IONA

>3 Artix™

Deploying & Managing Artix
Solutions
Version 1.3, December 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Artix Encompass, Artix Relay, Orbix, Orbix/E,
ORBacus, Artix, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive Runt-
ime Technology, Transparent Enterprise Deployment, and Total Business Integration are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 10-Dec-2003

M3181

Contents

List of Tables vii
List of Figures ix
Preface Xi
Chapter 1 Introduction to Artix 1
Chapter 2 Configuration 5
Establishing the Host Computer Environment 6
Configuring Artix Runtime Behavior 9
Runtime Configuration Variables 13

ORB Plug-ins List 14

Policies 17

Binding Lists 18

Thread Pool Control 20

Artix Plug-in Configuration 22
Routing Plug-in 23

CORBA Plug-in 24

Tuxedo Plug-in 25

Locator Service Plug-in 26

Locator Service Endpoint Plug-in 27

Session Manager Plug-in 28

Session Manager Simple Policy Plug-in 29

Session Manager Endpoint Plug-in 30

WSDL Publishing Plug-in 31

Chapter 3 Artix Logging and SNMP Support 33
Artix Logging 34

Using Trace Macros 35
Application Server Platform Trace Macros 37

Using the SNMP Logging Plug-in 39

CONTENTS

Using the XML Logging Plug-in 46
IT_Logging Overview 53
IT_Logging::LogStream Interface 57
Example 60

Using the Logging Functionality 61
Performance Logging 62
Chapter 4 Artix Standalone Service 67
The Artix Standalone Service 68
Configuring the Service 71
Starting and Stopping the Service 73
Installing the Service as a Windows Service 75
Contracts for the Standalone Service 77
Chapter 5 Using the Artix Locator Service 79
Overview of the Artix Locator Service 80
Deploying the Locator 83
Registering a Server with the Locator 88
Obtaining References from the Locator 90

Load Balancing 93
Controlling Server Workloads 94

Fault Tolerance 96
Chapter 6 Using the Artix Session Manager 97
Introduction to Session Management in Artix 98
Deploying the Session Manager Service 101
Registering a Server with the Session Manager 107
Working with Sessions 110

Fault Tolerance 118
Chapter 7 Using Artix in a CORBA Environment 119
Embedding Artix in a CORBA Application 120

Using the CORBA Naming Service 123

Load Balancing with CORBA 125

Chapter 8 Embedding Artix in a Tuxedo Container 131

CONTENTS

Index 133

CONTENTS

vi

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:

Artix Transport Plug-ins

Artix Payload Format Plug-ins

Artix Service Plug-ins

IT_Logging Common Data Types, Methods, and Macros
Artix Standalone Service Configuration Variables
itartix_service Parameters

itartix_service Install Parameters

itartix_service Uninstall Parameters

14
15
15
53
71
73
75
76

vii

LIST OF TABLES

viii

List of Figures

Figure 1: Artix Message Transporting
Figure 2: Using Multiple Artix Daemons
Figure 3: Using a Single Artix Daemon
Figure 4: The Locator Plug-ins

Figure 5: Locator Load balancing
Figure 6: The Session Manager Plug-ins

69
69
81
82
99

LIST OF FIGURES

Audience

Organization of this guide

Online help

Preface

This guide is intended for Artix system administrators. It assumes that the
reader has a working knowledge of the middleware transports that are being
used with Artix.

This guide is divided as follows:

® Chapter 1 provides an overview of the concepts behind using Artix to
solve integration projects and how Artix fits into a software
environment.

® Chapter 2 describes how to configure Artix services to provide optimal
performance.

® Chapter 3 provides a detailed discussion of using the advanced logging
features of Artix.

® Chapter 4 describes how to deploy the Artix standalone service.

® Chapter 5 describes how to use the Artix Locator Service.

® Chapter 6 describes how to use the Artix Session Manager.

Artix Designer includes comprehensive online help, providing:

® Detailed step-by-step instructions on how to perform important tasks.
® Adescription of each screen.

® A comprehensive index and glossary.

® Afull search feature.

® Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

Xi

PREFACE

Related documentation

Reading path

Additional resources

Xii

The library for Artix includes the following:

Getting Started with Artix

Artix Tutorial

Deploying and Managing Artix Solutions
Designing Artix Solutions

Developing Artix Appliations in C++
Developing Artix Appliations in Java
Artix Security Guide

Artix Thread Library Reference

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

If you are new to Artix, you should read the documentation in the following
order:

1.

Getting Started with Artix

The getting started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ client for a Web Service.

Artix Tutorial

The tutorial guides you through programming Artix applications against
all of the supported transports.

Artix Administration Guide

The administration guide provides details about the services and
capabilities of Artix and how to integrate them into your software
environment.

The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

Typographical conventions

PREFACE

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com .

This guide uses the following typographical conventions:

Const ant wi dth

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (bj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

xiii

mailto:support@iona.com

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

(1 Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

Xiv

Overview

Artix message transporting

CHAPTER 1

Introduction to
Artix

Artix allows you to deploy integration solutions that are
middleware-neutral.

Artix provides a middleware connectivity solution that minimizes
invasiveness and lets an organization avoid being locked into any one
middleware transport. For example, Artix can be used to connect a BEA
Tuxedo™-based server to a CORBA client. Artix transparently handles the
message mapping and transformation between them. The Tuxedo server is
unaware that its client is using CORBA. In fact, with Artix handling the
communication, the client could be changed to an IBM WebSphere MQ™
client without modifying the server.

Along with this functionality Artix provides a great deal of configurability by
being built on IONA’s Adaptive Runtime Architecture (ART). All of Artix's
transport and payload format support is encapsulated in individual plug-ins
as are all of the services provided with Artix. This allows Artix to be scaled to
fit any environment.

Artix shields applications from the details of the transports used by
applications with which they are communicating, by providing on-the-wire
message transformation and mapping. Unlike the approach taken by

CHAPTER 1 | Introduction to Artix

Supported message transports

Supported payload formats

Enterprise Application Integration (EAI) products, Artix does not use an
intermediate canonical format; it transforms the messages once. Figure 1
shows a high level view of how a message passes through Artix.

No Canonical Format: Direct On-The-Wire Transformation

Tuxedo Artix MQSeries

"—I binding 1—| I—P biirvcling l—*

LTranspnrt of Choice <J

Figure 1: Artix Message Transporting

The approach taken by Artix provides a high level of throughput by avoiding
the overhead of making two transformations for each message.

Artix supports the following message transports:
® HTTP

® BEA Tuxedo

®* IBM WebSphere MQ

* |IOP
® TIBCO Rendezvous™
® |IOP Tunnel

Artix can automatically transform between the following payload formats:
* G2++

® FML - Tuxedo format

® CORBA (GIOP) — CORBA format

® FRL - fixed record length

® VRL - variable record length

* SOAP

TibrvMsg - TIBCO Rendezvous format

Artix contracts

Deployment models

An Artix contract defines the interaction of a Service Access Point (SAP) or
endpoint with Artix. Contracts are written using a superset of the standard
Web Service Definition Language (WSDL). Following the procedure
described by W3C, IONA has extended WSDL to support Artix's advanced
functionality, and use of transports and formats other than HTTP and SOAP.

An Artix contract consists of two parts:

Logical

The logical portion of the contract defines the namespaces, messages, and
operations that the SAP exposes. This part of the contract is independent of
the underlying transports and wire formats. It fully specifies the data
structures and possible operation/interaction with the interface. It is made
up of the WSDL tags <nessage>, <oper at i on>, and <por t Type>.

Physical

The physical portion of the contract defines the transports, wire formats,
and routing information used to deliver messages to and from SAPs, over
the bus. This portion of the contract also defines which messages use each
of the defined transports and bindings. The physical portion of the contract
is made up of the standard WSDL tags <bi ndi ng>, <port >, and

<oper ati on>. It is also the portion of the contract that may contain IONA
WSDL extensions.

Applications that use Artix can be deployed in one of two ways:

Embedded mode is the most invasive use of Artix and provides the highest
performance. In embedded mode, an application is modified to invoke Artix
functions directly and locally, as opposed to invoking a standalone Artix
service. This approach is the most invasive to the application, but also
provides the highest performance. Embedded mode requires linking the
application with Artix-generated stubs and skeletons to connect client and
server (respectively) to Artix.

Standalone mode runs as a separate process invoked as a service. In
standalone mode, Artix provides a zero-touch integration solution on the
application side. When designing a system, you simply generate and deploy
the Artix contracts that specify each endpoint. Because a standalone switch

CHAPTER 1 | Introduction to Artix

Advanced Features

is not linked directly with the applications that use it (as in embedded
mode), a contract for standalone mode deployment must specify routing
information. This is the least efficient of the two modes.

Artix also supports the following advanced functionality:

® Message routing based on the operation or the port, including routing
based on characteristics of the port.

® Transaction support over Tuxedo, WebSphere MQ, and CORBA.

® SSL and TLS support.

® Security support for Tuxedo and WebSphere MQ.

® Container based deployment with IONA’s Application Server Platform
6.0 and Tuxedo 7.1 or higher.

® Session Management

® Location Services

® Load Balancing

Overview

In this chapter

CHAPTER 2

Configuration

Artix’s runtime configuration provides a great deal of control
over how Artix systems perform.

There are several tasks involved in creating an environment in which Artix

applications can run:

® Establishing the host computer environment

® Establishing the common and application-specific Artix runtime
environments

® Configuring the plug-ins to provide optimal performance.

This chapter discusses the following topics:

Establishing the Host Computer Environment page 6
Configuring Artix Runtime Behavior page 9
Runtime Configuration Variables page 13
Artix Plug-in Configuration page 22

CHAPTER 2 | Configuration

Establishing the Host Computer Environment

Overview To use the Artix design tools and the Artix runtime environment, the host
computer must have several IONA-specific environment variables set. These
can be configured during installation or set later by running the provided
artix_env script.

Environmental variables Artix requires that the following environment variables be set on your
system:
* JAVA HOME
® |T_PRODUCT DIR
® |T_CONFIG_FILE
® |T_IDL_CONFIG_FILE
®* |T_CONFIG_DIR
® |T_CONFIG_DOMAINS DIR
®* |IT_DOMAIN_NAME
® PATH

JAVA_HOME

The path to your system’s JDK is specified with the system environment
variable JAVA_ HOME. This must be set if you wish to use the Artix Designer.

IT_PRODUCT DIR

| T_PRODUCT_DI R points to the top level of your IONA product installation.
For example, if you install Artix into the C.\ Program Fi | es\ | ONA directory of
your Windows system, you would set | T_PRCDUCT_DI Rto point to that
directory.

Note: If you have other IONA products installed and you choose not to
install them into the same directory tree, you will need to reset
| T_PRODUCT_DI R each time you switch IONA products.

You can override this variable using the - ORBpr oduct _di r command line
parameter when running your Artix applications.

Establishing the Host Computer Environment

IT_CONFIG_FILE

| T_CONFI G_FI LE specifies the location of the configuration file Artix services
use by default. You can overide this setting by using the - CRBdomai n_nare
and - CRBconf i g_domai ns_di r command line options.

IT_IDL_CONFIG_FILE

| T_I DL_OONFI G FI LE specifies the configuration used by the Artix IDL
compiler. If this variable is not set, you will be unable to run the IDL to
WSDL tools provided with Artix. The configuration file for the Artix IDL
compiler is set as follows.

UNIX

Defaults to INSTALL_Di R/ artix/1.2/etc/idl.cfg.
Windows

Defaults to INSTALL_DiR artix\1. 2\etc\idl.cfg.

Note: Do not modify the default IDL configuration file.

IT_CONFIG_DIR

| T_CONFI G DI Rspecifies the root configuration directory. The default root
configuration directory is / et ¢/ opt /i ona on UNIX, and pr oduct -di r\ et c on
Windows. You can override this variable using the - GRBconfi g_di r
command line parameter.

IT_CONFIG_DOMAINS_DIR

| T_CONFI G DOVAI NS_Di R specifies the directory where Artix searches for its
configuration files. The configuration domain’s directory defaults to
CRBconfi g_di r/ domai ns on UNIX, and CRBconfi g_di r\ donai ns on
Windows. You can override this variable using the - GRBconf i g_donai ns_di r
command line parameter.

IT_DOMAIN_NAME

| T_DOVAI N_NAME specifies the name of the configuration domain used by
Artix to locate its configuration information. This variable also specifies the
name of the file in which the configuration information is stored. For
example the configuration information for domain arti x would be stored in
CRBeconfi g_dir\ domai ns\ atri x. cf g on Windows and

CRBeconfi g_dir/ domai ns/ artix. cf g on Unix. You can override this variable
with the - GRBdonai n_name command line parameter.

CHAPTER 2 | Configuration

PATH

The Artix bin directories should be placed first on the PATHto ensures that
the proper libraries, configuration files, and utility programs (for example,
the IDL compiler) are used. These settings avoid problems that might
otherwise occur if the Application Server Platform and/or Tuxedo (both of
which include IDL compilers and CORBA class libraries) are installed on the
same host computer.

The default Artix bin directory is:

UNIX
$I T_PRCDUCT_DI R artix/ 1.2/ bin

Windows
% T_PRCDUCT DI Rvdartix\1.2\bin

Running the arti x_env Script The installation process creates a script, arti x_env, that captures the
default information for setting the host computer's Artix environment.
Running this script will properly configure your system to use Artix. It is
located in the Artix bin directory.

IT PRODUCT DIR artix\1.2\bin\arti x_env

Configuring Artix Runtime Behavior

Configuring Artix Runtime Behavior

Overview

Configuration Scopes

Artix is built upon IONA’s Adaptive Runtime Architecture (ART). Runtime
behaviors are established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code may be run—and may exhibit different
capabilities—in different configuration environments.

An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default configuration file is located in

% T_PRODUCT_DI R arti x\ 1. 2\ et c\ donmai ns\ arti x. cf g on Windows and
$I T_PRODUCT_Di R arti x/ 1. 2/ et ¢/ domai ns/ arti x. cf g on Unix.

The contents of this file may need to be changed to modify Artix logging,
routing, and other behaviors.

You can also manually create new Artix configuration domains to
compartmentalize your applications. However, this is only recommended if
you are familiar with configuring IONA’s ART platform.

An Artix configuration domain is divided into scopes. These are typically
organized into a hierarchy of scopes, whose fully-qualified names map
directly to ORB names. By organizing configuration variables into various
scopes, you can provide different settings for individual services, or common
settings for groups of services.

Configuration scopes apply to a subset of services or to a specific service in
an environment. Instances of the Artix standalone service can each have
their own configuration scopes. A default Artix standalone service scope is
automatically created when you install Artix.

Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon, for example,
(naneTag {.};).

CHAPTER 2 | Configuration

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

In the arti x. cf g file, there are several predefined configuration scopes. For
example, the deno configuration scope includes nested configuration scopes
for some of the demo programs included with the product.

Example 1: Demo Configuration Scope

deno
{
fm _plugin
{
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop", "iiop", "soap", "http", "@&", "tunnel",
"mg", "ws_orb", "fm"];
IE
tel co
{
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop”, "iiop”, "@", "tunnel"];
pl ugi ns: tunnel :iiop: port = "55002";
poa: M/Tunnel : di rect _persi stent = "true";
poa: MyTunnel : wel | _known_address = "pl ugi ns: t unnel ";
ser ver
{
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop", "iiop”, "ots", "soap", "http", "Q:,
“tunnel "];
pl ugi ns: tunnel : poa_name = "M/Tunnel ";
B
b
tibrv
{
orb_plugins = ["local _| og_streant, "iiop_profile",
“giop", "iiop", "soap", "http", "tibrv"];
event _log:filters = ["*=FATAL+ERRCR'] ;
b
b

Note that the orb_pl ugi ns list is redefined within each configuration scope.

10

Mapping to a configuration scope

Namespaces

Configuring Artix Runtime Behavior

To make an Artix process run under a configuration scope, you name that
scope using the - CRBname parameter. Configuration scope names are
specified using the for scope. subscope. For example, the scope for the telco
server demo shown in Example 1 on page 10 would be specified as
deno. t el co. server. During process initialization, Artix searches for a
configuration scope with the same name as the - CRBnare parameter.

There are two methods for supplying the - ORBnane parameter to an Artix
process:

® Pass the argument on the command line.
® Specify the ORBname as the third parameter to | T_Bus: :init().

For example, to start an Artix process using the configuration specified in the
deno. ti brv configuration scope, you could start the process use the
following syntax:

<processNane> [appl i cati on paraneters] -ORBnane denv.tibrv

Alternately, you could use the following code fragment to initialize the Artix
bus:

IT Bus::init (argc, argv, “deno.tibrv”);

If a corresponding configuration scope is not located, the process starts
under the highest level configuration scope that matches the specified cope
name. If there are no configuration scopes that correspond to the CRBnane
parameter, the Artix process runs under the default global scope. For
example, if the nested configuration scope ti brv does not exist, the Artix
process uses the configuration specified in the deno configuration scope; if
the scope deno does not exist, the process runs under the default global
scope.

Most configuration variables are organized within namespaces, which serve
to group related variables. Namespaces can be nested, and are delimited by
colons (:). For example, configuration variables that control the behavior of
a plug-in begin with pl ugi ns: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts you would set the following variable:

pl ugi ns: arti x_service:iiop: port

11

CHAPTER 2 | Configuration

Variables

Data types

12

To set the location of the routing plug-in's contract you would set the
following variable:

pl ugi ns: routi ng: wsdl _url

Configuration data is stored in variables that are defined within each
namespace. In some instances variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
conpany. oper ati ons. or b_pl ugi ns variable would override a

conpany. or b_pl ugi ns variable. Plug-ins specified at the conpany scope
would apply to all processes in that scope, except those processes that
belong specifically to the conpany. oper ati ons scope and its child scopes.

Each configuration variable has an associated data type that determines the
variable's value.

Data types can be categorized into two types:
® Primitive types
® Constructed types

Primitive types
There are three primitive types: bool ean, doubl e, and | ong,.

Constructed types

Artix supports two constructed types: string and Confi gLi st (a sequence
of strings).

® In an Artix configuration file, the stri ng character set is ASCII.
® The ConfigLi st type is simply a sequence of stri ng types. For

example:
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop","iiop"];

Runtime Configuration Variables

Runtime Configuration Variables

In this section The following topics are discussed in this section:
ORB Plug-ins List page 14
Binding Lists page 18
Thread Pool Control page 20

13

CHAPTER 2 | Configuration

ORB Plug-ins List

Overview

Artix plug-ins

14

The orb_pl ugi ns variable specifies the plug-ins that Artix processes load
during initialization. A plug-in is a class or code library that can be loaded
into an Artix application at runtime. These plug-ins provide the user the
ability to load network transports, payload format mappers, error logging
streams, and other features “on the fly.”

The default entry for the or b_pl ugi ns variable includes all of the logging and
transport plug-ins:

orb_plugins = ["xmfile_log_streant,
“iiop_profile",
"giop”,
"iiop",
"soap",
"http",
"tunnel ",
g,
"ws_orhb"];

Each network transport and payload format that Artix is capable of
interoperating with uses its own plug-in. Many of the Artix features also use
plug-ins. The Artix transport plug-ins are listed in Table 1.

Table 1: Artix Transport Plug-ins

Plug-in Transport

http Provides support for using HTTP and HTTPS.

ws_orb Provides support for CORBA interoperability.

t unnel Provides support for the IlOP transport using non-CORBA
payloads.

t uxedo Provides support for Tuxedo interoperability.

ny Provides support for WebSphere MQ interoperability.

tibrv Provides support for TIBCO Rendezvous interoperability.

Runtime Configuration Variables

The Artix payload format plug-ins are listed in Table 2.

Table 2: Artix Payload Format Plug-ins

Plug-in Payload Format

soap Decodes and encodes messages using the SOAP format.

@ Decodes and encodes messages packaged using the G2+ +
format.

fm Decodes and encodes messages packaged in FML format.

t agged Decodes and encodes messages packed in variable record
length messages or another self-describing message format.

fixed Decode and encodes fixed record length messages.

The Artix feature plug-ins are listed in Table 3.

Table 3: Artix Service Plug-ins

Plug-in

Artix Feature

routing

Enables Artix routing.

| ocat or _endpoi nt

Enables endpoints to use the Artix locator
service.

servi ce_| ocat or

Enables the Artix locator. An Artix server
acting as the locator service must load
this plug-in.

arti x_wsdl _publ i sh

Enables Artix endpoints to publish and
use Artix object references.

sessi on_manager _servi ce

Enables the Artix Session Manager. An
Artix server acting as the session
manager must load this plug-in.

sessi on_endpoi nt _nmanager

Enables the Artix Session Manager.
Endpoints wishing to be managed by the
session manager must load this plug-in.

15

CHAPTER 2 | Configuration

Table 3: Artix Service Plug-ins

Plug-in Artix Feature

smsinpl e_policy Enables the policy mechanism for the
Artix Session Manager. Endpoints
wishing to be managed by the session
manager must load this plug-in.

16

Runtime Configuration Variables

Policies

Overview

The pol i ci es namespace contains the following two variable for controlling
the publishing of server hostnames:

® http:server_address_mode_policy:publish_hostname

® soap:server_address_mode_policy:publish_hostname

If the policy corresponding to the transport used by the server, the

dynamically generated contract will be published with the original contents
of the address element.

http:server_address_mode_policy:publish_hostname

ht t p: ser ver _addr ess_node_pol i cy: publ i sh_host nane specifies how the
server's address is published in dynamically generated Artix contracts.
When set this policy is set to f al se, the dynamically generated contract will
publish the IP address of the running server in the <ht t p: addr ess> element
describing the server's location. When this policy is set to true, the
hostname of the machine hosting the running server is published in the
<htt p: addr ess> element describing the server’s location.

soap:server_address_mode_policy:publish_hostname

soap: server _addr ess_node_pol i cy: publ i sh_host nane specifies how the
server's address is published in dynamically generated Artix contracts.
When set this policy is set to f al se, the dynamically generated contract will
publish the IP address of the running server in the <soap: addr ess> element
describing the server's location. When this policy is set to true, the
hostname of the machine hosting the running server is published in the
<soap: addr ess> element describing the server’s location.

17

CHAPTER 2 | Configuration

Binding Lists

Overview

client_binding_list

bi nding:client_binding_list =["

18

When using Artix's CORBA functionality you need to configure how Artix
binds itself to message interceptors. The Artix bi ndi ng namespace contains
variables that specify interceptor settings. An interceptor acts on a message
as it flows from sender to receiver. Computing concepts that fit the
interceptor abstraction include transports, marshaling streams, transaction
identifiers, encryption, session managers, message loggers, containers, and
data transformers. Interceptors are a form of the “Chain of Responsibility”
design pattern. Artix creates and manages chains of interceptors between
senders and receivers, and the interceptor metaphor is a means of creating a
“virtual connection” between a sender and a receiver.

The Artix bi ndi ng namespace includes the following variables:
® client_binding_list
® server_binding_list

Artix provides client request-level interceptors for OTS, GIOP, and POA
collocation (where server and client are collocated in the same process), and
message-level interceptors used in client-side bindings for 110P, SHMIOP
and GIOP.

The cli ent _bindi ng_l i st specifies a list of potential client-side bindings.
Each item is a string that describes one potential interceptor binding. For
example:

OTS+POA Col oc”, “PQA Col oc*, " OTS+GE CP+l | OP", "G CP+ | CP']

Interceptor names are separated by a plus (+) character. Interceptors to the

right are “closer to the wire” than those on the left. The syntax is as follows:

® Request-level interceptors, such as @ P, must precede message-level
interceptors, such as 11 CP.

® @ CPor P col oc must be included as the last request-level
interceptor.

server_binding_list

Runtime Configuration Variables

® Message-level interceptors must follow the @ CP interceptor, which
requires at least one message-level interceptor.

® The last message-level interceptor must be a message-level transport
interceptor, such as | | P or SHV CP.

When a client-side binding is needed, the potential binding strings in the list
are tried in order, until one successfully establishes a binding. Any binding
string specifying an interceptor that is not loaded, or not initialized through
the orb_pl ugi ns variable, is rejected.

For example, if the ot s plug-in is not configured, bindings that contain the
OrS request-level interceptor are rejected, leaving [" PQA Col oc",

"A P+l I CP', "d COP+SHM COP']. This specifies that POA collocations should
be tried first; if that fails, (the server and client are not collocated), the @ cP
request-level interceptor and the I I 0P message-level interceptor should be
used. If the ot s plug-in is configured, bindings that contain the OTS request
interceptor are preferred to those without it.

server _bi ndi ng_l i st specifies interceptors included in request-level
binding on the server side. The POA request-level interceptor is implicitly
included in the binding.

The syntax is similar to cl i ent _bi ndi ng_I i st. However, in contrast to the
client_binding_list, the left-most interceptors in the

server _binding_l i st are “closer to the wire”, and no message-level
interceptors can be included (for example, 11 CP). For example:

bi ndi ng: server_binding_list = ["Ors",""];

An empty string (*") is a valid server-side binding string; this specifies that
no request-level interceptors are needed. A binding string is rejected if any
named interceptor is not loaded and initialized.

The default server_binding_list is["Ors', ""]. If the ots plug-in is not
configured, the first potential binding is rejected, and the second potential
binding (") is used, with no explicit interceptors added.

19

CHAPTER 2 | Configuration

Thread Pool Control

Overview

high_water_mark

20

Variables in the t hr ead_pool namespace set policies related to thread
control. They can be set globally for Artix instances in a configuration scope,
or they can be set on a per-service basis. The settings set on a per-service
basis override the global settings for the configuration scope.

To set the values globally, use the following syntax:
t hread_pool : vari abl e_nane

To set the values on a per-service basis you can specify either the service's
name or the service’s fully qualified QName. The syntax is as follows:

t hread_pool : servi ce_nare: vari abl e_narre
t hread_pool : servi ce_gnane: vari abl e_nane

For example, if an Artix instance’s contract has a service named
per sonal | nf oSer vi ce, you would specify its thread control settings as
follows:

t hr ead_pool : per sonal | nf oSer vi ce: vari abl e_nane

The thread control settings specify the values for the thread pool on a
per-port basis. For instance, if per sonal I nf oSer vi ce describes three ports,
each port will have its own thread pool with values as specified by the
settings in the t hread_pool : per sonal | nf oSer vi ce namespace.

The following variables are in this namespace:
® high_water_nark
® initial_threads

® lowwater_nark

hi gh_wat er _nmark sets the maximum number of threads allowed in each
port’s thread pool. Defaults to 25.

Runtime Configuration Variables

initial_threads

initial _threads sets the number of initial threads in each port’s thread
pool. Defaults to 2.

low_water_mark
| ow wat er _mar k sets the minimum number of threads in each port’s thread

pool. Artix will terminate unused threads until only this number exists.
Defaults to 5.

21

CHAPTER 2 | Configuration

Artix Plug-in Configuration

Overview

In this section

22

Each Artix transport, payload format, and service have properties which are
configurable. The variables used to configure plug-in behavior are specified
in the configuration scopes of each Artix runtime instance and follow the
same order of precedence. A plug-in setting specified in the global
configuration scope will be overridden in favor of a value set in a narrower
scope.

For example, if you set pl ugi ns: routi ng: use_type_factory to true in the
global configuration scope and set it to fal se in the scope wi dget _form all
Artix runtimes, except for those running under the scope wi dget _form
would use t rue for the value of use_t ype_fact ory. Any Artix instance using
the scope wi dget _f or mwould use f al se for the value of use_t ype_factory.

This section discusses the following topics:

Routing Plug-in page 23
CORBA Plug-in page 24
Tuxedo Plug-in page 25
Locator Service Plug-in page 26
Locator Service Endpoint Plug-in page 27
Session Manager Plug-in page 28
Session Manager Simple Policy Plug-in page 29
Session Manager Endpoint Plug-in page 30
WSDL Publishing Plug-in page 31

Artix Plug-in Configuration

Routing Plug-in

Overview

The routing plug-in uses the following variables:
® plugins:routing:routing_wsdl

® plugins:routing:use_type_factory

® plugins:routing:use_pass_through

plugins:routing:routing_wsdl

pl ugi ns: routing: routi ng_wsdl specifies the URL to search for Artix
contracts containing the routing rules for your application. This value can be
either a single URL or a list of URLs. If your application is using the routing
plug-in you must specify a value for this variable.

plugins:routing:use_type_factory

pl ugi ns: routi ng: use_t ype_fact ory specifies if the routing plug-in loads
user compiled type factories. The default setting is f al se.

Note: The use of type factories in routing is deprecated.

plugins:routing:use_pass_through

pl ugi ns: routi ng: use_pass_t hr ough specifies if the routing plug-in uses the
pass-through routing optimization. This optimization allows the router to
copy the message buffer directly from the source endpoint to the destination
endpoint if both use the same binding. The default value is tr ue.

Note: A few attributes are carried in the message body, as opposed to by
the transport. Such attributes are always propagated when the
pass-through optimization is in effect, regardless of attribute propagation
rules.

23

CHAPTER 2 | Configuration

CORBA Plug-in

Overview

24

In general, the Artix CORBA plug-in does not have any configuration
variables directly associated with it. However, the CORBA plug-in is
implemented using the same framework as IONA’s Application Server
Platform and it is affected by the same configuration settings as IONA’s
Application Server Platform.

For example, if you set the configuration variable:
pol i ci es: giop:interop_policy:send principal = "true";

This will impact the CORBA messages that Artix sends.

Or, if you remove the plug-in POA_Col oc from the client binding list, then
collocation will not work.

Artix Plug-in Configuration

Tuxedo Plug-in

Overview The Tuxedo plug-in has only one configuration variable:

® plugins:tuxedo:server

plugins:tuxedo:server

pl ugi ns: t uxedo: server is a boolean that specifies if the Artix process is a
Tuxedo server and must be started using t nboot . The default is f al se.

25

CHAPTER 2 | Configuration

Locator Service Plug-in

Overview The locator service plug-in, servi ce_l ocat or, has the following
configuration variables:

® plugins:locator:service_url
® plugins:locator:peer_timeout

plugins:locator:service_url

pl ugi ns: | ocat or: servi ce_ur| specifies the location of the Artix contract
defining the location service and configuring its address. A copy of this
contract, | ocat or. wsdl , is located in the wsdl folder of your Artix
installation.

plugins:locator:peer_timeout

pl ugi ns: | ocat or: peer _ti neout specifies the amount of time, in
milliseconds, the locator plug-in waits between keep-alive pings of the
services registered with it. The default is 4000000 (4 sec.).

26

Artix Plug-in Configuration

Locator Service Endpoint Plug-in

Overview The locator service endpoint plug-in, I ocat or _endpoi nt, has the following
configuration variables:

® plugins:locator:wsdl_url
® plugins:session_endpoint_manager:peer_timout

plugins:locator:wsdl_url

pl ugi ns: | ocat or: wsdl _ur| specifies the location of the Artix contract
defining the location service and specifying the address locator endpoints
use to communicate with the locator service. A copy of this contract,

I ocat or. wsdl , is located in the wsdl folder of your Artix installation.

plugins:session_endpoint_manager:peer_timout
pl ugi ns: sessi on_endpoi nt _manager : peer _ti nout specifies the amount of

time, in milliseconds, the server waits between keep-alive pings of the
locator service. The default is 4000000 (4 sec.).

27

CHAPTER 2 | Configuration

Session Manager Plug-in

Overview The session manager plug-in, sessi on_nanager _ser vi ce, has the following
configuration variables:

® plugins:session_manager_service:service_utl
® plugins:session_manager_service:peer_timeout

plugins:session_manager_service:service_url

pl ugi ns: sessi on_manager _ser vi ce: servi ce_ur| specifies the location of
the Artix contract defining the session manager. A copy of this contract,
sessi on- manager . wsdl , is located in the wsdl folder of your Artix
installation.

plugins:session_manager_service:peer_timeout
pl ugi ns: sessi on_manager _ser vi ce: peer _ti neout specifies the amount of

time, in milliseconds, the session manager plug-in waits between keep-alive
pings of the services registered with it. The default is 4000000 (4 sec.).

28

Artix Plug-in Configuration

Session Manager Simple Policy Plug-in

Overview The session manager’s simple policy plug-in, smsi npl e_pol i cy, has the
following configuration variables:

® plugins:sm_simple_policy:max_concurrent_sessions
plugins:sm_simple_policy:min_session_timeout

plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_concurrent_sessions

pl ugi ns: sm si npl e_pol i cy: max_concur r ent _sessi ons specifies the

maximum number of concurrent sessions the session manager will allocate.
Default value is 1.

plugins:sm_simple_policy:min_session_timeout

pl ugi ns: sm si npl e_pol i cy: m n_sessi on_ti meout specifies the minimum
amount of time, in seconds, allowed for a session’s timeout setting. Zero
means the unlimited. Default is 5.

plugins:sm_simple_policy:max_session_timeout

pl ugi ns: sm si npl e_pol i cy: max_sessi on_ti neout specifies the maximum
amount of time, in seconds, allowed for a session’s timesout setting. Zero
means the unlimited. Default is 600.

29

CHAPTER 2 | Configuration

Session Manager Endpoint Plug-in

Overview The session manager endpoint plug-in, sessi on_endpoi nt _nmanager , has the
following configuration variables:
® plugins:session_endpoint_manager:wsdl_url
® plugins:session_endpoint_manager:endpoint_manager_url
® plugins:session_endpoint_manager:default_group
® plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:wsdl_url

pl ugi ns: sessi on_endpoi nt _manager : wsdl _ur| specifies the location of the
contract defining the session management service the endpoint manager is
to contact.

plugins:session_endpoint_manager:endpoint_manager _url

pl ugi ns: sessi on_endpoi nt _rmanager : endpoi nt _manager _ur | specifies the
location of the contract defining the endpoint manager. The contract
contains the contact information for the endpoint manager.

plugins:session_endpoint_manager:default_group

pl ugi ns: sessi on_endpoi nt _manager : def aul t _gr oup specifies the default
group name for all endpoints that are instantiated using the configuration
scope.

plugins:session_endpoint_manager:header_validation
pl ugi ns: sessi on_endpoi nt _manager : header _val i dat i on specifies whether

or not a server validates the session headers passed to it by clients. Default
value is true.

30

Artix Plug-in Configuration

WSDL Publishing Plug-in

Overview The WSDL publishing plug-in, arti x_wsdl _publ i shi ng, has the following
configuration variables:

® plugins:wsdl_publish:publish_port

plugins:wsdl_publish:publish_port

pl ugi ns: wedl _publ i sh: publ i sh_port specifies the port on which the
WSDL publishing port can be contacted.

31

CHAPTER 2 | Configuration

32

In this chapter

CHAPTER 3

Artix Logging and

SNMP Support

This chapter describes various Artix logging approaches,

including Artix support for SNMP (Simple Network

Management Protocol) and integration with third-party SNMP

management tools.

This chapter includes the following sections:

Artix Logging page 34
Using Trace Macros page 35
Using the SNMP Logging Plug-in page 39
Using the XML Logging Plug-in page 46
IT_Logging Overview page 53
IT_Logging::LogStream Interface page 57
Example page 60
Performance Logging page 62

33

CHAPTER 3 | Artix Logging and SNMP Support

Artix Logging

Overview Artix provides the following | T_Loggi ng: : | ogst r eamplug-ins: the
xm fil e_| ogstreamand snnp_| ogst r eam In addition, IONA Application
Server Platform logging features such as | ocal _| ogst ream are provided.

For information on configuring these plug-ins see “Configuration” on page 5.

34

Using Trace Macros

Using Trace Macros

Artix Trace Macros

In using Trace macros, the most important concept is the trace level. Trace

level is an enum, defined init_bus/ | oggi ng_support, that lets you filter

events:

const
const
const
const
const
const
const

| T_TracelLevel
I T_TracelLevel
| T_TracelLevel
I T_TracelLevel
I T_TracelLevel
| T_TracelLevel
| T_TracelLevel

| T_TRACE_FATAL

| T_TRACE_ERRCR
| T_TRACE_WARN NG = 16;

I T_TRACE = 4;

| T_TRACE BUFFER = 2;
| T_TRACE_METHCDS = 1;

/| FATAL

/| ERRCR

/1 \WARN NG
/11 NFO H GH
/11 NFO_ MED
/11 NFO LON

| T_TRACE_METHCDS_| NTERNAL = 1; //|NFO LOW

The simplest trace statement emits a constant string at level | T_TRACE. For
example:

TRACELOE " Hel 1 0 wor | d");

Several versions of the macro allow using a C printf format string, and
passing in some arguments. Because you cannot have variable argument
lists for macros, there are several defined according to how many arguments
are allowed:

TRACELOGL("M/ nane is: %", "Slim Shady");

TRACELOZ("At state nunber %l, this happened: %", 44,

"connection failure");

Both the zero argument and the multi argument versions have a set that
allows a trace level to be passed in, instead of level | T_TRACE. For example:

TRACELOG W TH_LEVEL(I T_METHODS, “Md ass:: M/d ass()");

TRACELOG WTH LEVEL1(| T_TRACE METHCDS | NTERNAL, "Val ue of ny_nane_field was 96",

ny_nane_field);

35

CHAPTER 3 | Artix Logging and SNMP Support

36

If you must create your own output using i ost r eans or another expensive
process that isn't supported by the macro, you use the trace guard block, so
that the trace level test will prevent your trace creation code from running
when it will not produce output. For example:

BEQ N_TRACE(| T_TRACE)
String trace_nessage = "data el enents: “;

for(i =0; i < data_count; i++)
{
trace_message = trace_nessage + data_ itenfi] + "
}
TRACELOZ(trace_nessage. c_str());
END_TRACE

To create binary output (for instance, a hex dump of the buffer), use
TRACELO®BUFFER. For example:

TRACELO®BUFFER vvMMessageDat a, vvMJVessageDat a. Get Si ze())

If the trace statement issues at a level less than or equal to the process trace
level, then the entry is written to disk. The default log file name is
it_bus. | og.

Using Trace Macros

Application Server Platform Trace Macros

Overview <or bi x\ | oggi ng_suppor t . h> defines ASP-style logging macros.

IT_LOG_MESSAGE Macros

IT_LOG_MESSAGE() Macro

Il CH

#define | T_LOG MESSACGE(\
event_log, \
subsystem \
id, \
severity, \
desc \

) ...
A macro to use for reporting a log message.

Parameters
event _|og The log (Event Log) where the message is to be reported.
subsystem The Subsystemn d.
id The Event I d.
severity The EventPriority.
desc A string description of the event.
Examples Here is a simple example of usage:

| T_LOG MESSAGE(
event _| og,
I T_I'| OP_Loggi ng: : SUBSYSTEM
| T_I'l OP_Loggi ng: : SOCKET_CREATE_FAI LED,
| T_Loggi ng: : LOG ERRCR,
SOCKET_CREATE_FAI LED_MSG

37

CHAPTER 3 | Artix Logging and SNMP Support

IT_LOG_MESSAGE_1() Macro

Parameters

38

[l Ct+
#define | T_LOG MESSAGE 1(\
event _|og, \
subsystem \
id, \
severity, \
desc, \
paran0 \
)

A macro to use for reporting a log message with one event parameter.

event _| og The log (Event Log) where the message is to be reported.
subsystem The Subsyst em d.

id The Event I d.

severity The EventPriority.

desc A string description of the event.

par an® A single parameter for an Event Par anet er s sequence.

In addition, the I T_LOG MESSAGE 2(), | T_LOG MESSAGE 3(),

| T_LOG MESSAGE 4(), and | T_LOG MESSAGE 5() macros, are provided for
reporting log messages with two, three, four, and five parameters,
respectively.

Using the SNMP Logging Plug-in

Using the SNMP Logging Plug-in

SNMP Simple Network Management Protocol (SNMP) is the Internet standard
protocol for managing nodes on an IP network. SNMP can be used to
manage and monitor all sorts of equipment (for example, network servers,
routers, bridges, and hubs).

The Artix SNMP LogStream plug-in uses the open source library net - snnp
(v.5.0.7) to emit SNMPv1/v2 traps. For more information on this
implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a
freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

the Artix Management A MIB file is a database of objects that can be managed using SNMP. It has

Information Base (MIB) a hierarchical structure, similar to a DOS or UNIX directory tree. It contains
both pre-defined values and values that can be customized. The Artix MIB is
shown below:

Example 2: Artix MIB

IONA-ARTIX-M B DEFINTIONS ::= BEGN

| MPCRTS
MCDULE- | DENTI TY, OBJECT- TYPE,
I nt eger 32, Counter 32,

Unsi gned32,
NOTI FI CATI ON- TYPE FROM SNWv2- SM
D spl ayString FROM RFC1213-M B

-- v2 s/current/current

iona OBJECT IDENTIFIER ::= { iso(1l) org(3) dod(6) internet(1) private(4) enterprises(1l) 3027 }

i onaM b MODULE- | DENTI TY
LAST- UPDATED " 200303210000Z"

CRGAN ZATI ON "1 ONA Technol ogi es PLC'

39

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

CHAPTER 3 | Artix Logging and SNMP Support

Example 2: Artix MIB

QONTACT- | NFO

Cor por at e Headquarters
Dublin Cfice

The | ONA Bui | di ng

Shel bour ne Road

Bal | sbri dge

Dublin 4 Irel and
Phone: 353- 1- 662- 5255
Fax: 353-1-662- 5244

US Headquarters

Wl t ham O fi ce

200 West Street 4th Fl oor
Wal t ham NMA 02451

Phone: 781-902- 8000

Fax: 781-902- 8001

Asi a- Paci fic Headquarters

| ONA Technol ogi es Japan, Ltd
Akasaka Sanchone Bl dg.

7F 3-21-16 Akasaka, M nato-ku,
Tokyo, Japan 107- 0052

Tel : +81 3 3560 5611

Fax: +81 3 3560 5612

E-nai | : support @ona. com

DESCR! PTI ON
"This MB nodul e defines the objects used and format of SNWP traps that are generated
fromthe Event Log for Artix based systens from | QNA Technol ogi es"

c:={ iona 1}

40

Using the SNMP Logging Plug-in

Example 2: Artix MIB

-- i ona(3027)

- |
-- i onaM b(1)

P I I I
-- or bi x3(2) | CONAADm n (3) Artix (4)

== Arti xEvent LogM bChj ect s(0) ArtixEvent LogM bTraps (1)

| - event Source (1) |- ArtixbaseTrapDef (1)
|- eventld (2)
-- |- eventPriority (3)
|- tineStanp (4)
| - eventDescription (5)

Artix CBJECT IDENTIFIER ::={ ionaMb 4 }

Arti xEvent LogM bbj ect s CBJECT IDENTIFIER ::={ Artix 0}

Arti xEvent LogM bTr aps CBJECT IDENTIFIER ::={ Artix 1}

Arti xBaseTr apDef CBJECT IDENTIFIER ::= { ArtixEventLogM bTraps 1 }

-- MB variabl es used as varbi nds
event Sour ce CBJECT- TYPE
SYNTAX D spl ayString (Sl ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCR PTI ON
"The conponent or subsystem whi ch generated the event."
::={ ArtixEvent LogM bChj ects 1 }

41

CHAPTER 3 | Artix Logging and SNMP Support

Example 2: Artix MIB

event | d CBJECT- TYPE
SYNTAX | NTEGER
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON
"The event id for the subsystemwhi ch generated the event."

i:={ ArtixEvent LogM b(hj ects 2 }

eventPriority CBIECT- TYPE
SYNTAX | NTEGER
MAX- ACCESS not - accessi bl e
STATUS current
DESCR PTI ON

"The severity level of this event. This maps to | T_Loggi ng::EventPriority types. Al
priority types map to four general types: INFO (1), WARN (W, ERROR (E), FATAL_ERRCR (F)"

i:={ ArtixEvent LogM b(hj ects 3 }

ti mest anp CBJECT- TYPE
SYNTAX D spl ayString (S| ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON
"The tine when this event occurred."

i:={ ArtixEvent LogM b(hj ects 4 }

event Descri pti on CBJECT- TYPE
SYNTAX D splayString (Sl ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON

"The conponent/application description data included with event."
i:={ ArtixEvent LogM b(hj ects 5 }

-- SNWv1 TRAP definitions

-- ArtixEvent LogBaseTraps TRAP- TYPE
-- CBJECTS {

-- event Sour ce,

-- event | d,

-- eventPriority,

42

Using the SNMP Logging Plug-in

Example 2: Artix MIB

ti mest anp,
event Descri ption

}

STATUS current

ENTERPRI SE i ona

VAR ABLES { ArtixEvent LogM bChj ects }

DESCR PTION "The generic trap generated froman Artix Event Log."
::={ ArtixBaseTrapDef 1 }

-- SNWPv2 Notification type

Arti xEvent LogNot i f NOTI FI CATI ON- TYPE

END

CBJECTS {
event Sour ce,
event | d,
eventPriority,
ti mest anp,
event Descri pti on

}

STATUS current

ENTERPR! SE i ona

DESCR PTION "The generic trap generated froman Artix Event Log."
c:={ ArtixBaseTrapDef 1 }

IONA SNMP integration Events received from various Artix components are converted into SNMP

management information. This information is sent to designated hosts as
SNMP traps, which can be received by any SNMP managers listening on the
hosts. In this way, Artix enables SNMP managers to monitor Artix-based
systems.

Artix supports SNMP version 1 and 2 traps only.

Artix provides a logstream plug-in called snnp_| og_st ream The shlib name
of the SNMP plug-in found in the arti x. cf g file is:

pl ugi ns: snnp_| og_stream shli b_name = "it_snnp"

43

CHAPTER 3 | Artix Logging and SNMP Support

pl ugi ns:
pl ugi ns:
pl ugi ns:
pl ugi ns:

pl ugi ns:

44

The SNMP plug-in has five configuration variables, whose defaults can be
overridden by the user. The availability of these variables is subject to
change. The variables and defaults are:

snnp_| og_stream community = "public";

snnp_| og_stream server

snnp_| og_stream port

snnp_| og_streamtrap_type

snnp_| og_stream oi d

"l ocal host";

"162";

ne

"<your | ANA nunber in dotted decimal notation>"

The last plugin described, oi d, is the Enterprise Object Identifier. This
identifier is assigned to specific enterprises by the Internet Assigned
Numbers Authority (IANA). The first six numbers correspond to the prefix:
"iso.org.dod.internet.private.enterprise" (1.3.6.1.4.1). Each enterprise is
assigned a unique number, and can provide additional numbers to further
specify the enterprise and product. For example, the oi d for IONA is 3027.
IONA has added “1.4.1.0" for Artix. Thus the complete OID for IONA'’s Artix
is“1.3.6.1.4.1.3027.1.4.1.0". To find the number for your enterprise, visit
the IANA website at http://www.iana.org.

The SNMP plug-in implements the | T_Loggi ng: : LogSt r eaminterface and
hence, acts like the I ocal _I og_st reamplug-in.

http://www.iana.org

Using the XML Logging Plug-in

Using the XML Logging Plug-in

Using the XML Logging Plug-in

logging_support.h

You can modify your event log filters to enable or disable Artix tracing.
The out-of-the-box setting for event _| og: filters is ["*=FATAL+ERRCR'] .

So, for example, to cause transport buffer events to be shown, update the
event_log:filters to include | NFO_MED:

event _|og:filters = ["*=FATAL+ERRCR+WARN NG+l NFO MED'] ;
The following causes typical trace statement output:
event log:filters = ["*=FATAL+ERROR*WARN NGH NFO H "] ;

In addition, you can:

® add xmfile_|l og_streamtothe orb_pl ugins list

® update the filename variable (default is it_bus.log):
plugins:xmfile_log_streamfilename = "artix_|logfile.xm";

b modify the size element (default is 2MB):
pl ugi ns: xm file_l og_streammax_file_size = "100000";

® add optional element (default is false):

pl ugins: xmfile_log_streamuse pid = "fal se";
The Artix logging output from the TRACE macros now goes to the event log,
solocal _| og_stream xmfil_l og_streamor SNMP_log stream can be
used.

The following example shows the contents of logging_support.h:

45

CHAPTER 3 | Artix Logging and SNMP Support

Example 3: Artix logging _support.h

#if !defined(_I T_BUS LOGA NG)
#define _|I T_BUS LOGA NG_

#i ncl ude <stdi o. h>

#i ncl ude <stdarg. h>

#i ncl ude <it_bus/ APl _Defi nes. h>

#def i ne MAX_STACK_ALLQCATI ON 256
#def i ne MAX_TRACE S| ZE 16384

typedef | T UShort |T_TracelLevel;

//these are now equal to ART |ogging val ues, these are just for backward conmpatibility
/lvalue to put in event_log:filters

const | T TracelLevel |T _TRACE FATAL = 64; /| FATAL
const | T TracelLevel |T _TRACE ERRCR = 32; /| ERROR
const | T_TracelLevel |T_TRACE WARN NG = 16; /1 WARNI NG
const | T _TracelLevel |T _TRACE = 4; /11 NFO H CH
const | T TracelLevel |T_TRACE BUFFER = 2; /11 NFO_MED
const | T_TracelLevel |T_TRACE METHCDS = 1; /11 NFO LON

const | T TraceLevel |T_TRACE METHCDS | NTERNAL = 1; //INFO LONV
extern | T_AFC APl | T_TracelLevel g_log_filter;

nanespace CCRBA

{
class ORB;
IH
namespace | T_Loggi ng
{

cl ass Event Log;
}

46

Using the XML Logging Plug-in

Example 3: Artix logging_support.h

extern "C'

{
void | T_AFC APl set_global |og filter(IT TracelLevel trace_|evel);
voi d | T_AFC APl set_| oggi ng_def aul t _CRB(OCRBA: : CRB* orb);

void | T_AFC APl wite_log_record(lT_Logging::EventLog* event | og, | T TracelLevel trace_level,
const char* description, ...);

void | T_AFC APl wite_|log_record_w th_CDATA(I T_Loggi ng: : Event Log* event | og, |T_TraceLevel
trace_| evel, const char* description, const char* data buffer, |ong buffer_size);

void I T_AFC APl wite_|og record_with_binary(lT_Logging::Event Log* event | og, |T_TracelLevel
trace_| evel , const char* description, const char* data buffer, |ong buffer_size);

}

[/ These are for witing data buffers
//binary buffers are witten in a hex dunp fornat.
//to see output fromthese, include INFOMED in your event_log:filters
#define | T_LOG BUFFER(event _| og, Entry, Length) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\
wite_|og record_w th_binary(event_|log, | T_TRACE BUFFER "Buffer Qutput", Entry, Length);
\
}

#define | T_LOG CDATA(event _| og, description, Entry) \
if ((g_log filter & | T_TRACE BUFFER != 0) \
{\

}

wite | og_record_w th_CDATA(event | og, | T_TRACE BUFFER description, Entry, 0); \

#define | T_LOG CDATA Sl ZE(event _| og, description, Entry, Size) \
if ((g_log filter & | T_TRACE BUFFER) != 0) \
{\

}

wite | og_record_w th_CDATA(event | og, | T_TRACE BUFFER description, Entry, S ze); \

#def i ne | T_LOG CDATA Bl NARY_BUFFER(event _| og, descri ption, bbData) \
if ((g_log filter & | T_TRACE BUFFER) != 0) \
{\
wite_ | og_record_w th_binary(event_| og, | T_TRACE BUFFER descri pti on,
bbDat a. get _const _poi nter(), bbData.get_size()); \
}

47

CHAPTER 3 | Artix Logging and SNMP Support

Example 3: Artix logging _support.h

//these are used for controlled tracing operations. descriptionis a printf format string
//they allow specifying the trace |level so callers can control visibility
#define | T_LOG QUARDEDO(event | og, trace_l evel, description) \
if ((g_log_filter & trace_level) !=0) \
wite_ | og_record(event | og, trace_| evel, description);

#define | T_LOG QUARDED event | og, trace_l evel, description) \
I T_LOG GUARDEDO(event _| og, trace_l| evel, description)

#define | T_LOG QUARDEDL(event | og, trace | evel, description, Argl) \
if ((g_log_filter &trace level) !=0) \
{\

}

#define | T_LOG QUARDED2(event | og, trace | evel, description, Argl, Arg2) \
if ((g_log_filter &trace level) !=0) \
{\

}

#define | T_LOG QUARDED3(event | og, trace | evel, description, Argl, Arg2, Arg3) \
if ((g_log_filter &trace level) !=0) \
{\

}

#define | T_LOG QUARDEDA(event | og, trace |l evel, description, Argl, Arg2, Arg3, Arg4) \
if ((g_log_filter &trace level) !=0) \
{\

}

#define | T_LOG QUARDEDG(event | og, trace | evel, description, Argl, Arg2, Arg3, Arg4, Arg5) \
if ((g_log_filter &trace level) !=0) \
{\

}

wite_|og record(event _log, trace_level, description, Argl); \

wite_|og record(event _log, trace_level, description, Argl, Arg2); \

wite_|og record(event _log, trace_level, description, Argl, Arg2, Arg3); \

wite_|og record(event _log, trace_level, description, Argl, Arg2, Arg3, Argd); \

wite | og_record(event | og, trace_level, description, Argl, Arg2, Arg3, Arg4, Args); \

48

Using the XML Logging Plug-in

Example 3: Artix logging_support.h

//these are used to guard a code bl ock from executing when the purpose of the code

//block is solely for formatting a trace statement. It prevents the code from

[/ executing when the trace_level is filtered out and woul dn't be used anyway.

#defi ne BEQ N TRACE(trace_| evel) \
if ((g_log_filter &trace level) != 0) \
{

#def i ne END_TRACE \
}

/lall the macros that follow are just short hand for the previous ones, but they
//default the event_log to O, which uses the first one that was | oaded (usually
//the only one unless you are using multiple orb names in your cfg file

/1 These are for witing data buffers
//binary buffers are witten in a hex dunp fornat.
//to see output fromthese, include |NFO MED in your event_log:filters
#def i ne TRACELOGBUFFER(Entry, Length) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\

}

#def i ne TRACELOG CDATA(descri ption, Entry) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\

}

#def i ne TRACELOG CDATA Sl ZE(description, Entry, Size) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\

}

#def i ne TRACELOG _CDATA Bl NARY BUFFER(descri ption, bbData) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\
wite_|og record_with_binary(0, | T_TRACE BUFFER descri ption, bbData.get_const_pointer(),
bbDat a. get _si ze()); \
}

wite | og_record with_binary(0, |T_TRACE BUFFER "Buffer Qutput", Entry, Length); \

wite |og_record with CDATA(O, | T _TRACE BUFFER description, Entry, 0); \

wite |og_record with CDATA(O, | T TRACE BUFFER description, Entry, Size); \

49

CHAPTER 3 | Artix Logging and SNMP Support

Example 3: Artix logging _support.h

/1 These are used for nethod | evel tracing
//to see output fromthese, include |NFO LONin your event_log:filters
#def i ne BEG N_| NTERNAL_METHOD(Nane) \
const char *FuncNane = Nane; \
if ((g_log filter & I T_TRACE METHODS | NTERNAL) = 0) \
wite |og_record(0, | T _TRACE METHODS | NTERNAL, FuncNane);

#def i ne END_| NTERNAL_METHOD

#def i ne BEG N_METHOD(Narre) \
const char *FuncName = Nane; \
if ((g_log_ filter & | T_TRACE METHODS | NTERNAL) !'= 0) \
wite | og_record(0, | T _TRACE METHODS, FuncNane);

#def i ne END_METHCD
//these are used for controlled tracing operations. descriptionis a printf format string
//they allow specifying the trace | evel so callers can control visibility
#def i ne TRACELOG WTH LEVELO(trace_| evel , description) \
I T_LOG GUARDED(0, trace_l evel, description)

#def i ne TRACELOG WTH LEVEL(trace_| evel , description) \
I T_LOG GUARDED(0, trace_l evel, description)

#def i ne TRACELOG WTH LEVEL1(trace_| evel, description, Argl) \
I T_LOG GUARDEDL(0, trace_l evel, description, Argl)

#def i ne TRACELOG WTH LEVEL2(trace_| evel , description, Argl, Arg2) \
I T_LOG GUARDED2(0, trace_l| evel, description, Argl, Arg2)

#def i ne TRACELOG WTH LEVEL3(trace_| evel, description, Argl, Arg2, Arg3) \
I T_LOG GUARDED3(0, trace_l|evel, description, Argl, Arg2, Arg3)

#def i ne TRACELOG WTH LEVEL4(trace_| evel, description, Argl, Arg2, Arg3, Arg4) \
I T_LOG GUARDEDA(0, trace | evel, description, Argl, Arg2, Arg3, Arg4)

#def i ne TRACELOG WTH LEVEL5(trace_| evel , description, Argl, Arg2, Arg3, Arg4, Arg5) \
I T_LOG GUARDED5(0, trace | evel, description, Argl, Arg2, Arg3, Arg4, Argb)

50

Using the XML Logging Plug-in

Example 3: Artix logging_support.h

//these are used for normal tracing operations. descriptionis a printf format string
//they default the trace level to IT_TRACE if you want to use another |evel see the previous set
#def i ne TRACELOZ descri ption) \

I T_LOG QUARDED(O, | T_TRACE, description)

#def i ne TRACELOR)(descri ption) \
I T_LOG QUARDED(O, | T_TRACE, description)

#def i ne TRACELOGL(descri ption, Argl) \
I T _LOG QUARDEDL(O, | T_TRACE description, Argl)

#def i ne TRACELOX(description, Argl, Arg2) \
I T_LOG QUARDED2(0, | T_TRACE, description, Argl, Arg2)

#def i ne TRACELOG3(descri ption, Argl, Arg2, Arg3) \
I T_LOG QUARDED3(0, | T _TRACE, description, Argl, Arg2, Arg3)

#def i ne TRACELOGA(description, Argl, Arg2, Arg3, Arg4) \
| T_LOG QUARDEDA(0, | T_TRACE description, Argl, Arg2, Arg3, Arg4)

#def i ne TRACELOGH(description, Argl, Arg2, Arg3, Arg4, Arg5) \
I T_LOG QUARDEDS(0, | T_TRACE description, Argl, Arg2, Arg3, Arg4, Argb)

#endi f

51

CHAPTER 3 | Artix Logging and SNMP Support

IT Logging Overview

The | T_Loggi ng module is the centralized point for controlling all logging
methods. The LogSt r eaminterface controls how and where events are
received.

The 1 T_Loggi ng module also uses the following common data types, static
method, and macros.

Table 4: /T_Logging Common Data Types, Methods, and Macros

Common Data Types Methods and Macros
Applicationld f or mat _message()
Event | d
Event Par anet er s I T_LOG MESSAGK()
EventPriority I T_LOG MESSACGE 1()
Subsyst em d I T_LOG MESSAGE 2()
Ti mest anp I T_LOG MESSAGE_3()

| T_LOG MESSAGE 4()
| T_LOG MESSAGE 5()

IT_Logging::Applicationld Data Type

/11DL
typedef string Applicationld;

An identifying string representing the application that logged the event.
For example, a Unix and Windows Appl i cati onl d contains the host name
and process ID (PID) of the reporting process. Because this value can differ

from platform to platform, streams should only use it as informational text,
and should not attempt to interpret it.

IT_Logging::Eventld Data Type

/11DL
typedef unsigned | ong Eventld;

An identifier for the particular event.

52

IT_Logging Overview

IT_Logging::EventParameters Data Type

/11DL
typedef OCRBA: : AnySeq Event Paraneters;

A sequence of locale-independent parameters encoded as a sequence of Any
values.

IT_Logging::EventPriority Data Type

/11D

typedef unsigned short EventPriority;

Specifies the priority of a logged event. These can be divided into the
following categories of priority.

Information A significant non-error event has occurred. Examples include
server startup/shutdown, object creation/deletion, and
information about administrative actions. Informational
messages provide a history of events that can be invaluable
in diagnosing problems.

Warning The subsystem has encountered an anomalous condition, but
can ignore it and continue functioning. Examples include
encountering an invalid parameter, but ignoring it in favor of
a default value.

Error An error has occurred. The subsystem will attempt to
recover, but may abandon the task at hand. Examples
include finding a resource (such as memory) temporarily
unavailable, or being unable to process a particular request
due to errors in the request.

Fatal Error An unrecoverable error has occurred. The subsystem or
process will terminate.

The possible values for an Event Pri ori ty consist of the following:

LOG NO EVENTS

LOG ALL_EVENTS

LOG | NFO LOW

LOG | NFO MED

LOG INFO H &H

LOG INFO (LOG | NFO LOW

53

CHAPTER 3 | Artix Logging and SNMP Support

LOG ALL_| NFO
LOG WARN NG

LOG ERRCR

LOG FATAL_ERRCR

A single value is used for Event Log operations that report events or
LogSt r eamoperations that receive events. In filtering operations such as
set_filter(), these values can be combined as a filter mask to control
which events are logged at runtime.

IT_Logging::format_message()

Parameters

Il Ct+
static char* fornat_message(
const char* description,
const | T_Loggi ng: : Event Par aret er s& par ans

)
Returns a formatted message based on a format description and a sequence
of parameters.

Messages are reported in two pieces for internationalization:

description A locale-dependent string that describes of how to use the
sequence of parameters in par ans.

par ans A sequence of locale-dependent parameters.

format _nessage() copies the descri pti on into an output string, interprets
each event parameter, and inserts the event parameters into the output
string where appropriate. Event parameters that are primitive and

Syst enExcept i on parameters are converted to strings before insertion. For
all other types, question marks (?) are inserted.

IT_Logging::Subsystemld Data Type

54

/11DL
typedef string Subsystemnid;

An identifying string representing the subsystem from which the event
originated. The constant _DEFAULT may be used to enable all subsystems.

IT_Logging Overview

IT_Logging::Timestamp Data Type

/11DL
typedef unsigned | ong Ti nestanp;

The time of the logged event in seconds since January 1, 1970.

55

CHAPTER 3 | Artix Logging and SNMP Support

LogStream::report_event()

IT Logging::LogStream Interface

Each of the Artix logging plug-ins implements the | T_Loggi ng: : LogSt r eam
interface. The LogSt r eaminterface allows an application to intercept events
and write them to some concrete location via a stream.

I T_Loggi ng: : Event Log objects maintain a list of LogSt r eamobjects. You
register a LogSt r eamobject from an Event Log using r egi st er _strean() .
The complete LogSt r eaminterface is as follows:

/1 1DL in nodul e | T_Loggi ng

interface LogStream {
voi d report_event (

in Applicationld
in Subsystend
in Eventld
in EventPriority
in Timestanp
in any

)

voi d report_message(
in Applicationld
in Subsystend
in Eventld
in EventPriority
in Timestanp
instring

appl i cation,
subsyst em
event,
priority,
event _time,
event _data

appl i cation,
subsyst em
event,
priority,
event _time,
description,

in Event Paraneters paraneters

)
}

These operations are described in detail as follows:

/1 1DL
voi d report_event (

in Applicationld
in Subsystemd
in BEventld

in EventPriority
in Timestanp

in any

appl i cati on,
subsyst em
event,
priority,
event _tine,
event _data

Parameters

See also

)
Reports an eve

appl i cation
subsyst em
event
priority
event _tine

event _data

IT_Logging::LogStream Interface

nt and its event-specific data to the log stream.

An ID representing the reporting application.
The name of the subsystem reporting the event.
A unique ID defining the event.

The event priority.

The time when the event occurred.
Event-specific data.

I T_Loggi ng: : Event Log: : report _event ()

I T_Loggi ng: : LogSt ream : r epor t _nessage()

LogStream::report_message()

Parameters

See also

/1 1D

voi d report_message(

)
Reports an eve

appl i cation
subsyst em
event
priority
event _tine
description

paraneters

in Applicationld application,
in Subsystemnd subsyst em
in Eventld event,

in EventPriority priority,
in Timestanp event _time,
instring descri ption,
in EventParaneters paraneters

nt and message to the log stream.

An ID representing the reporting application.
The name of the subsystem reporting the event.
The unique ID defining the event.

The event priority.

The time when the event occurred.

A string describing the format of par anet ers.

A sequence of parameters for the log.

I T_Loggi ng: : Event Log: : report _nmessage()

57

CHAPTER 3 | Artix Logging and SNMP Support

I T_Loggi ng: : LogStream : report_event ()

58

Example

Example

Controlling Application Logging

This example shows application logging enable by including the

xni file_l og_streamplugin in the orb_pl ugi ns list (this plugin is included
in the default or b_pl ugi ns list, though it is not included in the or b_pl ugi ns
lists within many of the demo program configuration scopes). If you want to
enable logging to an XML file for the applications you develop, include this
plugin in your orb_plugins list.

To enable usage of the xmlfile_log_stream plugin, several other
configuration variables must also be set. These variable are all set within the
default/global scope in the arti x. cf g file:

plugins: xnm file_l og_streamshlib_name =
“it_xmfile”;

plugins: xmfile_|og_streamfil enane =
“artix_|l ogfile.xm"”;
default: it_bus.|og

plugins: xmfile_|og_streamnmax_fil e_size =
*2000000";
default: 2 nb

plugins: xmfile_|log streamuse_pid =
“fal se”;
default: fal se

standard | oggi ng setting; logs errors and warni ngs
event _log:filters =
[“*=FATAL+ERRCR+WARNI NG'] ;

very detail ed | oggi ng
#event _log:filters = [“*=*"];

transport buffer |oggi ng
#event _log:filters =
[“*=FATAL+ERRCR+WARNI NG+l NFO MED'] ;

high level informational |ogging

#event _|og: filters =
[“*=FATAL+ERRCR+WARNI NGH NFO H "] ;

59

CHAPTER 3 | Artix Logging and SNMP Support

Using the Logging Functionality

60

The default configuration settings enable logging of only serious errors and

warnings. If you want more exhaustive information, you should either select
a different filter list at the default scope, or include a more expansive

event _| og: filters configuration variable within your configuration scope.

If you have trouble running any of the demos, you should enable a high level
of logging, which requires adding the xmlfile_log_stream plugin to the
orb_plugins list and selecting the desired reporting level.

Performance Logging

Performance Logging

Overview

Performance logging

Configuration

The performance logging plug-ins allow applications based on IONA
products to integrate effectively with Enterprise Management Systems
(EMSs). Currently artix support integration with IBM Tivoli™.

This section covers general Artix details. For information on integration with
a Tivoli installation, refer to the Tivoli Integration Guide.

Performance logging lets you see how each server is responding to load.
These plug-ins log this data to file or syslog. Your EMS can read the
performance data from the logs and initiate appropriate actions. For
example, issuing a restart to a server that has become unresponsive, or
starting a new replica for an overloaded cluster.

The performance logging component consist of three plug-ins:

® The response time logger plugin

® The request counter plugin

® The collector plugin

The response time logger plugin monitors response times of requests as they
pass through ART binding chains. It can be used to collect response times

for CORBA, RMI-IIOP or HTTP calls in IONA’'s CORBA and J2EE products.
The request counter plugin performs the same function for Artix.

The collector plugin periodically harvests data from the response time logger
and request counter plug-ins and logs the results. To monitor the
performance of CORBA or J2EE requests (made in the context of IONA's
Application Server Platform), you must perform the following steps to
reconfigure the Application Server Platform:

61

CHAPTER 3 | Artix Logging and SNMP Support

Add it _response_tine_| ogger to the orb_plugins list for the server you
wish to instrument. Add it _reponse_tine_| ogger to the server and servlet
binding lists for that server. For example:

bi ndi ng: servl et _binding_list=[

"it_response_tine_|ogger + it_servlet_context + it_character_encoding

+ it_locale + it_nam ng_context + it_exception_mapping + it_http_sessions

+ it_web security + it_servliet filters + it_web redirector + it_web_app_activator "
Il

bi ndi ng: server _bi ndi ng_| i st =[

"it_response_tine_| ogger+i t _nam ng_cont ext +CS| +j 2eecsi +OIS+i t _security_rol e_nappi ng",
"it_response_tine_| ogger+it_nam ng_cont ext +OIS+it _security_rol e_nmappi ng",
"it_response_tine_| ogger+it_nam ng_context + CS|+j 2eecsi +it_security_rol e_mappi ng",
"it_response_tine_| ogger+it_nam ng_context+it_security_rol e_mappi ng",
"it_response_tine_| ogger+it_nam ng_context",

"it_response_tine_| ogger"

Ik

orb_pl ugi ns=[

"it_servl et _bi ndi ng_manager", "it_servlet_context",

"it_http_sessions", "it_servliet filters", "http",

"it_servl et_dispatch", "it_exception_mapping", "it_nam ng_context",
"it_web_security", "it_web_app_activator",

"it_default_servl et_binding", "it_security service", "it_character_encoding",
"it_locale", "it_classloader_servlet","it_classl oader_nappi ng",
"it_web_redirector", "it_deployer",

"it_response_tine_| ogger"

I

Configuring the collector plugin You can configure the collector plugin to log data either to a file or to syslog.
The following example results in performance data being logged to
/var/ | og/ ny_app/ perf _| ogs/ treasury_app. | og every 90 seconds (if you
do not specify the period, it defaults to 60 seconds):

plugins:it_response_tine_collector:period = "90";

plugins:it_response_time_collector:fil ename =
"/var/| og/ ny_app/ perf_l ogs/treasury_app.|og";

You can also configure the collector to log to a syslog daemon or Windows
Event Log:

pl ugins:it_response_tine_col |l ector: system| oggi ng_enabl ed = "true";
pl ugins:it_response_tinme_col |l ector:syslog_appid = "treasury";

62

Logging Formats

Performance Logging

sysl og_appi d lets you specify the application name, which is prepended to
all syslog messages. If you do not specify a sysl og_appi d, it defaults to
"iona".

You can cause your EMS to monitor a cluster of servers by configuring
multiple servers to log to the same file. If the servers are running on different
hosts, then the log file's location must be on an NFS mounted or shared
directory.

Alternatively, you can use sysl ogd as a mechanism for monitoring a cluster,
by choosing one sysl ogd to act as the central logging server for the cluster.
For example, to use the host t eddy as the central log server, edit the

/et c/ sysl og. conf file for each host that runs a server replica, and add:

Substitute the name of your |og server
user.info @eddy

Some syslog daemons do not accept log messages from other hosts by
default. In this case it may be necessary to restart the sysl ogd on t eddy
with a special flag to allow remote log messages. Consult the man pages on
your system to determine whether this is necessary and what flags to use.

Performance data is logged in a well-defined format. For CORBA and J2EE
applications based on IONA’s Application Server Platform, this format is:

YYYY- M DDTHH MM SS [oper at i on=name] count=n avg=n nax=n m n=n

® operation is the name of the operation for CORBA invocations or the
URI for requests on servlets.

® count is the number of times this operation or URI was logged during
the last interval.

® avg is average response time (in milliseconds) for this operation or URI
during the last interval.

® max is the longest response time (in milliseconds) for this operation or
URI during the last interval.

® ninis the shortest response time (in milliseconds) for this operation or
URI during the last interval.

The format for Artix log messages is:

YYYY- MM DDTHH MM SS [nanespace=nnn ser Vi ce=sss port =ppp oper ati on=nane] count=n avg=n nax=n m n=n

63

CHAPTER 3 | Artix Logging and SNMP Support

64

® nanespace is an Artix namespace.

® service is an Artix service.

® port is an Artix port.

® operation is the name of the operation for CORBA invocations or the
URI for requests on servlets.

® count is the number of times this operation or URI was logged during
the last interval.

® avg is average response time (in milliseconds) for this operation or URI
during the last interval.

® nmax is the longest response time (in milliseconds) for this operation or
URI during the last interval.

® ninis the shortest response time (in milliseconds) for this operation or
URI during the last interval.

The combination of namespace, service and port denote a unique Artix
Service Access Point.

Performance Logging

65

CHAPTER 3 | Artix Logging and SNMP Support

66

In this chapter

CHAPTER 4

Artix Standalone
Service

Artix lets you deploy middleware translation functions as a
standalone service external to both client and server
applications. The Artix standalone service can perform
transport switching, message routing, and middleware
bridging between non-Artix enabled applications.

This chapter discusses the following topics:

The Artix Standalone Service page 68
Configuring the Service page 71
Starting and Stopping the Service page 73
Installing the Service as a Windows Service page 75
Contracts for the Standalone Service page 77

67

CHAPTER 4 | Artix Standalone Service

The Artix Standalone Service

Overview The Artix standalone service is a minimally invasive means of connecting
applications that use different communication transports and message
formats. It does not require that any Artix-specific code be compiled or
linked into existing applications.

How it works The Artix standalone service is a daemon that listens for traffic on access
points specified in the Artix contract. It re-directs messages based on the
routing rules you provide, and performs any transport switching and
message formatting needed for the receiving application. Neither application
is aware that its messages are being intercepted by Artix and no application
development is required.

Note: Artix requires that services being integrated use equivalent
message layouts. For example, a service expecting a | ong cannot be sent a
float.

The standalone service's behavior is controlled by a combination of an Artix
contract and the Artix configuration file. For more information on Artix
contracts see the Artix Developer’s Guide. For more information on
configuring the Artix runtime see “Configuration” on page 5.

Deployment patterns An Artix standalone service can be deployed in a number of ways. Two
common deployment patterns are:

68

The Artix Standalone Service

Deploying several daemons, each of which bridges between two distinct
applications.

Artix Artix Artix
App A App B App C App D AppE| [AppF

Figure 2: Using Multiple Artix Daemons

This approach simplifies designing integration solutions and provides faster
processing of each message. Using this approach, the Artix contract
describing the interaction of the applications is simpler because it contains
only the logical interfaces shared by the two applications, the bindings for
each payload format, and the routing rules.

Because most applications use only one network transport, the number of
ports will be minimal and the routing rules will also be simple. The fact that
the contract is kept simple also enhances the performance of each
individual daemon because it has less processing to do. In this approach,
each daemon’s resource usage can also be limited by tailoring its
configuration to optimize the daemon for the particular integration task for
which it is responsible.

Deploying one daemon to bridge between all of the applications in a
particular domain.

. ——

App A App B App C App D AppE| [AppF

Figure 3: Using a Single Artix Daemon

69

CHAPTER 4 | Artix Standalone Service

This approach limits the number of external services required in your
deployment environment. This can simplify monitoring and installation of
deployments. It also reduces the number of “moving parts” in an integration
solution.

70

Configuring the Service

Configuring the Service

Overview

Orb plugins list

Service plug-in settings

Each instance of the Artix standalone service running on a host machine
needs its own configuration scope to specify the unique port on which its
administrative interface listens. Each instance also needs a corresponding
administrative interface configuration scope.

Having separate configuration scopes for each instance of the service also
allows greater control over the resources the service uses. You can specify
that it only load the transport and payload format plug-ins it requires. You
can also control the services threading and time-out behaviors.

For more information on configuring Artix, see “Configuration” on page 5.

In addition to the Artix plugins that provide support for the transports and
payload formats it will be working with, the Artix standalone service needs
to load the following plugins:

® iiop_profile

® iop

¢ giop

These need to be entered in its or b_pl ugi ns list.

The configuration variable that controls the behavior of the Artix standalone
service are in the pl ugi ns: arti x_ser vi ce namespace. Table 5 lists the
variables and their settings.

Table 5: Artix Standalone Service Configuration Variables

Variable Effect

shlib_nane Specifies the name of the Artix
service's shared library. This value
should always be set to
it_artix_service_svr.

71

CHAPTER 4 | Artix Standalone Service

Table 5: Artix Standalone Service Configuration Variables

Variable Effect

i i op: port Specifies the port number on
which the service listens for calls
from its administrative interface.
See “Service admin interface”.

i i op: host Specifies the name of the host
computer on which the service is
running. See “Service admin
interface”.

di rect _persi stence Specifies if the service's object
reference is persistent across
multiple invocations.

Service admin interface Each instance of the Artix standalone service must have a corresponding
administrative interface configuration scope. This scope must contain an
entry forinitial _references: | T_ArtixServi ceAdmi n: ref er ence.
initial _references: | T_ArtixServi ceAdni n: ref er ence specifies the port
number of this admin interface’s corresponding Artix service. The port
number is specified using the cor bal oc syntax:

corbal oc: i iop: 1. 2@ost nare: port/| T_ArtixServi ceAdm n

host nare is the hostname of the computer on which the corresponding Artix
service is running. port is the port number on which the corresponding Artix
service is listening.

72

Starting and Stopping the Service

Starting and Stopping the Service

Starting the service To start the Artix standalone service, use the following script:
start_artix_service

This script starts an instance of the Artix standalone service using the
default configuration scope of i ona_ser vi ces. arti x_ser vi ce.

Alternatively, you can start the service directly using the following
command:

itartix_service -CRBname orb_nane - CRBdonai n_nanme domai n_nane
- ORBconf i g_domai ns_dir domai n_dir run [-background]

Table 6 describes the parameters taken by i tarti x_servi ce.

Table 6: itartix_service Parameters

Parameter Description
- CRBnane or b_name Specifies the scope under which the service finds its configuration
details.
- CRBdomai n_nane domai n_nare Specifies the service's configuration file name. The configuration file

has the name domai n_nane. cf g.

For example, given domain name acnewi dget s, the service will read
its configuration from acnewi dget s. cf g.

- CRBeonfi g_domai ns_dir domain_dir | Specifies the location of the service’s configuration file.

run Specifies that the service is to begin monitoring.

- backgr ound Specifies that the service is to run in the background. If this
parameter is not specified, the service runs in the foreground of the
active command window.

For more information about configuring Artix see “Configuration” on page 5.

73

CHAPTER 4 | Artix Standalone Service

Stopping the service To stop the Artix standalone service use the following script:
stop_artix_service

This script will stop an instance of the Artix standalone service started using
the start script, start_arti x_servi ce.

Alternatively, you can manually call the service’s administrative interface to
stop the service. To do so use the following command:

itarti x_service_adnin - CRBnane orb_nane

The value passed with the -CRBnane flag specifies the configuration scope
under which the administrative interface finds its configuration information.
The vital entry in the administrative interfaces configuration is the entry for
initial _references: | T_ArtixServi ceAdm n: reference. This entry must
contain the corbaloc address of the Artix service instance you wish to
shutdown.

74

Installing the Service as a Windows Service

Installing the Service as a Windows Service

Overview

Installing the service

On Windows systems, you can install instances of the Artix standalone
service as a Windows service. This means the service starts at system boot
and that limited management functionality is provided through the Windows
service controls.

To install the Artix standalone service as a Windows service, use the
following script:

install _artix_service

This script installs the Artix standalone service using the default
configuration scope of i ona_ser vi ces. arti x_ser vi ce.

Alternatively, you can install an instance of the service directly using the
following command:

itartix_service -CRBname orb_nane - CRBdonai n_nanme domai n_nane
- ORBconf i g_domai ns_dir domai n_dir install

Table 7 describes the parameters taken by itarti x_servi ce.

Table 7: itartix_service Install Parameters

Parameter

Description

- CRBnane orb_nane

Specifies the scope under which the service finds its configuration
details.

- ORBdonai n_nane donai n_nane

Specifies the service's configuration file name. The configuration file
has the name domai n_nane. cf g.

For example, given domain name acnewi dget s, the service will read
its configuration from acnewi dget s. cf g.

- CRBeonfi g_domai ns_dir domai n_dir | Specifies the location of the service’s configuration file.

install

Specifies that the service is to installed as a Windows service.

75

CHAPTER 4 | Artix Standalone Service

Uninstalling the service

To uninstall the Artix standalone service as a Windows service use the
following script:

uninstall _artix_service

This script uninstalls the Artix standalone service using the default
configuration scope of i ona_servi ces. arti x_servi ce.

Alternatively, you can uninstall instances of the service directly using the
following command:

itarti x_service -CRBnane orb_nane - CRBdonai n_nane donai n_nane
- ORBconfi g_domai ns_dir domain_dir uninstall

Table 7 describes the parameters taken by i tarti x_ser vi ce.

Table 8: jtartix_service Uninstall Parameters

Parameter

Description

- CRBnane or b_nane

Specifies the scope under which the service finds its configuration
details.

- CRBdonai n_nane donai n_nane

Specifies the service's configuration file name. The configuration file
has the name donai n_nane. cfg.

For example, given domain name acnewi dget s, the service will read
its configuration from acnewi dget s. cf g.

- CRBeonfi g_domai ns_dir domai n_dir | Specifies the location of the service’s configuration file.

uni nstal |

Specifies that the service is to remove itself from the Windows
registry.

76

Contracts for the Standalone Service

Contracts for the Standalone Service

Routing

Locating the contracts

For more information

Contracts for instances of the Artix standalone service must have routing
rules to direct the flow of messages between the services defined within the
contract.

You must also ensure that the routing plug-in is loaded by the Artix
standalone service by placing the following entry in the or b_pl ugi ns list of
the instance’s configuration scope:

orb plugins = [... "routing"];

The Artix standalone service loads the contract specified by the

pl ugi ns: routi ng: wsdl _url configuration variable. For example if an
instance of the Artix standalone service was designed to use a contract
called per sonal I nf 0. wsdl and the contract was located in/etc/ contracts,
you would place the following in the instance’s configuration scope:

pl ugi ns: routi ng: wsdl _url ="/ et c/ contract s/ per sonal | nf 0. wsdl ";

For more information on Artix runtime configuration, see “Configuring Artix
Runtime Behavior” on page 9.

77

CHAPTER 4 | Artix Standalone Service

78

In this Chapter

CHAPTER 5

Using the Artix
Locator Service

The Artix Locator allows Artix servers to publish their

references for dynamic discovery by Artix clients.

This chapter discusses the following topics:

Overview of the Artix Locator Service page 80
Deploying the Locator page 83
Registering a Server with the Locator page 88
Obtaining References from the Locator page 90
Load Balancing page 93
Controlling Server Workloads page 94
Fault Tolerance page 96

79

CHAPTER 5 | Using the Artix Locator Service

Overview of the Artix Locator Service

Overview

Service components

80

A system with many servers cannot afford the overhead of manually
propagating each servers contact information to all off the clients that need
to contact them. Given the large number of clients and the distributed
nature of enterprise level deployments, the time required to accomplish this,
and the room for error, are too great. Also, over time hardware upgrades,
machine failures, or site reconfiguration require you to move servers and
repeat the exercise of propagating the server’s information to all clients.

The Artix locator service isolates clients from changes in a server's contact
information. The Artix contract defining how the client contacts the server
contains the address for the Artix locator and it is the locator that provides
the client with a reference to the server. Servers are automatically registered
with the locator when they start-up.

The Artix locator’s functionality is built into two plug-ins:

Locator Service Plug-in (servi ce_| ocat or) is the central service plug-in. It
accepts service registrations, performs service look-ups, hands out
references to clients who request them, and controls the load balancing of
service groups.

Locator Endpoint Manager Plug-in (I ocat or _endpoi nt) is the portion of the
session manager that resides in a registered service. It registers its location
with the service plug-in and monitors the health of the service plug-in to
ensure fault tolerance.

Overview of the Artix Locator Service

How do the plug-ins interact? Figure 4 shows a diagram of how the locator plug-ins are deployed in an
Artix System. While in this example, the locator service plug-in is deployed
into a standalone service, it can be deployed in any Artix process.

Figure 4: The Locator Plug-ins

The endpoint manager plug-ins are deployed into the server processes
which contain services that are registered with the locator. A process can
host two services, like Service C and Service D in Figure 4, but the process
will have only one endpoint manager. The endpoint manager plug-ins are in
constant communication with the locator service plug-in to report on
endpoint health and to check on the health of the locator service.

81

CHAPTER 5 | Using the Artix Locator Service

Load Balancing

The locator also provides load balancing functionality. When a group of
services register with the locator using the same service name, the locator
will consider the services as a single service and use a round-robin load
balance algorithm to hand out references to the separate instances. As
shown in Figure 5, as each client makes a request for wi dget _ser vi ce, the
locator cycles through the pool of registered wi dget _ser vi ce instances.
When the fourth client makes a request, the locator will start handing out
references from and the top of the pool, wi dget _servi ce,.

82

Figure 5: Locator Load balancing

Services can also implement their own load balancing internally using calls
to the Artix locator service that temporarily removes them from the pool of
active references.

Deploying the Locator

Deploying the Locator

Overview

Building a standalone locator
service

The Artix locator is implemented as a group of ART plug-ins. This means
that any Artix application can host the locator service by loading the

servi ce_| ocat or plug-in. However, it is recommended that users generate
an Artix server that only hosts the locator service and deploy that service
into their Artix environment.

In either case, the locator service requires modifications to the Artix
configuration domain in which the locator is run. You also need to generate
a copy of | ocat or. wsdl , the contract that describes the locator service,
containing the locator service's contact information.

To generate a standalone locator service you write a simple Artix server
mainline and link it with the Artix libraries. Example 4 shows an example of
the locator's mainline.

Example 4: Artix Locator Mainline

i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/ Exception. h>
#i ncl ude <it_bus/faul t_exception. h>

usi ng namespace | T_Bus;

int main(int argc, char* argv[])
{
try
{
IT Bus::init(argc, argv, "locator_service");
I T_Bus::run();
| T_Bus: : shut down() ;
}
catch (I T_Bus:: Exception& e)
{
printf("Exception occurred: 9%", e.Message());
return 1;

}

return O;

}

83

CHAPTER 5 | Using the Artix Locator Service

84

The locator’'s mai n() only needs to initialize the Artix bus with the name of
the locator's configuration scope and call | T_Bus: : run() . The configuration
scope’s name is the third parameter to I T_Bus::init(), | ocat or. servi ce.
The Artix bus will load the plug-ins for the locator service.

Example 5 shows a sample makefile for building the locator service.
Example 5: Locator Makefile
| T_PRCDUCT_VER = 1.2

ART BI'N DI R=$(I T_PRODUCT DI R)\artix\$(1 T_PRCDUCT VER)\ bi n

ART_CXX_| NCLUDE_DI R="$(| T_PRCDUCT_DI R)\arti x\ $(1 T_PRCDUCT VER)\i
ncl ude"

ART LIB DIR="$(IT_PRODUCT DIR)\artix\$(I T_PRODUCT_VER)\I i b"

oxx=cl
CXXFLAGS=- | $(ART_CXX_INCLUDE DIR) -Zi -nol 0go - CR - GX - V8 - Zn®250
-MD $(EXTRA CXXFLAGS) $(CXXLOCAL_DEFI NES)

LI NK=l i nk

LDFLAGS=/ DEBUG / NOLO30

LDLI BS=/ LI BPATH $(ART_LI B DIR) $(EXTRA LI B PATH) $(LI NK_ W TH)
kernel 32.1ib ws2_32.1ib advapi 32.1ib user32.1ib

SH.I B_CXX_COWP| LER | D= vc60
SH.| BLDFLAGS=-dI | -debug -i ncrenental : no

OBJS=$(SQURCES: . cxx=. obj)
LINK WTH=it_bus.libit_afc.libit_art.lib it_ifc.lib

SOURCES = | ocat or . cxx
all: locator.exe

| ocat or . exe: $(SOURCES) $(OBIS)
if exist $@del $@
$(LINK) /out:$@S$(LDFLAGS) $(CBIS) $(LDLIBS)

The locator must be linked with the following Artix libraries:
® it _bus.lib
® jt_afc.lib
® it _art.lib
* jt_.ifc.lib

Configuring the locator

Generating the locator’s contact
information

Deploying the Locator

To run the locator you need to ensure that it loads the locator service
plug-in, servi ce_l ocat or . In addition, the locator must load the soap and
htt p plug-ins as all of its communication is done using SOAP over HTTP.

In the locator’s configuration scope specify that the service plug-in will read
the correct Artix contract for the locator by setting

pl ugi ns: | ocat or: servi ce_url to point to the copy of | ocat or . wsdl
containing the address for this instance of the locator.

Example 6 shows the configuration scope used to start the locator.
Example 6: Locator configuration scope

| ocat or _servi ce

{

pl ugi ns: | ocat or: servi ce_url ="l ocat or. wsdl "
orb_plugins = ["xmfile_|l og_streant, "iiop_profile", "giop",
"iiop", "soap", "http", "service_|locator"];

IE

For more information on Artix configuration see “Configuration” on page 5.

You also need to configure the port on which the locator will run. To do this
you modify | ocat or . wsdl , provided in the wsdl folder of your Artix
installation, to specify the HTTP address at which the locator service will
listen. This can be either done manually for deploying the locator on a
well-known fixed port, or automatically for deploying the locator on a
dynamically allocated port.

85

CHAPTER 5 | Using the Artix Locator Service

Fixed Port

To deploy the locator on a well-known fixed port, open | ocat or . wsdl in any
text editor and edit the <soap: addr ess> entry at the bottom of the contract
to specify the proper address. Example 7 shows a modified locator service
contract entry. The highlighted part has been modified to point to the
desired address.

Example 7: Locator Service Address

<servi ce nanme="Locat or Servi ce">
<port name="Locator Servi cePort" bindi ng="|s: Locat or Servi ceBi ndi ng" >
<soap: address | ocation="http://| ocal host: 8080/ servi ces/ | ocat or/ Locat or Ser vi ce"/ >
</ port >
</ servi ce>

86

Deploying the Locator

Dynamic Port

To deploy the locator on a dynamically allocated port, configure the locator
to use the copy of | ocat or. wsdl shipped with Artix. Once the locator
initializes the Artix bus, it will need to publish a new copy of its contract
with the actual contact information. Example 8 shows how to publish the
locator’s contract.

Example 8: Dynamically Located Locator Service

\\ Ct+
I T _Bus::Bus_var bus = | T_Bus::init(argc, argv,
"| ocat or _service");

// Now we wite out the updated WBDL for the Locator Services

/1 Get the WBDL Defintions object.
| T_Bus: : Q\ane servi ce_nane("",
"Locat or Servi ce",
"http://ws.iona.conilocator");
| T_Bus:: Service * service = bus->get_servi ce(servi ce_nane);
const | T _WBDL:: WsDLDefinitions & definitions =
servi ce->get _wsdl _definitions();

I/ Serialize the WBDL nodel to another wsdl file.

I T_Bus:: Fil eQut put Stream strean("active-locator.wsdl ");
I T_Bus: : XM_Qut put St ream xml _strean{stream true);
definitions.wite(xm _strean);

streamcl ose();

I T_Bus::run();

Starting the locator Once the locator has been generated and properly configured it can be
started just like any other application.

87

CHAPTER 5 | Using the Artix Locator Service

Registering a Server with the Locator

Overview

Configuring the server

Registration

88

A server does not need to have its implementation changed to work with the
Artix locator. All that is required is that the server be configured to load the
proper plug-ins and to reference the correct locator contract.

Any server that wishes to register itself with the locator must load the
following plug-ins in addition to the transport and payload plug-ins it
requires:

® soap
® http
® locator_endpoi nt

| ocat or _endpoi nt allows the server to register with the running locator.

The server's configuration also needs to set pl ugi ns: | ocat or: wsdl _url to
point to the appropriate locator contract.

Example 9 shows the configuration scope of a server that registers with the
locator service.

Example 9: Server Configuration Scope

rune_server

{

pl ugi ns: | ocat or: wsdl _url ="l ocat or. wsdl ";
orb_plugins = ["xmfile_|og_streant, "soap", "http", "tunnel",
"| ocat or _endpoi nt"];

}

rune_server provides its services using SOAP over IIOP so in addition to the
locator plug-ins it also loads the t unnel plug-in.

For more information on Artix configuration see “Configuration” on page 5.

Once a properly configured server starts up, it automatically registers with
the locator specified by the contract pointed to by
pl ugi ns: 1 ocat or: wsdl _url .

Registering a Server with the Locator

You can register multiple instances of the same server with a locator. The
locator will generate a pool of references for the server type. When clients
make a request for a server, the locator will supply references from this pool

using a round-robin algorithm. For more information on load balancing see
“Load Balancing” on page 93.

89

CHAPTER 5 | Using the Artix Locator Service

Obtaining References from the Locator

Overview

Instantiating a locator service
proxy

20

Unlike servers, clients must be specifically written to work with the Artix
locator. There are three steps a client must take to obtain a server reference
from the Artix locator. They are:

1. Instantiate a proxy for the locator service.
2. Look up the desired server's endpoint using the locator service proxy.
3. Create a proxy for the desired server using the returned endpoint.

Before a client can invoke any of the look up methods on the locator service,
it must create a proxy to forward requests to the running locator. To do this
the client creates an instance of Locat or Servi ced i ent using the locator
service’s contract name, | ocat or . wsdl , the locator service’s QName, and
the port name used in the locator service's contract, Locat or Ser vi cePort .

Note: For more information on Artix proxy constructors, read the Artix
C++ Programmer’s Guide.

Example 10 shows how to instantiate a locator service proxy. The
parameters used to create the locator service’s QName, Locat or Ser vi ce
and http://ws. i ona. com | ocat or, should never be modified.

Example 10: /nstantiating a Locator Service Proxy

/] C++
Q\ane | ocat or _servi ce_nanme("", "Locator Service",
"http://ws.iona.con|locator");
| ocat or _proxy = new Locator Servi ced ient ("l ocator.wsdl ",
| ocat or _servi ce_narre,
"Locat or Servi cePort");

Looking up a server’s endpoint

Obtaining References from the Locator

After instantiating a locator service proxy, a client can then look up servers
using the proxy’s | ookup_endpoi nt () method. | ookup_endpoi nt () has the
following signature:

voi d | ookup_endpoi nt (| ookupEndpoi nt i nput,
| ookupEndpoi nt Response out put) ;

i nput contains the QName of the server the client is looking up. The QName
is set using the set servi ce_gname() method. The QName of the service is
comprised of the service name specified in the Artix contract’s <ser vi ce>
tag and the target namespace of the Artix contract.

out put contains a reference to the server. If the locator cannot find a
registered instance of the requested server, | ookup_endpoi nt () returns an
endpoi nt Not Exi st Faul t exception.

Example 11 shows the client code to look up an instance of the widget
ordering service, or der W dget Ser vi ce.

Example 11: Looking up a Server Using the Locator Service

Il Ct+
/]l Create the Q\Nane for the server
Q\ane servi ce_name("", "orderWdgetsService",

"http://w dget Vendor . coni wi dget O der For nt') ;
// Create | ookup input paraneter
| ookupEndpoi nt i nput;
i nput . set servi ce_gnane(servi ce_nane) ;

/1 The output paraneter is set by |ookup_endpoi nt
| ookupEndpoi nt Response out put ;

/1 call |ookup_endpoint on the |ocator proxy

try
{

| ocat or _pr oxy- >l ookup_endpoi nt (i nput, output);
}
catch (I T_BusServices: : endpoi nt Not Exi st Faul t & e)
{

// handl e fault
}

91

CHAPTER 5 | Using the Artix Locator Service

Creating a server proxy

92

The client uses the reference returned in the output parameter of

| ookup_endpoi nt () to instantiate a server proxy for making requests on the
requested server. To instantiate the proxy use the correct proxy class for the
server you have requested and pass the return value of the returned

| ookupEndpoi nt Response’s get ser vi ce_endpoi nt () method to the proxy
class’ constructor.

Note: Because the Artix locator’s look up is only one level deep, it is
possible that the original look up can return a reference to a second Artix
locator. Clients running in an environment where multiple locator redirects
are possible must be explicitly designed to handle this situation.

Example 12 shows the client code for creating a proxy widget server from
the results of the look up performed in Example 11 on page 91.

Example 12: /nstantiate a Proxy Server

Il C++
or der Wdget sd i ent wi dget _proxy(out put . get servi ce_endpoint ());

For more information on writing Artix client code read the Artix C++
Programmer’s Guide.

Load Balancing

Load Balancing

Overview

Starting to load balance

The Artix locator provides a lightweight mechanism for balancing workloads
among a group of servers. When a number of servers with the same service
name register with the Artix locator, it automatically creates a list of the
references and hands out the references to clients using a round robin
algorithm. This process is invisible to both the clients and the servers.

Once the locator is deployed and your servers are properly configured, you

need to bring up a number of instances of the same service. This can be

accomplished by one of two methods depending on your system topology:

1. Create an Artix contract with a number of ports for the same service
and have each server instance startup on a different port.

2. Create a number of copies of the Artix contract defining the service,
change the port information so each copy has a separate port address,
and then bring up each server instance using a different copy of the
Artix contract.

Note: The locator uses the service name specified in the <ser vi ce> tag of
the server's Artix contract to determine if it is part of a group. It is

recommended that if you are using the Artix locator to load balance, your
services should be associated with the same binding and logical interface.

As each server starts up it will automatically register with the locator. The
locator will recognize that the servers all have the same service name
specified in their Artix contracts and will create a list of references for these
server instances.

As clients make requests for the service, the locator will cycle through the
list of server instances to hand out references.

93

CHAPTER 5 | Using the Artix Locator Service

Controlling Server Workloads

Overview

Procedure

Get a service instance

94

Services can request that they temporarily be taken off of the locator’s list of
active references. This is particularly useful for managing the workloads
placed on services. When they reach a certain capacity, a service can in
effect disappear from any new clients wishing to access it. When the
service's workload is reduced it can then reappear and once again become
available to new clients.

To control the registered state of service you need to do the following three
things:

1. Obtain a handle for the service with which you intend to work.

2. Use the obtained handle to temporarily deregister the service from the
locator.

3. Use the obtained handle to reregister the service with the locator.

To get an instance of a service you need to use | T_Bus: : get _servi ce() on
a bus instance. get _servi ce() takes the QName of the desired service and
returns a generic service handle, | T_Bus: : Servi ce*.

Note: A bus instance can only return service handles for services that are
activated on that particular bus.

Example 13 shows how to obtain a handle for a service from the active bus.

Example 13: Obtaining a Service Handle

/1 C+H
// Build service Q\ame
I T_Bus: : Q\ane service_name("", "MvBervice", "http://M conl);

/] Get the service handle fromthe active bus
| T_Bus: : Servi ce* = bus->get_servi ce(servi ce_nane);

For more information on using get _servi ce() see the Artix C++
Programmer’s Guide.

Deregistering a service

Reregistering a service

Controlling Server Workloads

To temporarily deregister a service, you use the reached_capaci t y()
method of the service handle returned by the active bus. This method
informs the service’s endpoint manager that the service is busy and does not
want to receive requests from any new clients. The endpoint manager will
then contact the locator and ask to be removed from the list of available
services.

Note: Clients that already have a valid reference for the service will still
be able to make request on the service once it has been deregistered.

Example 14 shows how to call r eached_capaci ty().
Example 14: Calling reached capacity()
\\ C++

\\ Service otained previously
servi ce->reached_capacity();

When the service is ready to be reregistered, you use the bel ow capaci ty()
method of the service handle used when deregistering the service.
bel ow _capaci ty() informs the endpoint manager that the service is capable
of accepting requests from new clients. The endpoint manager then contacts
the locator and asks to be placed on the list of available services.

Example 15 shows how to call r eached_capaci ty().
Example 15: Calling below_capacity()
\\ C++

\\ Service otained previously
servi ce->bel ow_capacity();

95

CHAPTER 5 | Using the Artix Locator Service

Fault Tolerance

Overview

Endpoint failure

Service failure

96

Enterprise level deployments demand that applications can cleanly recover
from occasional failures. The Artix locator is designed to recover from the
two most common failures faced by a look-up service:

® failure of a registered endpoint.

® failure of the look-up service itself.

When an endpoint gracefully shuts down, it notifies the locator that it will no
longer be available and the locator removes the endpoint from its list so it
cannot give a client a reference to a dead endpoint. However, when an
endpoint fails unexpectedly, it cannot notify the locator and the locator can
unknowingly give a client an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the locator
service occasionally pings all of its registered endpoints to see if they are still
running. If an endpoint does not respond to a ping, the locator removes that
endpoint’s reference.

You can adjust the interval between locator service pings by setting the
configuration variable pl ugi ns: | ocat or : peer _ti meout . The default setting
is 4 seconds. For more information see “Configuration” on page 5.

When the locator service fails all of the references to the registered
endpoints are lost and the active endpoints are no longer registered with the
locator. To ensure that the active endpoints reregister with the locator when
it restarts, the endpoints, after the locator has missed its ping interval, will
periodically attempt to reregister with the locator until they are successful.

You can adjust the interval at which the endpoint pings the locator by
setting the configuration variable

pl ugi ns: sessi on_endpoi nt _manager : peer _ti nout . The default setting is 4
seconds. For more information see “Configuration” on page 5.

In this chapter

CHAPTER

Using the Artix
Session Manager

The Artix Session Manager helps you manage service

resources.

6

This chapter discusses the following topics:

Introduction to Session Management in Artix page 98

Deploying the Session Manager Service page 101
Registering a Server with the Session Manager page 107
Working with Sessions page 110
Fault Tolerance page 118

97

CHAPTER 6 | Using the Artix Session Manager

Introduction to Session Management in Artix

Overview

How do the plug-ins interact?

98

The Artix session manager is a group of ART plug-ins that work together to
provide you control over the number of concurrent clients accessing a group
of services and how long each client can use the services in the group before
having to check back with the session manager. The two main session
manager plug-ins are:

Session Manager Service Plug-in (sessi on_nanager _ser vi ce) is the central
service plug-in. It accepts and tracks service registration, hands out session
to clients, and accepts or denies session renewal.

Session Manager Endpoint Plug-in (sessi on_endpoi nt _manager) is the
portion of the session manager that resides in a registered service. It
registers its location with the service plug-in and accepts or rejects client
requests based on the validity of their session headers.

The session manager also has a pluggable policy callback mechanism that
allows you to implement your own session management policies. Artix
session manager includes a simple policy callback plug-in,

sm si npl e_pol i cy, that provides control over the allowable duration for a
session and the maximum number of concurrent sessions allowed for each

group.

Figure 6 shows a diagram of how the session manager plug-ins are
deployed in an Artix System. As you can see the session manager service
plug-in and the policy callback plug-in are both deployed into the same
process. While in this example, they are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service

Introduction to Session Management in Artix

plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy

plug-in.

Figure 6: The Session Manager Plug-ins

The endpoint manager plug-ins are deployed into the server processes
which contain session managed services. A process can host two services,
like Service C and Service D in Figure 6, but the process will have only one
endpoint manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report on
endpoint health, to receive information on new sessions that have been
granted to the managed services, and to check on the health of the session
manager service.

929

CHAPTER 6 | Using the Artix Session Manager

What are sessions?

What are groups?

100

The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example if a client application wants to use the services in the
water-slide group, it would ask the session manager for a session with the
water-slide group. The session manager would then check and see if the
water-slide group had an available session, and if so it would return a
session id and the list of water-slide service references to the client. The
session manager would then notify the endpoint managers in the water-slide
group that a new session had been issued, the new session’s id, and the
duration for which the session is valid. When the client then makes requests
on the services in the water-slide group, it must include the session
information as part of the request. The endpoint manager for the services
then check the session information to ensure it is valid. If it is, the request is
accepted. If it is not, the request is rejected.

If the client wants to continue using the water-slide services beyond the
duration of its lease, the client will have to ask the session manager to
renew its session before the session expires. Once a client’s session has
expired, it will have to request a new one.

The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group be related, it
is recommended that the endpoints have some relationship.

A service's group affiliation is controlled by the configuration scope under
which it is run. To change a service’s group, you edit the value for

pl ugi ns: sessi on_endpoi nt _manager : def aul t _gr oup in the process’
configuration scope. For more information on Artix configuration see
“Configuration” on page 5.

Deploying the Session Manager Service

Deploying the Session Manager Service

Overview

Building a standalone session
manager

Because the Artix session manager is implemented as a group of ART
plug-ins, any Artix application can host the session manager's core
functionality by loading the sessi on_nanager _ser vi ce and

sm si npl e_pol i cy plug-ins. However, it is recommended that users
generate an Artix server that only hosts the session manager and deploy that
server into the Artix environment.

In either case, the session manager requires modifications to the Artix
configuration domain in which the session manager is run. You also need to
generate a copy of sessi on- manager . wsdl , the contract that describes the
session manager, containing the session manager’s contact information.

To generate a standalone instance of the session manager you need to write
a simple Artix server mainline and link it with the Artix libraries. Example 16
shows an example of the session manager’'s mainline.

Example 16: Artix Session Manager Mainline
i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/ Exception. h>

#i ncl ude <it_bus/faul t_exception. h>

usi ng namespace | T_Bus;

101

CHAPTER 6 | Using the Artix Session Manager

102

Example 16: Artix Session Manager Mainline

#int main(int argc, char* argv[])

{
try
{
I T_Bus::Bus_var bus = | T_Bus::init(argc, argv,
"managed_sessi ons") ;
bus->run();
bus- >shut down() ;
}
catch (1T _Bus:: Exception& e)
{
printf("Exception occurred: 9", e.Mssage());
return 1;
}
return O;
}

The session manager's mai n() only needs to initialize the Artix bus with the
name of the session manager’s configuration scope and call I T_Bus: : run() .
The configuration scope name is third parameter to I T_Bus: :init(),
managed_sessi ons. The Artix bus will load the plug-ins for the session
manager.

Example 17 shows a sample makefile for building the session manager.
Example 17: Session Manager Makefile
| T_PRODUCT_VER = 1.2

ART BIN DI R=$(I T_PRODUCT DI R)\artix\$(1 T_PRCDUCT VER)\ bi n

ART_CXX_| NOCLUDE DI R="$(1 T_PRODUCT_DIR)\arti x\ $(| T_PRODUCT_VER)\i
ncl ude"

ART LIB DIR="$(IT_PRODUCT DIR)\artix\$(I T_PRODUCT_VER)\I i b"

oxx=cl
CXXFLAGS=- | $(ART_CXX_INOLUDE DIR) -Zi - nol 0go - GR - GX - V8 - Zn®250
-MD $(EXTRA CXXFLAGS) $(CXXLOCAL_DEFI NES)

Configuring the session manager

Deploying the Session Manager Service

Example 17: Session Manager Makefile

LI NK=l i nk

LDFLAGS=/ DEBUG / NOLG3O

LDLI BS=/ LI BPATH $(ART_LIB DIR) $(EXTRA LI B PATH) $(LINK_ WTH)
kernel 32.1ib ws2_32.1ib advapi 32.1ib user32.lib

SHLI B_CXX_COWPI LER | D= vCc60
SH.I BLDFLAGS=-dI | -debug -i ncrenental : no

OBJS=$(SOURCES: . cxx=. 0bj)
LINK WTH=it _bus.lib it_afc.libit_art.lib it_ifc.lib

SOURCES = sessi on_nmanager . Cxx
al | : sessi on_nmanager . exe

sessi on_nanager . exe: $(SOURCES) $(BIS)
if exist $@del $@
$(LINK) /out:$@$(LDFLAGS) $(CBIS) $(LDLIBS)

The session manager must be linked with the following Artix libraries:
® it _bus.lib
® it_afc.lib

® jt_art.lib
® itifc.lib

To run the session manager you need to ensure that it loads the session
manager service plug-in, sessi on_manager _ser vi ce and the session
manager policy plug-in, sm si npl e_pol i cy. In addition, the session
manager must load the soap and htt p plug-ins as all of its communication
is done using SOAP over HTTP.

In the session manager’s configuration scope you will need to specify the
location for the session manager’s contract by setting

pl ugi ns: sessi on_manager _ser vi ce: servi ce_ur| to point to the copy of
sessi on- manager . wsdl containing the contact information for this session
manager.

103

CHAPTER 6 | Using the Artix Session Manager

Example 18 shows the configuration scope used to start the session
manager.

Example 18: Session Manager Configuration Scope

managed_sessi ons

orb plugins = ["xmfile_|log streant, "iiop_profile", "giop", "iiop", "soap", "http",
"sessi on_manager _servi ce", "smsinple_policy"];

pl ugi ns: sessi on_manager _ser vi ce: servi ce_url ="sessi on- namager . wsdl "

b

For more information on Artix configuration see “Configuration” on page 5.

Generating the session manager’s You also need to configure the port on which the session manager will run.

contact information To do this you modify sessi on- manager . wsdl , provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the session
manager will listen. This can be either done manually for deploying the
session manager on a well-known fixed port, or automatically for deploying
the session manager on a dynamically allocated port.

Fixed Port

To deploy the session manager on a well-known fixed port, open

sessi on- manager . wsdl in any text editor and edit the <soap: addr ess> entry
for the Sessi onManager Ser vi ce to specify the proper address. Example 19
shows a modified session manager contract entry. The highlighted part has
been modified to point to the desired address.

Example 19: Session Manager Address

<servi ce name="Sessi onManager Servi ce">
<port name="Sessi onManager Port" bi ndi ng="sm Sessi onManager Bi ndi ng" >
<soap: addr ess
| ocation="http://I ocal host: 8080/ ser vi ces/ sessi onManagerent / sessi onManager Servi ce"/ >
</ port>
</ servi ce>

Dynamic Port

To deploy the session manager on a dynamically allocated port, configure
the session manager to use the copy of sessi on- manager . wsdl shipped with
Artix.

104

Deploying the Session Manager Service

You can limit the rang of ports on which the session manger will be
deployed by specifying a rang of ports for the session managers SOAP or
HTTP address. Example 20 shows a modified session manager contract

entry. The highlighted part has been modified to specify to the desired range
of ports.

Example 20: Session Manager Port Range

<servi ce name="Sessi onManager Servi ce">
<port name="Sessi onManager Port" bi ndi ng="sm Sessi onManager Bi ndi ng" >

<soap: addr ess

| ocation="http://| ocal host: 11000- 11100/ ser vi ces/ sessi onManagenent / sessi onanager Ser vi ce"/ >

</ port>
</ servi ce>

Once the session manager initializes the Artix bus, it will need to publish a
new copy of its contract with the actual contact information. Example 21
shows how to publish the session manager's contract.

Example 21: Dynamically Located Session Manager

| T_Bus::Bus_var bus = I T _Bus::init(argc, argv,
" managed- sessi ons") ;

/1 Nowwe wite out the updated WADL for the session manager

/1 Get the WBDL Defintions object.
| T_Bus: : Q\ane servi ce_nanme("",
" Sessi onManager Ser vi ce",
"http://ws.iona. conl sessi on- nanager");
| T_Bus:: Service * service = bus->get_servi ce(servi ce_nane);
const | T _WBDL: : WsDLDefinitions & definitions =
servi ce- >get _wsdl _definitions();

I/ Serialize the WBDL nodel to another wsdl file.

I T _Bus:: Fil eQut put Stream strean("acti ve-snservice. wsdl ") ;
I T_Bus: : XM_Qut put St ream xml _strean{stream true);
definitions.wite(xm _strean);

streamcl ose();

I T_Bus::run();

105

CHAPTER 6 | Using the Artix Session Manager

Starting the session manager Once the session manager has been generated and properly configured it
can be started just like any other application. The only caveat is that the
session manager must be started before any servers that need to register
with it.

106

Registering a Server with the Session Manager

Registering a Server with the Session Manager

Overview

Configuring the server

Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.

Once registered with a session manager, the services will only accept
requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Any server hosting services that are to be managed by the session manager
must load the following plug-ins in addition to the transport and payload
plug-ins it requires:

® soap

® http

® sessi on_endpoi nt _nanager

sessi on_endpoi nt _manager allows the server to register with a running
session manager.

The server's configuration also needs to set the following configuration
variables:

plugins:session_endpoint_manager:wsdl_url points to the contract
describing the contact information for the session manager that will be
managing the services.

plugins:session_endpoint_manager:endpoint_manager_url points to the
contract describing the contact information for the endpoint manager for this
server. This enables the session manager to contact the service to with
updated state information.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.

107

CHAPTER 6 | Using the Artix Session Manager

gaj ag_ser ver

{

orb_plugins = ["

Example 22 shows the configuration scope of a server that hosts services
managed by the session manager.

Example 22: Server Configuration Scope

'xmfile | og_streanm¥, "soap", "http", "fixed", "session_endpoi nt_nmanager"];

pl ugi ns: sessi on_endpoi nt _manager : wsdl _ur| =" sessi on- nanager - servi ce. wsdl ";
pl ugi ns: sessi on_endpoi nt _nmanager : endpoi nt _nanager _ur | =" sessi on- manager - endpoi nt . wsdl ;

b

pl ugi ns: sessi on_endpoi nt _nanager : deaf ul t _gr oup="qaj ag_gr oup";

A server loaded into the gaj ag_ser ver configuration scope will be managed
by the session manager at the location specified in

sessi on- manager - ser vi ce. wsdl , its endpoint manager will come up at the
address specified in sessi on- manager - endpoi nt . wsdl , and by default all
services instantiated by the server will belong to the session manager group
gaj ag_gr oup.

For more information on Artix configuration see “Configuration” on page 5.

You also need to configure the port on which the endpoint manager will run.
To do this you modify sessi on- manager . wsdl , provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the endpoint
manager will be available. Using any text editor, open

sessi on- manager . wsdl and edit the <soap: addr ess> entry for the

Sessi onEndpoi nt Manager Ser vi ce to specify the proper address.

Example 23 shows a modified session manager contract entry. The
highlighted part has been modified to point to the desired address.

Example 23: Endpoint Manager Address

<servi ce name="Sessi onEndpoi nt Manager Ser vi ce" >
<port nane="Sessi onEndpoi nt Manager Port" bi ndi ng="sm Sessi onEndpoi nt Manager Bi ndi ng" >

<soap: addr ess

| ocation="http://I| ocal host : 8080/ servi ces/ sessi onManagenent / sessi onEndpoi nt Manager "/ >

</ port>
</ servi ce>

108

Registering a Server with the Session Manager

In the server's configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting

pl ugi ns: sessi on_endpoi nt _manager : endpoi nt _manager _ur | to point to the
copy of sessi on- manager . wsdl containing the address for this instance of
the endpoint manager.

Registration Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
pl ugi ns: sessi on_endpoi nt _nanager : wsdl _url .

109

CHAPTER 6 | Using the Artix Session Manager

Working with Sessions

Overview

Instantiating a session manager
proxy

110

Clients wishing to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service’s group using the session
manager proxy.

Obtain the list of endpoints available in the group.

Create a service proxy from one of the endpoints in the group.
Build a session header to pass to the service.

Invoke requests on the endpoint using the proxy.

Renew the session as needed.

© N o o s~ w

End the session using the session manager proxy when finished with
the services.

Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of Sessi onManager d i ent using the
session manager’s contract name, sessi on- manager . wsdl .

Example 24 shows how to instantiate a session manager proxy.
Example 24: /nstantiating a Session Manager Proxy

/] G+

Sessi onManager d i ent sessi on_nmanager _proxy = new

Sessi onManager d i ent (" sessi on_manager . wsdl ") ;

For more information on instantiating Artix proxies, see the Artix C++
Programmer’s Guide.

Start a session

Working with Sessions

After instantiating a session manager proxy, a client can then start a session
for the desired service’s group using the session manager's
begi n_sessi on() method. begi n_sessi on() has the following signature:

voi d begi n_sessi on(| T_Bus_Servi ces: : Begi nSessi on i nput,
| T_Bus_Servi ces: : Begi nSessi onResponse out put) ;

i nput contains the name of the desired group and the desired duration of
the session. The group name is set using the set endpoi nt _group() method.
The group name can be any valid string and corresponds to the default
group name set in the service's configuration scope as described in
“Configuring the server” on page 107.

The session duration is set using the set pref er ed_r enew t i meout ()
method. The duration is specified in seconds. If the specified duration is less
than the value specified by the session manager's ni n_sessi on_t i meout
configuration setting, it will be set to the configured minimum value. If the
specified duration is higher than the value specified by the session
manager’s max_sessi on_t i meout configuration setting, it will be set the
configured max value. For more information see “Configuration” on page 5.

out put contains the information needed to use the session.

Once a session is returned in out put , you will need to extract the session ID
to work with the session. This is done using get sessi on_i d() .

get sessi on_i d() returns the session ID as an

| T_Bus_Ser vi ces: : Sessi onl D.

111

CHAPTER 6 | Using the Artix Session Manager

Example 25 shows the client code to begin a session for gaj ag_gr oup.
Example 25: Beginning a Session

Il C++
| T_Bus_Servi ces: : Begi nSessi on begi n_sessi on_r equest ;
| T_Bus_Servi ces: : Begi nSessi onResponse begi n_sessi on_r esponse;

I/ set the group to request

begi n_sessi on_r equest . set endpoi nt _group(" gaj ag_gr oup") ;
// set session renewal interval to 10 nins

begi n_sessi on_r equest . set pref erred_renew_ti meout (600) ;

sessi on_ngr. begi n_sessi on(begi n_sessi on_r equest ,
begi n_sessi on_r esponse) ;

| T_Bus_Servi ces: : Sessionld session;
session =
begi n_sessi on_r esponse. get sessi on_i nfo() . get sessi on_i d();

Get a list of endpoints in the group The session manager hands out sessions for a group of services, so in order

112

to get an individual service upon which to make requests a client needs to
get a list of the services in the session’s group. The session manager proxy’s
get _al | _endpoi nt s() method returns a list of all endpoints registered to the
specified group. get _al | _endpoi nts() has the following signature:

voi d get_al | _endpoi nts(1 T_Bus_Servi ces:: Get Al | Endpoi nts request,
I T_Bus_Servi ces: : Get Al | Endpoi nt sResponse response)

request contains the session ID for which you are requesting services. Set
the session ID using the set sessi on_i d() method on request with the
session ID returned from the session manager.

response contains the list of services returned from get _al | _endpoi nts().
If the group has no services, r esponse will be empty.

Create a proxy for the requested
service

Working with Sessions

Example 26 shows how to get the list of services for a group.
Example 26: Retrieving the List of Services in a Group

/1 CH
| T_Bus_Servi ces: : Get Al | Endpoi nts request;
| T_Bus_Servi ces: : Get Al | Endpoi nt sResponse response;

// group session initialized above.
get _al | _endpoi nts_request . set sessi on_i d(sessi on);

sessi on_ngr. get _al | _endpoi nt s(request, response);

The client can use any of the services returned by get _al | _endpoi nts() to
instantiate a service proxy. To instantiate the proxy, you first need to narrow
down the list returned services to the desired one. Get Al | Enpoi nt sResponse
contains an array of references to active services that can be retrieved using
Get Al | Endpoi nt sResponse’s get endpoi nt s() method. You can use simple
indexing to get one of the references. For example, to use the first service in
the list you would use the following:

response. get endpoi nts()[0]

Because the session manager simply returns the services in the order the
services registered with the session manager, the clients must be
responsible for circulating through the list or else they will all make requests
on only one service in the group. Also, because the session manager does
not force all members of a group to implement the same interface, you may

113

CHAPTER 6 | Using the Artix Session Manager

Create a session header

114

want to have your clients check each service to see if it implements the
correct interface by checking the reference’s service name as shown in
Example 27.

Example 27: Checking the Service Reference for its Interface

/1 C+H
| T_Bus: : Ref erence endpoi nt = response. get endpoi nts()[0];
if (endpoint.get_service_nanme() ==
Q\are("", "Qaj agService", "http://qajags.con))
{
/] instantiate a Qaj agService using endpoi nt

}

el se

{

/1 do sonething el se

}

Example 28 shows the client code for creating a proxy gaj aq server from a
group service.

Example 28: /nstantiate a Proxy Server

Il C++
Qaj aqd i ent gaj aq_pr oxy(response. get endpoi nts()[0]);

Services that are being managed by the session manager will only accept
requests that include a valid session header. The session header information
is passed to the server as part of the proxy’s input message attributes.
Creating the session header and putting into the input message attributes
takes three steps:

1. Set the proxy to use input message attributes.

2. Get a handle to the proxy’s input message attributes.

3. Set the session information into the input message attributes.

Setting the proxy to use input message attributes

Artix client proxies all support a helper method, get _port (), that provides
access to the port information used by the client to connect the service. One
of an Artix proxy’s port properties is use_i nput _nessage_at tri but es.

Working with Sessions

Setting this property to t r ue tells the bus to ensure the input message
attributes are propagated through to the server. Example 29 shows how to
set the client proxy port's use_i nput _message_at tri but es property to true.

Example 29: Use Input Message Attributes

/[C++
// Get the proxy's port
I T _Bus::Port proxy_port = gaj ag_proxy.get_port();

I/ set the port property
proxy_port.use_input_attributes(true);

Getting a handle to the input message attributes

A pointer to the proxy port’s input message attributes is returned by the
port’s get _i nput _nessage_attri but es() method. Example 30 shows how
to get a handle to the input message attributes.

Example 30: Getting the Input Message Attributes

MessageAttributes& i nput_attributes =
proxy_port (). get_i nput_message_attributes();

Setting the session information into the input message attributes

There are two attributes that need to be set to include the proper session
information in the input message:

SessionName specifies the name the session manager has given this
session. The session manager endpoints in the group will also be given this
name to validate session header's against. The session name is returned by
invoking get nane() of the session ID of the active session.

SessionGroup specifies the group name for which the session is valid. The
session endpoints also use to ensure that the session is for the correct
group. The session group is returned by invoking get endpoi nt _group() on
the session ID of the active session.

115

CHAPTER 6 | Using the Artix Session Manager

Make requests on service proxy

Renewing a session

116

The input message attributes are set using the message attribute handle’s
set _string() method. set_string() takes two attributes. The first is a
string specifying the name of the attribute being set. The second is the value
to be set for the attribute. Example 31 shows how to set the session
information in to the input message attributes.

Example 31: Setting the Input Message Attributes

[l C++
input_attributes. set_string("Sessi onNare", session. get nane());
input_attributes.set_string("Sessi onG oup”,

sessi on. get endpoi nt _group());

Once the session information is added to the proxy’s port information, the
client can invoke operations on the client as it would a non-managed
service. If the endpoint rejects the request because the client’s session is not
valid, an exception is raised.

If a client is going to use a session for a longer than the duration the session
was granted, the client will need to renew its session or the session will
timeout. A session is renewed using the session manager proxy’s

renew _sessi on() method. renew sessi on() has the following signature:

voi d renew sessi on(| T_Bus_Ser vi ces: : RenewSessi on par ans,
I T_Bus_Servi ces: : RenewSessi onResponse r enewed) ;

par ans contains the session ID of the session being renewed and the
duration, in seconds, of the renewal. The session ID is set using par ans’
set sessi on_i d() method. The renewal duration is set using par ans’
setrenew timeout () method.

If the renewal is successful, r enewed will return containing the duration of
the renewal. The returned duration may be different if the requested renewal
duration was outside of the configured range for session timeouts.

If the renewal is unsuccessful, an

| T_Bus_Servi ces: : r enewSessi onFaul t Except i on is raised.

End the session

Working with Sessions

Example 32 shows how to end a session.
Example 32: Ending a Session

/1 CH
| T_Bus_Servi ces: : RenewSessi on par ans;
| T_Bus_Ser vi ces: : RenewSessi onResponse r eneved;
par ans. set sessi on_i d(sessi on);
par anes. set renewal _ti meout (600) ;
try
{
sessi on_ngr . renew_sessi on(par ans, renewed);

}

catch (I T_Bus_Servi ces: : renewSessi onFaul t Except i on)

/1 handl e the exception

}

When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy’s
end_sessi on() method. end_sessi on() has the following signature:

voi d end_sessi on(| T_Bus_Servi ces: : EndSessi on par ans) ;

par ans contains the session ID of the session being ended. The session ID is
set using par ans’ set sessi on_i d() method.

Example 33 shows how to end a session.
Example 33: Ending a Session

/[C++

| T_Bus_Ser vi ces: : EndSessi on par ans;

par ans. set sessi on_i d(session);
sessi on_ngr . end_sessi on(par ans) ;

For more information on writing Artix client code read the Artix C++
Programmer’s Guide.

117

CHAPTER 6 | Using the Artix Session Manager

Fault Tolerance

Overview

Endpoint failure

Service failure

118

Enterprise level deployments demand that applications can cleanly recover
from occasional failures. The Artix session manager is designed to recover
from the two most common failures:

® failure of a registered endpoint.
® failure of the session manager itself.

When an endpoint gracefully shuts down, it notifies the session manager
that it will no longer be available and the session manager removes the
endpoint from its list so it cannot give a client a reference to a dead
endpoint. However, when an endpoint fails unexpectedly, it cannot notify
the session manager and the session manager can unknowingly give a client
an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the session
manager occasionally pings all of its registered endpoint managers to see if
they are still running. If an endpoint manager does not respond to a ping,
the session manager removes that endpoint manager’s references.

You can adjust the interval between session manager pings by setting the
configuration variable pl ugi ns: sessi on_nmanager : peer _tineout. The
default setting is 4 seconds. For more information see “Configuration” on
page 5.

When the session manager fails all of the references to the registered
services are lost and the active services are no longer be registered. To
ensure that the active services reregister with the session manager when it
restarts, the endpoint managers, after the session manager has missed its
ping interval, will periodically attempt to reregister with the session manager
until they are successful.

You can adjust the interval between the endpoint manager’s pings of the
session manager by setting the configuration variable

pl ugi ns: sessi on_endpoi nt _manager : peer _ti nout . The default setting is 4
seconds. For more information see “Configuration” on page 5.

CHAPTER 7

Using Artix In a
CORBA
Environment

Artix can be run inside an existing CORBA environment and
leverage a number of its services.

In this chapter This chapter discusses the following topics:
Embedding Artix in a CORBA Application page 120
Using the CORBA Naming Service page 123
Load Balancing with CORBA page 125

119

CHAPTER 7 | Using Artix in a CORBA Environment

Embedding Artix in a CORBA Application

Overview

CORBA client applications

120

Artix, because it is built on IONA's flexible ART platform, can be embedded
within any CORBA application implemented using IONA'’s Application Server
Platform 6.0 or later without modifying any of the CORBA application’s
code. Embedding Artix is done by altering the application’s configuration to
load the required Artix plug-ins.

Embedding Artix into your CORBA application has several advantages:

You do not need a separate process to route messages to the
non-CORBA pieces of your application.

You improve messaging performance over using the Artix standalone
service.

You can still code using a familiar paradigm and realize the benefits of
using Artix.

You can leverage all of the CORBA infrastructure to provide enterprise
level qualities of service and management.

To embed Artix into a CORBA client application you need to do the
following:

1.

Create an Artix contract that fully describes the interfaces, bindings,
transports, and routing rules used in your Artix application.

Edit the configuration scope for your CORBA client so that the ORB
plug-ins list contains the required Artix plug-ins to support the bindings
and transports used by your Artix application.

For example, if your CORBA client will be interacting with a sever using
SOAP over WebSphere MQ your ORB plug-in list would be similar to
the one in Example 34 on page 121. Note that the required Artix
plug-ins for the SOAP binding, the WebSphere MQ transport, CORBA,
and routing are highlighted.

Make an entry for pl ugi ns: routi ng: wsdl _ur| that specifies where the
Artix applications contract resides.

CORBA server applications

Embedding Artix in a CORBA Application

In Example 34, the Artix contract describing the application is stored in
/artix/wsdl Repos/ scor eBox. wsdl .

Example 34: Embedded Artix orb_plugin list

corba_client.artix

{
orb_pl ugi ns=["iiop_profile", "giop", "soap", "ng", "ws_orb",
"routing"];
pl ugi ns: routi ng: wsdl _url ="/arti x/wsdl Repos/ scor eBox. wsdl ";

}

4. When you start your CORBA client ensure that you start it using the
proper ORB name to load the Artix plug-ins.

For a client that uses the configuration shown in Example 34, you
would start the client with the following command:

client -ORBnane corba client.artix

To embed Artix into a CORBA server that uses the routing plug-in there are

two caveats:

® Your CORBA server must generate persistent object references.

® Your CORBA server must run one time to export the persistent
references and then be restarted for the Artix routing plug-in to work.

The routing plug-in requires valid object references to properly load itself

and when embedded into the CORBA server, the routing plug-in is loaded by

the ORB before any object references are generated. By using persistent

object references and pregenerating them before fully deploying the server,

as when using the naming service, you satisfy the routing plug-in.

Complete the following steps to configure a CORBA server to embed Artix:

1. Create an Artix contract that fully describes the interfaces, bindings,
transports, and routing rules used in your Artix application.

2. Edit the configuration scope for your CORBA server so that the ORB
plug-ins list contains the required Artix plug-ins to support the bindings
and transports used by your Artix application.

For example, if your CORBA server will be interacting with a client
using SOAP over WebSphere MQ your ORB plug-in list would be
similar to the one in Example 35 on page 122. Note that the required

121

CHAPTER 7 | Using Artix in a CORBA Environment

Artix plug-ins for the SOAP binding, the WebSphere MQ transport,
CORBA, and routing are highlighted.

3. Make an entry for pl ugi ns: routi ng: wsdl _ur| that specifies where the
Artix applications contract resides.
In Example 35, the Artix contract describing the application is stored in
/arti x/ wsdl Repos/ scor eBox. wsdl .

4. Edit the server’s client binding list, bi ndi ng: cl i ent _bi ndi ng_I i st, so
that none of the listed bindings use POA Col oc.
The configuration scope in Example 35 shows a client binding list that
does not use POA_Col oc. The default client binding list includes entries
for " OTS+PQA_Col oc" and " PQA Col oc".

Example 35: Embedded Artix Server Configuration

corba_server.artix

{
orb_plugins=["iiop_profile", "giop", "soap", "ny", "ws_orb",
"routing"];
pl ugi ns: routi ng: wsdl _url ="/ arti x/ wsdl Repos/ scor eBox. wsdl ";
bi ndi ng: cl i ent_binding_|ist=[“OrS+d QP+l I CP", “A CP+l I OP’];
bi ndi ng: server _binding_list=["0rS'];
}

5. When you start your CORBA server ensure that you start it using the
proper ORB name to load the Artix plug-ins.

For a server that uses the configuration shown in Example 35, you
would start the client with the following command:

server -CRBnane corba_server.artix

122

Using the CORBA Naming Service

Using the CORBA Naming Service

Overview

Servers

In order to fully integrate with deployed CORBA systems, Artix can use a
CORBA naming service that supports the CosNani ng interface. Doing so
requires editing the port information in the service’s contract and modifying
the Artix configuration.

To specify that an Artix instance (acting as proxy for a server) is to use the
CORBA naming service, you edit the <cor ba: addr ess> element of the
CORBA port. In place of the file name used in the | ocati on attribute,
specify a cor bananme. For example, to specify that the converter server
publishes its IOR to the CORBA naming service, specify the

<cor ba: addr ess> as follows:

<cor ba: addr ess | ocati on="cor banane: rir:/ NaneSer vi ce#per sonal | nf oSer vi ce”/ >

Clients

Configuration

This registers the server in the name service under the name
per sonal | nf oSer vi ce.

An Artix instance (acting as a proxy for a client) can also use the

<cor ba: addr ess> element to specify what name to look up in the CORBA
name service. The name the client looks up in the name service is the string
after the # in the specified location. For example, a client using the

<cor ba: addr ess> shown above in “Servers” looks up the IOR for an object
named per sonal | nf 0Ser vi ce.

Artix applications that wish to use a CORBA name service must be
configured to load a name resolver plug-in and have an initial reference for
the running name service.

123

CHAPTER 7 | Using Artix in a CORBA Environment

To modify the Artix configuration do the following:

1. Open the Artix configuration file,
IT_PRODUCT_DIRartix\1. 2\etc\artix.cfg, in a text editor.

2. In the global scope, add the following lines:
initial _references: NameSer vi ce: ref erence="cor bal oc: : | ocal host : port Nunber/ NaneSer vi ce";

url _resol vers: cor banare: pl ugi n="nam ng_r esol ver";
pl ugi ns: nam ng_resol ver: shl i b_name="it_nam ng";

por t Nunber is the number of the port on which the name service is
running.

For more information on configuring Artix, see “Configuration” on page 5.

124

Load Balancing with CORBA

Load Balancing with CORBA

Overview If an Artix SAP is mapped to a CORBA service, and that CORBA service is
accessible via IONA'’s Application Server Platform 6.0 Service Pack 1 (or
later), the implementation of that service can be load balanced using the
Application Server Platform’s locator service. In order to accomplish this,
the Artix configuration file must duplicate some of the information from the
Application Server Platform configuration domain, as described in the
following steps.

For information on the load balancing feature of the Application Server
Platform’s load balancing features read the Application Server Platform
Administrator’s Guide.

Configuration Steps The following steps work with an Application Server Platform installation
that uses either file-based configuration or a configuration repository.
However, because Artix supports only file-based configuration, the relevant
configuration information must be inserted into the arti x. cf g file. The
following configuration example assumes that an Application Server
Platform domain exists, and that the locator service is run from this domain:

1. From the donai n. cf g file, obtain the following configuration
information and add it to arti x. cf g file.

initial _references: | T_NodeDaenon: ref erence =
"1 R 000000000000002149444c3a49545f 4e6f 64654461656d6f 6e2f 4e6f 64654461656d6f 663a312e3000000000
0000000100000000000000760001020000000008686f 726174696f 00782800000000001d3a3e€0233310c6e6f 64655
f 6461656d6f 66000a4e6f 64654461656d6f 6600000000000003000000010000001800000000000100010000000000
01010400000001000101090000001200000004010000000000000600000006000000000011" ;

2. Create an CRBnane for each Artix SAP that participates in load
balancing. For example:

itadm n orbnanme create denos.cl ustering. server_1
itadm n orbnanme create denos. cl ustering. server_2
itadm n orbnane create denos.cl ustering.server_3

125

CHAPTER 7 | Using Artix in a CORBA Environment

itadmn poa create -replicas

3. Create a POA that declares these CRBnanes as replicas, and specify
either round-robin or random load balancing. For example:

denos. cl ustering. server _1, denos. cl ust eri ng. server _2, denos. cl ust eri ng. server_3
-1 oad_bal ancer round_robi n Q uster Deno

The POA name (A ust er Deno) is expressed in WSDL as:

<cor ba: pol i cy persistent="true" servicei d="service_id" poanane="d ust er Deno"/>

Replicated Application Server
Platform services

126

You can choose any POA name; however, the POA name you register using
i tadm n must be the same name you declare in the WSDL file.

When corba: pol i cy persistent=true is specified, you must also specify
servi cei d. Failure to specify servi cei d will either result in an IOR that
cannot be used for load balancing, or a process that outlives the POA.

To run such a ClusterDemo, you start the CORBA servers that underlie the
Artix SAP as follows:

Server -CRBnane denos. cl ustering. server_1
Server -CRBnane denos. cl ustering. server_2
Server -CRBname denwos. cl ustering. server_3

When you run a client to connect to the Artix SAP, the first request goes to
the first server (because round_r obi n load balancing was declared). If a
second client is started, its request goes to the second server, and a third
client’s request goes to the third server.

If your Application Server Platform services are replicated, and if Artix is
deployed on each of the machines on which those services are replicated,
then the Artix SAPs themselves can be replicated and load-balanced. For
example,

1. On the “master” machine (e.g., the machine that hosts the

configuration repository), create an CRBnane for each Artix SAP that
participates in load balancing. For example:

itadm n orbnanme create denos.clustering.server_1
itadm n orbname create denos. clustering. server_2
itadm n orbnane create denos. clustering. server_3

itadm n poa create -replicas

2.

Load Balancing with CORBA

Create a POA that declares these CRBnanes as replicas, and specify
either round-robin or random load balancing. For example:

denos. cl ust eri ng. server _1, denos. cl usteri ng. server _2, denos. cl ust eri ng. server_3
-1 oad_bal ancer round_robi n A uster Deno

Creating the load-balanced
environment dynamically

3.

On each machine that replicates the service, obtain the Node
Daemon’s initial reference and add it to the arti x. cf g file on that
machine.

Start a server on each machine, passing one of the three specified
CRBnanes to it (cl ust ering. server_1, denos. cl ust eri ng. server _2,
or denos. cl ustering. server_3).

This service is now load balanced among the three replicated Artix SAPs. If
one or two of these SAPs is killed, the client invocation is directed to the
remaining machine(s).

It is possible to create a load balance environment without creating the POA
or manually registering ORB names. To accomplish this:

1.

On the master machine, obtain the Node Daemon initial reference and
put itin the arti x. cf g file.

Start the CORBA service, passing the same ORB name as that
specified in the Artix client’s WSDL contract. This ORB name is
received by the Node Daemon, which creates a POA with that name. If
you do not specify an ORB name, the name WSCRB is used.

On the master machine, issue the following command in the
Application Server Platform environment with the name you chose:

itadnmin poa nodify -allowdynreplicas yes POA Name

4.

On each of the slave machines where the service is replicated, obtain
the Node Daemon initial reference from the Application Server
Platform domain configuration and put it in the arti x. cf g file.

On each of the slave machines where the service is replicated, start the
CORBA service, using a different CRBnane each time.

127

CHAPTER 7 | Using Artix in a CORBA Environment

Other load balancing features

128

6. On the master machine, issue the following command in the
Application Server Platform environment (inserting the type of load
balancing and the CRBnames you have chosen):

itadmn poa nodify -1 <round_robin | randon» PQA nane

7. Start the Artix SAP.

In addition to POA name, the Application Server Platform configuration file
can also affect load balancing by specifying:

1. Persistent or Transient POA policy
2. Object ID

These load-balancing-related configuration values can be specified in an
Artix WSDL contract using WSDL extensions for CORBA ports:

The POA name can be specified as follows:
<cor ba: pol i cy poaname="ny_poa_nane"/>

The default POA name is WSCRB.
The POA persistence policy can be set as follows:

<corba: policy persistent="true | fal se"/>

If this value is set to true, the POA policy is persistent. The default
persistence value is f al se.

The Service ID can be set as follows:
<cor ba: pol i cy servi cei d="ncnane"/ >

Object ID is provided by the POA if the POA Policy SYSTEM | Dis set. Setting
this to any string sets the POA policy USER | Dand uses the value provided
as the obj ect _i d. If this is not set, the POA policy is SYSTEM | D.

The following WSDL examples illustrate these points.

The contract fragment in Example 36 results in the following POA policy
settings:

® PERSI STENT
® WSERID
® POANane="masterl"

Load Balancing with CORBA

® (b ect| D="masterl"

Example 36: Setting the PERSISTENT POA policy

<servi ce nane="BaseServi ce">

<port bi ndi ng="t ns: BasePort Cor baBi ndi ng" nanme="BasePort Cor ba" >
<corba: address |ocation="file://master.ref"/>

<corba: pol i cy persistent="true" poanane="master1l" servicel D="master1"/>
</ port>

</ servi ce>

The contract fragment in Example 37 results in the following POA policy
settings:

® TRANSI ENT (Default)

® SYSTEM | D (Default)

® POAName="masterl"

Example 37: Setting the POAName POA policy

<servi ce nane="BaseService">

<port bi ndi ng="t ns: BasePort Cor baBi ndi ng" nanme="BasePort Cor ba" >
<corba: address | ocation="file://master.ref"/>

<cor ba: pol i cy poananme="naster1"/>
</ port>

</ servi ce>

The contract fragment in Example 38 results in a POA with the following
policy settings:

® TRANSI ENT (Default)

® WSERID

* poaname="WSORB" (Default)

® (b ect| D="masterl"

Example 38: Setting the USER_ID POA policy

<servi ce nanme="BaseServi ce">
<port bi ndi ng="t ns: BasePort Cor baBi ndi ng" nanme="BasePort Cor ba" >
<cor ba: address location="file://master.ref"/>

<cor ba: pol i cy poaname="naster1" servicel D="naster1"/>
</ port >

</ servi ce>

129

CHAPTER 7 | Using Artix in a CORBA Environment

The contract fragment in Example 39 results in a POA with all default
policies.

Example 39: Default POA policies

<servi ce nanme="BaseService">
<port bi ndi ng="t ns: BasePort Cor baBi ndi ng" nanme="BasePort Cor ba" >
<corba: address | ocation="file://master.ref"/>
</ port >
</ servi ce>

130

Overview

Procedure

CHAPTER 8

Embedding Artix
In a Tuxedo
Container

Artix can be run and managed by Tuxedo like a native Tuxedo
application.

In order to have Artix interact properly with native Tuxedo applications, you
need to embed Artix into the Tuxedo container. At a minimum this involves
adding information about Artix to your Tuxedo configuration file and
registering your Artix processes with the Tuxedo bulletin board. You can also
have Tuxedo bring up your Artix process as a Tuxedo server when running
t mboot .

To embed an Artix process into a Tuxedo container complete the following
steps:
1. Ensure that your environment is properly configured for Tuxedo.

2. Add the Tuxedo plug-in, t uxedo, to your Artix process'’s or b_pl ugi ns
list. See “ORB Plug-ins List” on page 14.

orb_plugi ns=["iiop_profile", "giop", "iiop", "tuxedo"];

3. Set pl ugi ns: t uxedo: server to true in your Artix configuration scope.

131

CHAPTER 8 | Embedding Artix in a Tuxedo Container

132

4. Ensure that the executable for your Artix process is placed into the

directory specified in the APPDI R entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration’s SERVERS section to include an entry for

your Artix process.

For example, if the executable of your Artix process is boi ngo, you
make the following entry in the SERVERS section:

boi ngo SVRGRP=A NGO SVR D=1

This associates boi ngo with the Tuxedo group called A N in your
configuration and assigns boingo a server ID of 1. You can modify the
server's properties as needed.

6. Edit your Tuxedo configuration’s SERVI CES section to include an entry

for your Artix process.

While standard Tuxedo servers only require a SERVI CES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry even if no optional runtime properties are
being set. The name entered for the Artix process is the name specified
in the servi ceNane attribute of the Tuxedo port defined in the process’
Artix contract.

For example, given the port definition shown in Example 40, the
SERVI CES entry would be per sonal | nf oSer vi ce.

Example 40: Sample Service Entry

<servi ce name="personal | nf oServi ce">
<port bi ndi ng="t ns: per sonal | nf oBi ndi ng" nane="t uxl| nf oPort" >
<t uxedo: server servi ceNane="per sonal | nf oServi ce" />
</ port >
</ servi ce>

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBOONFI G reload the TUXCONFI G with t ni oad.

Once you have properly configured Tuxedo, it will manage your Artix process
as if it were a regular Tuxedo server.

Index

A

Adaptive Runtime Architecture 9
Applicationld data type 53

ART 9

Artix contracts 3

B
begin_session() 111
below_capacity() 95
bindings

client-side 18

C
configuration variables
data type 12
constructed 12

D
_DEFAULT in logging 55

E

Embedded mode 3
endpointNotExistFault 91
end_session() 117

Eventld data type 53
EventParameters data type 54
EventPriority data type 54

F

format_message() 55

G

get_all_endpoints() 112
getendpoints() 113
get_input_message_attributes() 115
get_port() 114
getservice_endpoint() 92
getsession_id() 111

H

high_water_mark 20

http:server_address_mode_policy:publish_hostname
17

|
initial_threads 21
interceptors

client request-level 18
IT_Bus::get_service() 94
IT_Bus_Services::renewSessionFaultException 116
IT_Bus_Services::SessionID 111
IT_LOG_MESSAGE() macro 37
IT_LOG_MESSAGE_1() macro 38

L

LocatorServiceClient 90
LOG_ALL_EVENTS 54
LOG_ALL_INFO 55
LOG_ERROR 55
LOG_FATAL ERROR 55
logical portion 3
LOG_INFO 54
LOG_INFO_HIGH 54
LOG_INFO_LOW 54
LOG_INFO_MED 54
LOG_NO_EVENTS 54
LOG_WARNING 55
lookup_endpoint() 91
low_water_mark 21

M
MIB
definition 39

o
orb_plugins 14

P
physical portion 3
plugins

133

INDEX

corba 14

fixed 15

fml 15

G2 15

http 14

mq 14

soap 15

tagged 15

tibrv 14

tunnel 14

tuxedo 14

ws_orb 14
plugins:locator:peer_timeout 26, 96
plugins:locator:service_url 26
plugins:locator:wsdl_url 27
plugins:routing:use_pass_through 23
plugins:session_endpoint_manager:default_group 3

plugins:session_endpoint_manager:endpoint_manag
er_url 30
plugins:session_endpoint_manager:header_validatio
n 30
plugins:session_endpoint_manager:peer_timout 27,
96, 118
plugins:session_endpoint_manager:wsdl_url 30
plugins:session_manager:peer_timeout 118
plugins:session_manager_service:peer_timeout 28
plugins:session_manager_service:service_url 28
plugins:sm_simple_policy:max_concurrent_sessions
29

plugins:sm_simple_policy:max_session_timeout 29,
11

plugins:sm_simple_policy:min_session_timeout 29,
11

plugins:tuxedo:server 25
plugins:wsdl_publish:publish_port 31

R

reached_capacity() 95
renew_session() 116
report_event() 57
report_message() 58

S

service access point 125
SessionManagerClient 110
setendpoint_group() 111
setprefered renew_timeout() 111

134

setservice_gname() 91
setsession_id() 112
SNMP
definition 39
Management Information Base 39
snmp_log_stream 44
soap:server_address_mode_policy:publish_hostnam
e 17
Standalone mode 3
Subsystemld data type 55

T
thread_pool:high_water_mark 20
thread_pool:initial_threads 21
thread_pool:low_water_mark 21
thread pool policies 20

initial number of threads 21

maximum threads 20

minimum threads 21
Timestamp data type 56

U

use_input_message_attributes 114

W

Web Service Definition Language 3
WSDL 3

INDEX

135

INDEX

136

INDEX

137

INDEX

138

	List of Tables
	List of Figures
	Preface
	Introduction to Artix
	Configuration
	Establishing the Host Computer Environment
	Configuring Artix Runtime Behavior
	Runtime Configuration Variables
	ORB Plug-ins List
	Policies
	http:server_address_mode_policy:publish_hostname
	soap:server_address_mode_policy:publish_hostname

	Binding Lists
	client_binding_list
	server_binding_list

	Thread Pool Control
	high_water_mark
	initial_threads
	low_water_mark

	Artix Plug-in Configuration
	Routing Plug-in
	plugins:routing:routing_wsdl
	plugins:routing:use_type_factory
	plugins:routing:use_pass_through

	CORBA Plug-in
	Tuxedo Plug-in
	plugins:tuxedo:server

	Locator Service Plug-in
	plugins:locator:service_url
	plugins:locator:peer_timeout

	Locator Service Endpoint Plug-in
	plugins:locator:wsdl_url
	plugins:session_endpoint_manager:peer_timout

	Session Manager Plug-in
	plugins:session_manager_service:service_url
	plugins:session_manager_service:peer_timeout

	Session Manager Simple Policy Plug-in
	plugins:sm_simple_policy:max_concurrent_sessions
	plugins:sm_simple_policy:min_session_timeout
	plugins:sm_simple_policy:max_session_timeout

	Session Manager Endpoint Plug-in
	plugins:session_endpoint_manager:wsdl_url
	plugins:session_endpoint_manager:endpoint_manager_url
	plugins:session_endpoint_manager:default_group
	plugins:session_endpoint_manager:header_validation

	WSDL Publishing Plug-in
	plugins:wsdl_publish:publish_port

	Artix Logging and SNMP Support
	Artix Logging
	Using Trace Macros
	Application Server Platform Trace Macros
	IT_LOG_MESSAGE() Macro
	IT_LOG_MESSAGE_1() Macro

	Using the SNMP Logging Plug-in
	Using the XML Logging Plug-in
	IT_Logging Overview
	IT_Logging::ApplicationId Data Type
	IT_Logging::EventId Data Type
	IT_Logging::EventParameters Data Type
	IT_Logging::EventPriority Data Type
	IT_Logging::format_message()
	IT_Logging::SubsystemId Data Type
	IT_Logging::Timestamp Data Type

	IT_Logging::LogStream Interface
	LogStream::report_event()
	LogStream::report_message()

	Example
	Using the Logging Functionality

	Performance Logging

	Artix Standalone Service
	The Artix Standalone Service
	Configuring the Service
	Starting and Stopping the Service
	Installing the Service as a Windows Service
	Contracts for the Standalone Service

	Using the Artix Locator Service
	Overview of the Artix Locator Service
	Deploying the Locator
	Registering a Server with the Locator
	Obtaining References from the Locator
	Load Balancing
	Controlling Server Workloads
	Fault Tolerance

	Using the Artix Session Manager
	Introduction to Session Management in Artix
	Deploying the Session Manager Service
	Registering a Server with the Session Manager
	Working with Sessions
	Fault Tolerance

	Using Artix in a CORBA Environment
	Embedding Artix in a CORBA Application
	Using the CORBA Naming Service
	Load Balancing with CORBA

	Embedding Artix in a Tuxedo Container
	Index

