design
phase to generate the client stubs and server skeletons for your Web
services. In this phase, you will also write the application code that
implements the service�s business logic. While the majority of this code will
be standard Java, some of it will involve using Artix specific APIs.

Artix provides tools for generating the client stubs and server skeletons for
you, but you will need to use your favorite development environment to
develop and debug that application code.

Deployment phase In the deployment phase, you take the fully developed applications from the
development pahse and the Artix contracts from the design phase and use
them to deploy the Web services into active use. To do this you may need to
modify the Artix configuration files or edit the Artix contracts descrbing your
service to fit the exact circumstances of your deployment environment.
 8

The Artix Designer
The Artix Designer

Overview The Artix Designer is a tool for creating and managing Artix contracts. It
provides editors for creating contracts from standard WSDL files as well as
from CORBA IDL files. The Designer also makes it easy to define new data
types, logical interfaces, payload bindings, and transports by providing
wizards to walk you through each step.

The Artix Designer generates all of the Artix components you need to
complete your project, including:

� Artix contracts describing each of the services in your system.

� An Artix contract describing how Artix integrates your services.

� Any Artix stub or skeleton code needed to write Artix application code.

� The necessary configuration information to deploy your Artix instances.

In addition, the Artix Designer can also generate CORBA IDL from any
contracts that have a CORBA binding.

Artix Welcome dialog When you start the Artix Designer, your first interaction is with the Welcome
dialog, as shown in Figure 2, where you can specify whether to create a
new project, open an existing project, or go straight to the Designer.

Project Tree On the left side of the Designer is the Project Tree. The Project Tree lists all

Figure 2: Welcome Dialog
9

CHAPTER 1 | Artix Java Concepts
of the System Diagram components with nodes for generating code,
generating deployment information, and, if you are using CORBA,
generating IDL. The Project Tree, as shown in Figure 3, also lists all of the
contracts imported into your project.

The drop down list at the bottom of the tree filters the amount of detail
shown in the tree at a time. The default is to show all information about the
project. You can select to view only the contracts imported into the project
or just the system components.

Figure 3: Project Tree
 10

The Artix Designer
System Diagram The first layer of information you receive from the Artix Designer is a
graphical representation of your project�s configuration. This view is invoked
by selecting Configuration in the Project Tree, and is called the System
Diagram - see Figure 4 for an example.

This example of a System Diagram shows an Encompass configuration of a
client and a server, with Artix embedded in the client entity.

An example of an Artix Relay configuration would contain a separate Artix
entity in between the two system elements.

You cannot currently perform any actions in the System Diagram view.

Figure 4: The System Diagram
11

CHAPTER 1 | Artix Java Concepts
Contract Editor The Contract Editor (Figure 5) is the real engine room of the Artix Graphical
User Interface (GUI). It serves two purposes - firstly it provides a way for you
to navigate around the various components of your WSDL contract.
Secondly, it provides you with access to editing tools to add, or change,
Artix contract components.

You�ll notice that the icons representing the contract elements (types,
messages, services, etc) in this diagram sometimes have a small plus sign
attached � this indicates that the element has "children" � you can expose
those children - or the actual types, messages, etc � for the contract by
double clicking on the element icon. You can then view or edit the individual
items directly from the Contract Editor.

Figure 5: The Contract Editor
 12

The Artix Designer
Working with the WSDL The Contract Editor also provides the option for you to view and edit the
contract WSDL directly instead of working through the graphical
representation as previously described.

To access the WSDL view of the contract, as shown in Figure 6, click on the
WSDL tab at the bottom of the Contract Editor panel.

Working in the WSDL view of the contract requires a sound knowledge of
WSDL � be aware that if you change the WSDL it could easily invalidate
your contract.

If you make a change to the WSDL that does cause a problem, errors are
identified in a separate error panel directly under the WSDL so that you can
easily identify the exact position of the problem within the WSDL file.

Figure 6: The Contract Editor - WSDL View
13

CHAPTER 1 | Artix Java Concepts
Development Tool The Development Tool is invoked by selecting the Development icon under
one of the services in the project tree. Using this tool, shown in Figure 7,
you can generate Artix stub and skeleton code for the interfaces defined by
the selected service�s contract. The tool will also generate a makefile and
sample server and client mainlines for you.

The code generation options available to you on this panel are Java,
CORBA, or C++.

Figure 7: Development Tool, Showing Java Code Generation Options
 14

The Artix Designer
Deployment Tool The Deployment Tool is invoked by selecting the Deployment icon under
one of the services in the project tree. The Deployment Tool, shown in
Figure 8, generates an Artix configuration file that is optimized for the
selected service, a script for setting up your Artix runtime environment, and
a composite Artix contract that is suitable for deployment into a runtime
system. The generated configuration file contains all of the information
needed to deploy your service using Artix. In the case of a standalone Artix
service the Deployment Tool also generates start and stop scripts for the
Artix service.

Figure 8: Deployment Tool
15

CHAPTER 1 | Artix Java Concepts
Using the Artix Library

Overview The Artix library consists of a number of guides to help you understand and
use Artix. The guides are broken down into groups reflecting the three
phases of Artix problem solving. In addition Artix provides a Tutorial that
provides a number of guided excercises to build your skill using Artix.

If you are new to Artix If you are approaching Artix for the first time, it is suggested that you work
through the library in the following order:

1. Getting Started with Artix Encompass

2. Artix Tutorial

3. Deploying and Managing Artix Solutions

4. Designing Artix Solutions

5. Developing Artix Applications

Design guides Designing Artix Solutions explains Artix contracts and how to create them
using both the Artix designer and the Artix command line tools. It contains
detailed descriptions of the Artix WSDL extentions used to define routes,
payload formats, and transports. It also provides an overview of WSDL and
how it maps to certian programming concepts.

Development guides Artix has two development guides:

� Developing Artix Applicaitons in C++

� Developing Artix Applications in Java

Both guides describe how to develop clients and servers using the Artix
APIs. They provide examples of advanced usages of Artix such as
transactions, using locator services, session management, and dynamic
configuration.

Artix also provides a reference guide to the tread control library used in the
Artix API.
 16

Using the Artix Library
Deployment guides Deploying and Managing Artix Solutions explains how to configure and
deploy all aspects of an Artix solution. It describes the Artix configuration
file, where to locate the contracts which control your Artix services, and how
to run Artix applications. It also explains how to configure and deploy the
Artix Locator and the Artix Session manager.
17

CHAPTER 1 | Artix Java Concepts
 18

CHAPTER 2

Artix Java in
Action: A Demo
The Artix product kit contains a set of demos showing Artix
Java in action with different message and transport formats.
This chapter walks you through one of those demos, and then
explains how build an Artix Java application using your own
WSDL file.

In this chapter This chapter discusses the following topics:

The Hello World Demo page 20

Setting the Environment page 21

Compiling and Running the Java Server page 22

Compiling and Running the C++ Client page 23

Building an Artix Java Server page 24

Setting the Environment page 25

Generating the Java Code page 26

Editing and Compiling the Code page 27

Testing the Server page 29
19

CHAPTER 2 | Artix Java in Action: A Demo
The Hello World Demo

Overview The Hello World demo is one that is widely used to showcase the
capabilities of the Artix product suite. Depending on the Artix feature you are
trying to explore, you can use the Hello World demo to focus on specific
features of the product.

In this section, you will create a Java-based server and code it using the
Artix Java APIs which will be configured to receive SOAP over HTTP
requests sent by a C++-based client.

The server is coded independently of the transport and message formats
using the Artix Java APIs. The Artix Java configuration method defines how
the messages and transports are decoded. There are no hard-coded
references

The Artix Java code is identical for every message and/or transport format
used by the developer.
 20

The Hello World Demo
Setting the Environment
To set up the environment so that you can run this demo, you need to
ensure that you have sourced artix_env as follows:

Windows

UNIX

This will set up your environment so that you can develop and run Artix
applications. It also ensures that your classpath contains all required Artix
Java JAR files.

> %IT_PRODUCT_DIR%\artix\1.3\bin\artix_env.bat

% . $IT_PRODUCT_DIR/artix/1.3/bin/artix_env
21

CHAPTER 2 | Artix Java in Action: A Demo
Compiling and Running the Java Server
This demo contains a server that has two methods: greetMe, and sayHi,
which both return text strings. The sayHi method is a simple string which
returns the text "hi", while the greetMe method allows you to customize the
text which is returned to the client.

To compile and run the server:

1. Go to the server_http directory

2. Compile the Java files:

3. Run the Java server

Windows

UNIX

Now you�re ready to compile and run the client.

javac *.java

> start java Server

% java server &
 22

The Hello World Demo
Compiling and Running the C++ Client
The client will invoke on the two methods defined by the server�s WSDL
contract (sayHi and greetMe). To compile and run the client:

1. Move to the demos/hello_world/http_soap/client directory.

2. Compile the client:

Windows

UNIX

3. Run the client application:

Windows

UNIX

The server will display messages received from the C++ client, and the
client will show the responses received. If you wish, the client can be
invoked with a command line parameter and this will be passed through in
the greetMe method, for example:

Windows

UNIX

The greetMe message will return with joe in the response text.

> nmake -e all

% make -e all

> client.exe

% ./client

> client.exe joe

% ./client joe
23

CHAPTER 2 | Artix Java in Action: A Demo
Building an Artix Java Server

Overview This section will guide you through taking an existing WSDL file and use the
Artix WSDLToJava application to generate a Java server which implements
the WSDL interface.

Before you begin It is assumed that you have installed Artix, and that you have a valid WSDL
file. A sample WSDL file (helloworld.wsdl) is stored in the product kit within
the HTTP_SOAP directory.
 24

Building an Artix Java Server
Setting the Environment
To set up the environment so that you can run this demo, you need to
ensure that you have sourced artix_env as follows:

Windows

UNIX

> %IT_PRODUCT_DIR%\artix\1.3\bin\artix_env.bat

% . $IT_PRODUCT_DIR/artix/1.3/bin/artix_env
25

CHAPTER 2 | Artix Java in Action: A Demo
Generating the Java Code
To generate the Java code:

1. Go to the directory that contains your WSDL file.

2. Run the WSDL conversion tool, specifying the WSDL file to be
converted. For the purpose of this example, the HelloWorld.WSDL file
is used:

Windows

UNIX

3. The following files are generated:

> %IT_PRODUCT_DIR%\artix\1.3\bin\wsdltojava helloworld.wsdl

% . $IT_PRODUCT_DIR/artix/1.3/bin/wsdltojava helloworld.wsdl

HelloWorldImpl.Java
HelloWorldServer.Java
 26

Building an Artix Java Server
Editing and Compiling the Code

Edit the implementation logic You now need to write the implementation logic associated with this server.

1. Edit the HelloWorldImpl.Java file to change the greetMe and sayHi
operations as shown here:

Example 2: HelloWorldImpl.Java file showing the edits required

import java.net.*;
import java.rmi.*;

/**
 * HelloWorldImpl
 */
public class HelloWorldImpl {

 /**
 * greetMe
 *
 * @param: stringParam0 (String)
 * @return: String
 */
 public String greetMe(String stringParam0) {
 String greeting = "Hello " + stringParam0;
 return greeting;
 }
 /**
 * sayHi
 *
 * @return: String
 */
 public String sayHi() {
 String hi = "Hi Java for Artix User";
 return hi;
 }
 }
27

CHAPTER 2 | Artix Java in Action: A Demo
2. Create a server mainline.

Compile and run the server 1. Use the Java compiler to compile the source files:

2. Run the server:

3. The Server console displays the message "Demo Server starting..."

Example 3: Server mainline code

import com.iona.common.util.QName;

public class Server {
 public static void main(String args[]) throws Exception {

 QName name = new

QName("http://xmlbus.com/HelloWorld","HelloWorldService");
 ServerFactoryBase factory = new

SingleInstanceFactory("./HelloWorld.wsdl", new
HelloWorldImpl());

 Bus.registerServerFactory(name,factory,"HelloWorldPort");

 System.out.println ("Demo Server starting...");
 Bus.init(args);
 Bus.run();
 }
}

javac *.java

java HelloWorld Server
 28

Building an Artix Java Server
Testing the Server

Start the server Windows

UNIX

Now you�re ready to compile and run the client.

Running the client The client will invoke on the two methods defined by the server�s WSDL
contract (sayHi and greetMe). To compile and run the client:

1. Move to the demos/hello_world/http_soap/client directory.

2. Compile the client:

Windows

UNIX

3. Run the client application:

Windows

UNIX

> start java Server

% java server &

> nmake -e all

% make -e all

> client.exe

% ./client
29

CHAPTER 2 | Artix Java in Action: A Demo
 30

Glossary
A Artix Designer

A suite of GUI tools for creating and deploying Artix integration solutions.

B Binding
A binding associates a specific transport/protocol and data format with the
operations defined in a <portType>.

Bus
See Service Bus

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

C Connection
An established communication link between any two Artix endpoints.

Contract
An Artix contract is a WSDL file that defines the interface and all
connection-related information for that interface. A contract contains two
components: logical and physical. The logical contract defines things that are
independent of the underlying transport and wire format, and is specified in
the <portType>, <operation>, <message>, <type>, and <schema> WSDL tags.

The physical contract defines the payload format, middleware transport, and
service groupings, and the mappings between these things and portType
�operations.� The physical contract is specified in the <port>, <binding> and
<service> WSDL tags.

Contract Editor
A GUI tool used for editing Artix contracts. It provides several wizards for
adding services, transports, and bindings to an Artix contract.
31

Glossary
D Deployment Mode
One of two ways in which an Artix application can be deployed: Embedded
and Standalone. An embedded-mode Artix application is linked with
Artix-generated stubs and skeletons to connect client and server to the service
bus. A standalone application runs as a separate process in the form of a
daemon.

E Embedded Mode
Operational mode in which an application creates a Service Access Point,
either by invoking Artix APIs directly, or by compiling and linking
Artix-generated stubs and skeletons to connect client and server to the service
bus.

End-point
The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application). Contrast with Service.

H Host
The network node on which a particular service resides.

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

P Payload Format
The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL via the binding
definition.

Protocol
A protocol is a transport whose format is defined by an open standard.
 32

Glossary
R Routing
The redirection of a message from one WSDL binding to another. Routing
rules are specified in a contract and apply to both end-points and standalone
services. Artix supports port-based routing and operation-based routing
defined in WSDL contracts. Content-based routing is supported at the
application level.

Router
A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

S Service
An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but with no generated language bindings. The service has no
compile-time dependencies. A service is dynamically configured by deploying
one or more contracts on it.

Service Access Point
The mechanism, and the points at which individual service providers and
consumers connect to the service bus.

Service Bus
The set of service providers and consumers that communicate via Artix. Also
known as an Enterprise Service Bus.

Standalone Mode
An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.

Switch
A usage mode in which Artix connects applications using two different
transport mechanisms.

System
A collection of services and transports.
33

Glossary
T Transport
An on-the-wire format for messages.

Transport Plug-In
A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the �Port� property of a contract.
 34

Index

A
Artix

approach 3
demo 19
documentation viii
Encompass 2
products 2
Relay 2, 11

Artix contract 12

B
binding 5, 6

C
code generation 14
contract 5

graphical view 12
logical 6
physical 6
WSDL view 13

Contract Editor 12
CORBA 3, 9
customer service viii

D
deploying your solution 15

E
editing WSDL 13
environment, setting 25

F
FML 3
FRL 3

G
G2 3
generating code 14
H
HTTP 3

I
IIOP 3
implementation code, editing 27
integration 2
IONA Knowledge Base viii
IONA support viii

J
Java options 14

K
Knowledge Base viii

M
makefile 14
message 5
MQSeries 3

N
new Artix project 9

O
online help viii
operation 5

P
payload format 3, 6
Port 5
Port Type 5
Project Tree 9
protocol 3

S
server mainline, creating 28
service 5
Service Access Points 5
SOAP 3
35

INDEX
supported transports 3
System Diagram 11

T
TIBCO 3
TibrvMsg 3
transports 3
Tuxedo 3
type 5

V
VRL 3

W
web services, and Artix Java 2
WSDL 5
WSDL, editing 13
WSDL view of contract 13
 36

INDEX
37

INDEX
 38

	List of Figures
	Preface
	Artix Java Concepts
	Introduction to Artix
	Artix Contracts
	Solving Problems with Artix Java
	The Artix Designer
	Using the Artix Library

	Artix Java in Action: A Demo
	The Hello World Demo
	Setting the Environment
	Compiling and Running the Java Server
	Compiling and Running the C++ Client

	Building an Artix Java Server
	Setting the Environment
	Generating the Java Code
	Editing and Compiling the Code
	Testing the Server

	Glossary
	Index

