
Silk Test 16.0

Silk Test Classic
Open Agent Help

Borland Software Corporation
700 King Farm Blvd, Suite 400
Rockville, MD 20850

Copyright © Micro Focus 2015. All rights reserved. Portions Copyright © 1992-2009 Borland
Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom, and other countries.

BORLAND, the Borland logo, and Borland product names are trademarks or registered
trademarks of Borland Software Corporation or its subsidiaries or affiliated companies in the
United States, United Kingdom, and other countries.

All other marks are the property of their respective owners.

2015-02-11

ii

Contents

Licensing Information ..16
Getting Started ... 17

Automation Under Special Conditions (Missing Peripherals) ..17
Silk Test Product Suite .. 18
Silk Test Classic UI ..19
Contacting Micro Focus .. 19

Information Needed by Micro Focus SupportLine .. 20
What's New in Silk Test Classic .. 21

Mobile Browser Support ..21
Easy Record and Replay .. 21
Microsoft Windows 8.1 Support .. 21
Internet Explorer Support ..22
Mozilla Firefox Support ... 22
Google Chrome Support ... 22
Rumba Support ...22
Apache Flex Support ...22
Agent-Specific Documents ..22

Open Agent ... 23
How Silk Test Classic Assigns an Agent to a Window Declaration 23
Agent Options ... 23
Setting the Default Agent .. 41

Setting the Default Agent Using the Runtime Options Dialog Box 42
Setting the Default Agent Using the Toolbar Icons ...42

Connecting to the Default Agent ... 42
Creating a Script that Uses Both Agents ...42
Overview of Record Functionality Available for the Silk Test Agents43
Setting Record and Replay Options for the Open Agent ...44
Setting the Window Timeout Value to Prevent Window Not Found Exceptions 44

Manually Setting the Window Timeout Value ... 44
Setting the Window Timeout Value in the Agent Options Dialog Box45

Configuring Open Agent Port Numbers .. 45
Configuring the Port that Clients Use to Connect to the Information Service 45
Open Agent Port Numbers ..46
Stopping the Open Agent After Test Execution ...46

Basic Workflow for the Open Agent ... 47
Creating a New Project ... 47
Configuring Applications ... 47
Configuring Web Applications ... 48
Configuring Standard Applications ..48
Recording Test Cases for Standard and Web Applications ...49
Recording Test Cases for Mobile Web Applications ..50
Running a Test Case ...51
Viewing Test Results ... 52

Migrating from the Classic Agent to the Open Agent53
Differences for Agent Options Between the Classic Agent and the Open Agent 53
Differences in Object Recognition Between the Classic Agent and the Open Agent54
Differences in the Classes Supported by the Open Agent and the Classic Agent56
Differences in the Parameters Supported by the Open Agent and the Classic Agent 60
Overview of the Methods Supported by the Silk Test Classic Agents61
SYS Functions Supported by the Open Agent and the Classic Agent61

Contents | 3

Silk Test Classic Projects .. 63
Storing Project Information ..63
Accessing Files Within Your Project ..64
Sharing a Project Among a Group .. 64
Project Explorer ...65
Creating a New Project ... 66
Opening an Existing Project ..67
Converting Existing Tests to a Project ...67
Using Option Sets in Your Project ... 67

Editing an Options Set ..68
Silk Test Classic File Types ... 68
Organizing Projects ...69

Adding Existing Files to a Project ...69
Renaming Your Project ...70
Working with Folders in a Project ... 70
Moving Files Between Projects .. 72
Removing Files from a Project ... 72
Turning the Project Explorer View On and Off ..72
Viewing Resources Within a Project .. 73

Packaging a Silk Test Classic Project ... 73
Emailing a Packaged Project ..75

Exporting a Project ..76
Troubleshooting Projects ...76

Files Not Found When Opening Project ...76
Silk Test Classic Cannot Load My Project File ... 77
Silk Test Classic Cannot Save Files to My Project ... 77
Silk Test Classic Does Not Run ..77
My Files No Longer Display In the Recent Files List ..78
Cannot Find Items In Classic 4Test ..78
Editing the Project Files ..78

Enabling Extensions for Applications Under Test .. 79
Extensions that Silk Test Classic can Automatically Configure ...79
Extensions that Must be Set Manually .. 80
Extensions on Host and Target Machines ...80
Enabling Extensions Automatically Using the Basic Workflow ..81
Enabling Extensions on a Host Machine Manually ... 81
Manually Enabling Extensions on a Target Machine ...82
Enabling Extensions for Embedded Browser Applications that Use the Classic Agent 83
Enabling Extensions for HTML Applications (HTAs) ... 83
Adding a Test Application to the Extension Dialog Boxes ... 84
Verifying Extension Settings ..85
Why Applications do not have Standard Names ... 85
Duplicating the Settings of a Test Application in Another Test Application85
Deleting an Application from the Extension Enabler or Extensions Dialog Box 86
Disabling Browser Extensions ...86
Comparison of the Extensions Dialog Box and the Extension Enabler Dialog Box 86
Configuring the Browser ..87

Setting Agent Options for Web Testing ...88
Specifying a Browser for Silk Test Classic to Use in Testing a Web Application 88
Specifying your Default Browser .. 89

Understanding the Recovery System for the Open Agent 90
Setting the Recovery System for the Open Agent ...91
Base State ...91
DefaultBaseState Function ... 92
Adding Tests that Use the Open Agent to the DefaultBaseState 92

4 | Contents

DefaultBaseState and the wDynamicMainWindow Object ..93
Flow of Control .. 94

The Non-Web Recovery Systems Flow of Control ... 94
How the Non-Web Recovery System Closes Windows ... 94
How the Non-Web Recovery System Starts the Application95

Modifying the Default Recovery System ... 95
Overriding the Default Recovery System ... 95
Handling Login Windows ..96
Specifying Windows to be Left Open for Tests that Use the Open Agent 97
Specifying New Window Closing Procedures ...98
Specifying Buttons, Keys, and Menus that Close Windows 98
Recording a Close Method for Tests that Use the Open Agent99

Test Plans ..100
Structure of a Test Plan ...100
Overview of Test Plan Templates .. 101
Example Outline for Word Search Feature ..101
Converting a Results File to a Test Plan ... 103
Working with Test Plans .. 103

Creating a New Test Plan ...103
Indent and Change Levels in an Outline .. 104
Adding Comments to Test Plan Results ... 104
Documenting Manual Tests in the Test Plan ...105
Describing the State of a Manual Test ..105
Inserting a Template ...105
Changing Colors in a Test Plan .. 106
Linking the Test Plan to Scripts and Test Cases .. 106

Working with Large Test Plans ..107
Determining Where Values are Defined in a Large Test Plan 107
Dividing a Test Plan into a Master Plan and Sub-Plans 107
Creating a Sub-Plan ... 108
Copying a Sub-Plan ... 108
Opening a Sub-Plan ... 108
Connecting a Sub-Plan with a Master Plan ..108
Refreshing a Local Copy of a Sub-Plan ... 108
Sharing a Test Plan Initialization File ..108
Saving Changes ... 109
Overview of Locks .. 109
Acquiring and Releasing a Lock ...109
Generating a Test Plan Completion Report ..109

Adding Data to a Test Plan ..110
Specifying Unique and Shared Data .. 110
Adding Comments in the Test Plan Editor ..110
Testplan Editor Statements .. 110
The # Operator in the Testplan Editor .. 110
Using the Testplan Detail Dialog Box to Enter the testdata Statement111
Entering the testdata Statement Manually ... 111

Linking Test Plans ... 111
Linking a Description to a Script or Test Case using the Testplan Detail Dialog Box

... 111
Linking a Test Plan to a Data-Driven Test Case ... 112
Linking to a Test Plan Manually ..112
Linking a Test Case or Script to a Test Plan using the Testplan Detail Dialog Box

... 112
Linking the Test Plan to Scripts and Test Cases .. 112
Example of Linking a Test Plan to a Test Case .. 113

Categorizing and Marking Test Plans ..113

Contents | 5

Marking a Test Plan ..114
How the Marking Commands Interact .. 114
Marking One or More Tests .. 114
Printing Marked Tests ...114

Using Symbols .. 115
Overview of Symbols ..115
Symbol Definition Statements in the Test Plan Editor .. 116
Defining Symbols in the Testplan Detail Dialog box ... 117
Assigning a Value to a Symbol ...117
Specifying Symbols as Arguments when Entering a testcase Statement 117

Attributes and Values .. 118
Overview of Attributes and Values ..118
Predefined Attributes ..118
User Defined Attributes .. 118
Adding or Removing Members of a Set Attribute ... 119
Rules for Using + and - ...119
Defining an Attribute and its Values ... 119
Assigning Attributes and Values to a Test Plan .. 120
Assigning an Attribute from the Testplan Detail Dialog Box 120
Modifying the Definition of an Attribute ...121

Queries ..121
Overview of Test Plan Queries ... 121
Overview of Combining Queries to Create a New Query122
Guidelines for Including Symbols in a Query ... 122
The Differences between Query and Named Query Commands123
Create a New Query ...123
Edit a Query ... 124
Delete a Query ... 124
Combining Queries ...124

Designing and Recording Test Cases with the Open Agent 125
Dynamic Object Recognition ...125

XPath Basic Concepts ..126
Supported XPath Subset ..127
XPath Samples ...128
Supported Locator Attributes ... 129
Using Locators ... 129
Using Locators to Check if an Object Exists .. 130
Identifying Multiple Objects with One Locator .. 130
Locator Customization ..130
Troubleshooting Performance Issues for XPath ..135

Highlighting Objects During Recording ... 136
Overview of the Locator Keyword ... 136
Setting Recording and Replay Options ... 139

Setting Recording Preferences for the Open Agent ... 139
Setting Recording Options for xBrowser .. 140
Defining which Custom Locator Attributes to Use for Recognition141
Setting Classes to Ignore ... 141
Setting WPF Classes to Expose During Recording and Playback142
Setting Pre-Fill During Recording and Replaying ...142
Setting Replay Options for the Open Agent ... 142

Test Cases .. 143
Overview of Test Cases ..143
Anatomy of a Basic Test Case ... 144
Types of Test Cases ... 144
Test Case Design ... 144
Constructing a Test Case ... 145

6 | Contents

Data in Test Cases ... 146
Saving Test Cases ..146
Recording Without Window Declarations ... 147
Overview of Application States ...147
Behavior of an Application State Based on NONE ...148
Example: A Feature of a Word Processor .. 148

Creating Test Cases with the Open Agent .. 149
Application Configuration ... 149
Recording Test Cases for Standard and Web Applications150
Recording Test Cases for Mobile Web Applications ...151
Recording Window Declarations that Include Locator Keywords 152
Recording Locators Using the Locator Spy ..153
Recording Additional Actions Into an Existing Test .. 154
Specifying Whether to Use Locators or Tags to Resolve Window Declarations ...154
Saving a Script File .. 155
Testing an Application State ... 155
Configuring Applications ...155
Modifying an Application Configuration .. 155
Reasons for Failure of Creating an Application Configuration156
Actions Available During Recording ... 156

Verification ...157
Verifying Object Properties ...157
Overview of Verifying Bitmaps ..158
Overview of Verifying an Objects State .. 159
Fuzzy Verification ... 160
Verifying that a Window or Control is No Longer Displayed 161

Data-Driven Test Cases .. 162
Data-Driven Workflow ...162
Working with Data-Driven Test Cases ..163
Code Automatically Generated by Silk Test Classic ...163
Tips And Tricks for Data-Driven Test Cases ... 164
Testing an Application with Invalid Data ... 166
Enabling and Disabling Workflow Bars ...166
Data Source for Data-Driven Test Cases ... 167
Creating the Data-Driven Test Case ...168

Characters Excluded from Recording and Replaying ... 173
Testing in Your Environment with the Open Agent 174

Distributed Testing with the Open Agent ... 174
Configuring Your Test Environment .. 174
Running Test Cases in Parallel ...180
Testing Multiple Machines .. 188
Testing Multiple Applications .. 194
Troubleshooting Distributed Testing ..203

Testing Apache Flex Applications ..203
Overview of Apache Flex Support ..203
Configuring Security Settings for Your Local Flash Player 204
Configuring Flex Applications to Run in Adobe Flash Player 204
Configuring Flex Applications for Adobe Flash Player Security Restrictions205
Customizing Apache Flex Scripts ...205
Styles in Apache Flex Applications ...206
Locator Attributes for Apache Flex Controls ...206
Dynamically Invoking Apache Flex Methods .. 207
Testing Multiple Flex Applications on the Same Web Page208
Adobe AIR Support .. 208
Apache Flex Exception Values ... 208
Overview of the Flex Select Method Using Name or Index 209

Contents | 7

Selecting an Item in the FlexDataGrid Control ... 210
Enabling Your Flex Application for Testing ..210
Testing the Silk Test Component Explorer Flex Sample Application 221
Testing Flex Custom Controls ...225

Client/Server Application Support ... 234
Client/Server Testing Challenges ... 234
Verifying Tables in ClientServer Applications ... 234
Evolving a Testing Strategy .. 235
Incremental Functional Test Design ... 235
Network Testing Types ... 236
How 4Test Handles Script Deadlock .. 237
Troubleshooting Configuration Test Failures ...238

Testing .NET Applications with the Open Agent ..238
Windows Forms Applications ... 238
WPF Applications ... 241
Microsoft Silverlight Applications ..247

Testing Java AWT/Swing Applications with the Open Agent ...251
Testing Standard Java Objects and Custom Controls .. 251
Recording and Playing Back JFC Menus ... 252
Recording and Playing Back Java AWT Menus ... 252
Object Recognition for Java AWT/Swing Applications ..252
Agent Support for Java AWT/Swing Applications ...252
Configuring a Test Application that Uses the Java Network Launching Protocol (JNLP)

... 253
Custom Attributes ...253
Locator Attributes for Java AWT/Swing Controls ..254
Dynamically Invoking Java Methods ...254
Determining the priorLabel in the Java AWT/Swing Technology Domain255
Supported Browsers for Testing Java Applets ..255
Overview of JavaScript Support ... 256
Oracle Forms Support ..256
Classes in Object-Oriented Programming Languages ... 257
Configuring Silk Test Classic to Test Java .. 257
Testing Java Applications and Applets ... 260
Frequently Asked Questions About Testing Java Applications266

Testing Java SWT and Eclipse Applications with the Open Agent268
Suppressing Controls (Open Agent) .. 268
Custom Attributes ...269
Locator Attributes for Java SWT Controls .. 269
Dynamically Invoking Java Methods ...270
Java SWT Classes for the Open Agent ..270

Testing Mobile Web Applications ...271
Testing Mobile Web Applications on Android ... 271
Testing Mobile Web Applications on iOS ..276
Recording Mobile Applications ... 278
Interacting with a Mobile Device ...279
Troubleshooting when Testing Mobile Web Applications279
Limitations for Testing Mobile Web Applications .. 282
Clicking on Objects in a Mobile Website .. 284

Testing Rumba Applications ..284
Enabling and Disabling Rumba .. 285
Locator Attributes for Identifying Rumba Controls ..285
Testing a Unix Display .. 285
Rumba Class Reference .. 285

Testing SAP Applications .. 286
Locator Attributes for SAP Controls ..286

8 | Contents

Dynamically Invoking SAP Methods ...286
Configuring Automation Security Settings for SAP ...287
SAP Class Reference ...287

Testing Web Applications with the Open Agent ...288
Supported Controls for Web Applications .. 288
Sample Web Applications ...288
Testing Dynamic HTML (DHTML) Popup Menus ... 288
Web Application Setup Steps ...288
Recording the Test Frame for a Web Application ... 288
Test Frames ..289
Testing Methodology for Web Applications ...290
Testing Objects in a Web Page .. 290
Using the xBrowser Technology Domain ..295

Testing Windows API-Based Applications ...314
Overview of Windows API-Based Application Support .. 315
Locator Attributes for Windows API-Based Applications 315
Suppressing Controls (Classic Agent) ..315
Suppressing Controls (Open Agent) .. 316
Configuring Standard Applications ...316
Determining the priorLabel in the Win32 Technology Domain 317

Using Advanced Techniques with the Open Agent319
Starting from the Command Line .. 319

Starting Silk Test Classic from the Command Line .. 319
Recording a Test Frame .. 321

Overview of Object Files .. 321
Declarations ... 323
Window Declarations ..326
Overview of Identifiers ..328
Save the Test Frame ...329
Specifying How a Dialog Box is Invoked .. 329

Improving Object Recognition with Microsoft Accessibility ... 329
Using Accessibility with the Open Agent .. 330
Enabling Accessibility for the Open Agent ..330

Calling Windows DLLs from 4Test .. 330
Aliasing a DLL Name ..331
Calling a DLL from within a 4Test Script ...331
Passing Arguments to DLL Functions .. 332
Using DLL Support Files Installed with Silk Test Classic334

Extending the Class Hierarchy ..334
Classes ...334
Verifying Attributes and Properties ...339
Defining Methods and Custom Properties ... 341
Examples ..344

Porting Tests to Other GUIs .. 345
Handling Differences Among GUIs ...345
About GUI Specifiers ..350
Supporting GUI-Specific Objects ... 353

Supporting Custom Controls ...354
Why Silk Test Classic Sees Controls as Custom Controls 354
Reasons Why Silk Test Classic Sees the Control as a Custom Control355
Supporting Graphical Controls ... 355
Custom Controls (Open Agent) .. 355
Using Clipboard Methods ... 361
Filtering Custom Classes ... 361

Supporting Internationalized Objects .. 362
Overview of Silk Test Classic Support of Unicode Content 362

Contents | 9

Using DB Tester with Unicode Content .. 363
Issues Displaying Double-Byte Characters .. 363
Learning More About Internationalization .. 364
Silk Test Classic File Formats .. 364
Working with Bi-Directional Languages ..366
Configuring Your Environment ..367
Troubleshooting Unicode Content .. 368

Using Autocomplete .. 371
Overview of AutoComplete ...371
Customizing your MemberList ..371
Frequently Asked Questions about AutoComplete ...372
Turning AutoComplete Options Off ...373
Using AppStateList ...374
Using DataTypeList .. 374
Using FunctionTip .. 374
Using MemberList .. 375

Overview of the Library Browser ... 375
Library Browser Source File ... 376
Adding Information to the Library Browser ... 376
Add User-Defined Files to the Library Browser with Silk Test Classic377
Viewing Functions in the Library Browser .. 377
Viewing Methods for a Class in the Library Browser .. 377
Examples of Documenting User-Defined Methods .. 378
Web Classes Not Displayed in Library Browser ... 378

Text Recognition Support .. 379
Running Tests and Interpreting Results .. 381

Running Tests ... 381
Creating a suite .. 381
Passing Arguments To a Script .. 381
Running a Test Case .. 382
Running a Test Plan ... 383
Running the currently active script or suite .. 383
Stopping a Running Testcase Before it Completes .. 384
Setting a Test Case to Use Animation Mode ..384

Interpreting Results ...384
Overview of the Results File ...384
Viewing Test Results .. 385
Difference Viewer Overview ... 385
Errors And the Results File .. 386
Testplan Pass/Fail Report and Chart ..387
Merging testplan results overview .. 387

Analyzing Results with the Silk TrueLog Explorer ... 388
TrueLog Explorer .. 388
TrueLog Limitations and Prerequisites ... 388
Opening the TrueLog Options Dialog Box .. 389
Setting TrueLog Options ...389
Toggle TrueLog at Runtime Using a Script ... 390
Viewing Results Using the TrueLog Explorer ... 390
Modifying Your Script to Resolve Window Not Found Exceptions When Using TrueLog

... 391
Analyzing Bitmaps ...391

Overview of the Bitmap Tool ...391
When to use the Bitmap Tool ... 392
Capturing Bitmaps with the Bitmap Tool ...392
Comparing Bitmaps ..394
Rules for Using Comparison Commands ... 395

10 | Contents

Bitmap Functions ..395
Baseline and Result Bitmaps ... 395
Zooming the Baseline Bitmap, Result Bitmap, and Differences Window 396
Looking at Statistics ... 396
Exiting from Scan Mode ... 396
Starting the Bitmap Tool ... 397
Using Masks ...397
Analyzing Bitmaps for Differences ..400

Working with Result Files ..401
Attaching a comment to a result set ... 401
Comparing Result Files ..401
Customizing results .. 402
Deleting a results set ..402
Change the default number of results sets ...402
Changing the Colors of Elements In the Results File ...402
Fix incorrect values in a script .. 403
Marking Failed Testcases ... 403
Merging results ...403
Navigating to errors .. 403
Viewing an individual summary .. 404
Storing and Exporting Results ..404
Storing results .. 404
Exporting Results to a Structured File for Further Manipulation 404
Removing the unused space in a results file ..405
Sending Results Directly to Issue Manager ... 405
Logging Elapsed Time Thread and Machine Information405

Presenting Results .. 405
Fully customize a chart ...405
Generate a Pass/Fail Report on the Active Test Plan Results File406
Producing a Pass/Fail Chart ...406
Displaying a different set of results ...407

Debugging Test Scripts ... 408
Designing and testing with debugging in mind ..408
Overview of the Debugger ...408

Executing a script in the debugger ... 408
Starting the debugger ...409
Debugger menus ..409
Stepping into and over functions .. 409
Working with scripts ... 410
Exiting the debugger .. 410

Breakpoints ... 410
Setting Breakpoints .. 410
Viewing Breakpoints ...411
Deleting Breakpoints .. 411

Variables ... 411
Viewing variables ..411
Changing the value of variables ... 412

Expressions ...412
Overview of Expressions ..412
Evaluate expressions ... 412

Enabling View Trace Listing .. 412
Viewing a list of modules ...413
View the debugging transcripts ... 413
Debugging Tips ... 413

Checking the precedence of operators ...413
Code that never executes ...413

Contents | 11

Global and local variables with the same name ... 413
Global variables with unexpected values ..413
Incorrect use of break statements .. 414
Incorrect values for loop variables ..414
Infinite loops ... 414
Typographical errors ...414
Uninitialized variables ...414

Troubleshooting the Open Agent ..415
Troubleshooting Apache Flex Applications ..415

Why Cannot Silk Test Classic Recognize Apache Flex Controls?415
Troubleshooting Basic Workflow Issues .. 415
Error Messages ...416

Agent not responding ... 416
Control is not responding ... 416
Functionality Not Supported on the Open Agent ..416
Unable to Connect to Agent ... 417
Window is not active ...417
Window is not enabled ... 418
Window is not exposed ...418
Window not found ...419

Handling Exceptions ... 419
Default Error Handling ..419
Custom Error Handling ...420
Trapping the exception number .. 421
Defining your own exceptions ...421
Using do...except statements to trap and handle exceptions 422
Programmatically Logging an Error ..423
Performing More than One Verification in a Test Case ...423
Writing an Error-Handling Function ..425
Exception Values ..426

Troubleshooting Java Applications .. 430
What Can I Do If the Silk Test Java File Is Not Included in a Plug-In? 430
What Can I Do If Java Controls In an Applet Are Not Recognized?430

Multiple Machines Testing ... 430
Setting Up the Recovery System for Multiple Local Applications 431
two_apps.t .. 432
two_apps.inc .. 432

Other Problems ... 438
Adding a Property to the Recorder ...438
Cannot Double-Click a Silk Test Classic File and Open Silk Test Classic 438
Cannot Extend AnyWin, Control, or MoveableWin Classes 439
Cannot open results file ..439
Common Scripting Problems ..439
Conflict with Virus Detectors .. 440
Displaying the Euro Symbol ... 441
Do I Need Administrator Privileges to Run Silk Test Classic?441
General Protection Faults ...441
Running Global Variables from a Test Plan Versus Running Them from a Script

... 442
Include File or Script Compiles but Changes are Not Picked Up 442
Library Browser Not Displaying User-Defined Methods 443
Maximum Size of Silk Test Classic Files .. 443
Recorder Does Not Capture All Actions ... 444
Relationship between Exceptions Defined in 4test.inc and Messages Sent To the Result File

... 444
The 4Test Editor Does Not Display Enough Characters444

12 | Contents

Stopping a Test Plan .. 445
Using a Property Instead of a Data Member ..445
Using File Functions to Add Information to the Beginning of a File445
Why Does the Str Function Not Round Correctly? ...446

Troubleshooting Projects ...446
Files Not Found When Opening Project ...446
Silk Test Classic Cannot Load My Project File ... 446
Silk Test Classic Cannot Save Files to My Project ... 447
Silk Test Classic Does Not Run ..447
My Files No Longer Display In the Recent Files List ..447
Cannot Find Items In Classic 4Test ..448
Editing the Project Files ..448

Recognition Issues ..448
How Can the Application Developers Make Applications Ready for Automated Testing?

... 448
Tips ... 449

Example Test Cases for the Find Dialog Box ... 449
When to use the Bitmap Tool ... 450

Troubleshooting Web Applications .. 450
What Can I Do If the Page I Have Selected Is Empty? .. 450
Why Do I Get an Error Message When I Set the Accessibility Extension? 450

Using the Runtime Version of Silk Test Classic .. 451
Installing the Runtime Version ...451
Starting the Runtime Version .. 451
Comparing Silk Test Classic and Silk Test Classic Runtime Menus and Commands 451

Glossary ..462
4Test Classes ..462
4Test-Compatible Information or Methods .. 462
Abstract Windowing Toolkit ... 462
accented character ..462
agent ... 462
applet .. 463
application state .. 463
attributes ... 463
Band (.NET) .. 463
base state ..463
bidirectional text .. 463
Bytecode ... 463
call stack ... 464
child object .. 464
class .. 464
class library ... 464
class mapping ... 464
Classic 4Test ... 464
client area ..464
custom object .. 464
data-driven test case ...465
data member ... 465
declarations ...465
DefaultBaseState .. 465
diacritic ..465
Difference Viewer .. 465
double-byte character set (DBCS) .. 465
dynamic instantiation ...465
dynamic link library (DLL) ..466
enabling ...466

Contents | 13

exception ...466
frame file ... 466
fully qualified object name ...466
group description ...466
handles ..467
hierarchy of GUI objects ..467
host machine ...467
hotkey ..467
Hungarian notation ..471
identifier ...472
include file ... 472
internationalization or globalization ...472
Java Database Connectivity (JDBC) ... 472
Java Development Kit (JDK) ... 472
Java Foundation Classes (JFC) .. 472
Java Runtime Environment (JRE) ... 472
Java Virtual Machine (JVM) .. 472
JavaBeans ...473
Latin script ...473
layout ...473
levels of localization .. 473
load testing ..473
localization .. 473
localize an application ... 473
locator ... 473
logical hierarchy .. 474
manual test ..474
mark .. 474
master plan ... 474
message box ...474
method .. 474
minus (-) sign .. 474
modal .. 475
modeless ...475
Multibyte Character Set (MBCS) ...475
Multiple Application Domains (.NET) .. 475
negative testing ... 475
nested declarations ... 475
No-Touch (.NET) ... 475
object ...475
outline ..476
Overloaded method ...476
parent object ... 476
performance testing .. 476
physical hierarchy (.NET) .. 476
plus (+) sign .. 476
polymorphism ..476
project ... 477
properties .. 477
query ... 477
recovery system .. 477
regression testing ..477
results file .. 477
script ..477
script file ..478
side-by-side (.NET) ... 478

14 | Contents

Simplified Chinese .. 478
Single-Byte Character Set (SBCS) ... 478
smoke test ...478
Standard Widget Toolkit (SWT) ...478
statement .. 478
status line .. 479
stress testing ... 479
subplan ..479
suite ...479
Swing .. 479
symbols ... 479
tag ... 479
target machine .. 480
template .. 480
test description ..480
test frame file ...480
test case ..480
test plan ...481
TotalMemory parameter .. 481
Traditional Chinese ..481
variable ..481
verification statement .. 481
Visual 4Test ...481
window declarations ..481
window part ...482
XPath ...482

Contents | 15

Licensing Information
Unless you are using a trial version, Silk Test requires a license.

The licensing model is based on the client that you are using and the applications that you want to be able
to test. The available licensing modes support the following application types:

Licensing Mode Application Type

Full • Web applications, including the following:

• Apache Flex
• Java-Applets

• Mobile Web applications.

• Android
• iOS

• Apache Flex
• Java AWT/Swing, including Oracle Forms
• Java SWT and Eclipse RCP
• .NET, including Windows Forms and Windows

Presentation Foundation (WPF)
• Rumba
• Windows API-Based

Note: To upgrade your license to a Full license,
visit www.borland.com.

Premium All application types that are supported with a Full
license, plus SAP applications.

Note: To upgrade your license to a Premium
license, visit www.borland.com.

Note: A Silk Test license is bound to a specific version of Silk Test.

16 | Licensing Information

http://www.borland.com/contact/
http://www.borland.com/contact/

Getting Started
Silk Test Classic is the traditional Silk Test client. With Silk Test Classic you can develop tests using the
4Test language, an object-oriented fourth-generation language (4GL), which is designed specifically for QA
professionals. Silk Test Classic guides you through the entire process of creating test cases, running the
tests, and interpreting the results of your test runs.

Silk Test Classic supports the testing of a broad set of application technologies.

This section provides information to get you up and running with Silk Test Classic.

Note: If you have opted not to display the start screen when you start Silk Test Classic, you can check
for available updates by clicking Help > Check for Product Update.

Automation Under Special Conditions (Missing
Peripherals)

Basic product orientation

Silk Test Classic is a GUI testing product that tries to act like a human user in order to achieve meaningful
test results under automation conditions. A test performed by Silk Test Classic should be as valuable as a
test performed by a human user while executing much faster. This means that Silk Test Classic requires a
testing environment that is as similar as possible to the testing environment that a human user would
require in order to perform the same test.

Physical peripherals

Manually testing the UI of a real application requires physical input and output devices like a keyboard, a
mouse, and a display. Silk Test Classic does not necessarily require physical input devices during test
replay. What Silk Test Classic requires is the ability of the operating system to perform keystrokes and
mouse clicks. The Silk Test Classic replay usually works as expected without any input devices connected.
However, some device drivers might block the Silk Test Classic replay mechanisms if the physical input
device is not available.

The same applies to physical output devices. A physical display does not necessarily need to be
connected, but a working video device driver must be installed and the operating system must be in a
condition to render things to the screen. For example, rendering is not possible in screen saver mode or if a
session is locked. If rendering is not possible, low-level replay will not work and high-level replay might also
not work as expected, depend on the technology that is used in the application under test (AUT).

Virtual machines

Silk Test Classic does not directly support virtualization vendors, but can operate with any type of
virtualization solution as long as the virtual guest machine behaves like a physical machine. Standard
peripherals are usually provided as virtual devices, regardless of which physical devices are used with the
machine that runs the virtual machine.

Cloud instances

From an automation point of view, a cloud instance is not different to a virtual machine. However, a cloud
instance might run some special video rendering optimization, which might lead to situations where screen
rendering is temporarily turned off to save hardware resources. This might happen when the cloud instance
detects that no client is actively viewing the display. In such a case, you could open a VNC window as a
workaround.

Getting Started | 17

Special cases

Application
launched
without any
window
(headless)

Such an application cannot be tested with Silk Test Classic. Silk Test Classic needs to
hook to a target application process in order to interact with it. Hooking is not possible
for processes that do not have a visible window. In such a case you can only run
system commands.

Remote
desktops,
terminal
services, and
remote
applications (all
vendors)

If Silk Test Classic resides and operates within a remote desktop session, it will fully
operate as expected.

Note: You require a full user session and the remote viewing window needs to
be maximized. If the remote viewing window is not displayed for some reason,
for example network issues, Silk Test Classic will continue to replay but might
produce unexpected results, depending on what remote viewing technology is
used. For example, a lost remote desktop session will negatively impact video
rendering, whereas other remote viewing solutions might show no impact at all
once the viewing window was lost.

If Silk Test Classic is used to interact with the remote desktop, remote view, or remote
app window, only low-level techniques can be used, because Silk Test Classic sees
only a screenshot of the remote machine. For some remote viewing solutions even
low-level operations may not be possible because of security restrictions. For example,
it might not be possible to send keystrokes to a remote application window.

Known
automation
obstacles

Silk Test Classic requires an interactively-logged-on full-user session. Disable anything
that could lock the session, for example screen savers, hibernation, or sleep mode. If
this is not possible because of organizational policies you could workaround such
issues by adding keep alive actions, for example moving the mouse, in regular
intervals or at the end of each test case.

Note: Depending on the configuration of the actual testing environment and the
technologies that are used for the AUT, the virtualization, and the terminal
services, you may face additional challenges and limitations during the test
automation process.

Silk Test Product Suite
Silk Test is an automated testing tool for fast and reliable functional and regression testing. Silk Test helps
development teams, quality teams, and business analysts to deliver software faster, and with high quality.
With Silk Test you can record and replay tests across multiple platforms and devices to ensure that your
applications work exactly as intended.

The Silk Test product suite includes the following components:

• Silk Test Workbench – Silk Test Workbench is the quality testing environment that offers .NET scripting
for power users and easy to use visual tests to make testing more accessible to a broader audience.

• Silk4NET – The Silk4NET Visual Studio plug-in enables you to create Visual Basic or C# test scripts
directly in Visual Studio.

• Silk4J – The Silk4J Eclipse plug-in enables you to create Java-based test scripts directly in your Eclipse
environment.

• Silk Test Classic – Silk Test Classic is the traditional, 4Test Silk Test product.
• Silk Test Agents – The Silk Test Agent is the software process that translates the commands in your

tests into GUI-specific commands. In other words, the Agent drives and monitors the application you are
testing. One Agent can run locally on the host machine. In a networked environment, any number of
Agents can run on remote machines.

18 | Getting Started

The product suite that you install determines which components are available. To install all components,
choose the complete install option. To install all components with the exception of Silk Test Classic, choose
the standard install option.

Silk Test Classic UI
The desktop of Silk Test Classic is the starting point for all test activities.

The main parts of the Silk Test Classic UI are the following:

Menu Bar Contains all menus that are available for Silk Test Classic. For additional information
about the available menus and menu commands, see Silk Test Classic Menus.

Toolbar The toolbars provide one-click access to commonly used actions.

Basic
Workflow Bar

The Basic Workflow bar guides you through the process of creating a test case. To
create and execute a test case, click each icon in the workflow bar to perform the relevant
procedures. The procedures and the appearance of the workflow bar differ depending on
whether your test uses the Open Agent or the Classic Agent.

For additional information on the basic workflow for the Open Agent, see Basic Workflow
for the Open Agent.

For additional information on the basic workflow for the Classic Agent, see Basic
Workflow for the Classic Agent.

Start Page The Start Page is your launching point into the functionality of Silk Test Classic, enabling
you to access commonly used actions and useful resources.

Contacting Micro Focus
Micro Focus is committed to providing world-class technical support and consulting services. Micro Focus
provides worldwide support, delivering timely, reliable service to ensure every customer's business
success.

Getting Started | 19

All customers who are under a maintenance and support contract, as well as prospective customers who
are evaluating products, are eligible for customer support. Our highly trained staff respond to your requests
as quickly and professionally as possible.

Visit http://supportline.microfocus.com/assistedservices.asp to communicate directly with Micro Focus
SupportLine to resolve your issues, or email supportline@microfocus.com.

Visit Micro Focus SupportLine at http://supportline.microfocus.com for up-to-date support news and access
to other support information. First time users may be required to register to the site.

Information Needed by Micro Focus SupportLine
When contacting Micro Focus SupportLine, please include the following information if possible. The more
information you can give, the better Micro Focus SupportLine can help you.

• The name and version number of all products that you think might be causing an issue.
• Your computer make and model.
• System information such as operating system name and version, processors, and memory details.
• Any detailed description of the issue, including steps to reproduce the issue.
• Exact wording of any error messages involved.
• Your serial number.

To find out these numbers, look in the subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

20 | Getting Started

http://supportline.microfocus.com/assistedservices.asp
http://supportline.microfocus.com

What's New in Silk Test Classic
Silk Test Classic supports the following new features:

Mobile Browser Support
Use your existing scripts and run them on a mobile device to gain confidence that your Web 2.0 application
will work on mobile devices as well. There is no need to create an additional script which can be executed
only on the mobile device, you can just simply re-use the existing browser script that you have created for
the Desktop-Browsers.

Easy Record and Replay
The new unified workflow makes it easy to record and replay scripts against any application. Even mobile
browser recording is included and comes with a new intuitive and more interactive way of recording. This
guarantees a much better script, as you can select what should be in the script during the actual recording.

Microsoft Windows 8.1 Support
You can now test your applications with Silk Test in Microsoft Windows 8.1.

Note: Metro apps are not supported.

What's New in Silk Test Classic | 21

Internet Explorer Support
Silk Test now includes recording and playback support for applications running in:

• Internet Explorer 11

Mozilla Firefox Support
Silk Test now includes playback support for applications running in:

• Mozilla Firefox 30
• Mozilla Firefox 31
• Mozilla Firefox 32
• Mozilla Firefox 33
• Mozilla Firefox 34

Google Chrome Support
Silk Test now includes playback support for applications running in:

• Google Chrome 36
• Google Chrome 37
• Google Chrome 38
• Google Chrome 39
• Google Chrome 40

Rumba Support
Silk Test now supports Rumba 9.1 and 9.2. Additionally, Silk Test now supports testing the Unix Display.

Apache Flex Support
Silk Test now supports Apache Flex 4.10 applications.

Agent-Specific Documents
Silk Test Classic provides different functionality with each agent. To enable easy access to the functionality
provided by each agent, Silk Test Classic now provides a separate PDF Help for each agent. To access the
PDFs, click Start > All Programs > Silk > Silk Test > Documentation > Silk Test Classic.

22 | What's New in Silk Test Classic

Open Agent
The Silk Test agent is the software process that translates the commands in your test scripts into GUI-
specific commands. In other words, the agent drives and monitors the application you are testing. One
agent can run locally on the host machine. In a networked environment, any number of agents can run on
remote machines.

Silk Test Classic provides two types of agents, the Open Agent and the Classic Agent. The agent that you
assign to your project or script depends on the type of application that you are testing.

When you create a new project, Silk Test Classic automatically uses the agent that is currently selected in
the toolbar. For information about the supported technology domains for each agent, refer to Testing in
Your Environment.

The Open Agent supports dynamic object recognition to record and replay test cases that use XPath
queries to find and identify objects. With the Open Agent, one Agent can run locally on the host machine.
In a networked environment, any number of Agents can replay tests on remote machines. However, you
can record only on a local machine.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

How Silk Test Classic Assigns an Agent to a Window
Declaration

When you record a test with the Open Agent set as the default agent, Silk Test Classic includes a locator to
identify the top-most window of the test application. For instance, this window declaration for a Notepad
application that uses the Open Agent includes the following locator:

window MainWin UntitledNotepad
locator "/MainWin[@caption='Untitled - Notepad']"

Silk Test Classic determines which Agent to use by detecting whether a locator or Find or FindAll
command is used. If no locator or Find or FindAll command is present, Silk Test Classic uses the
Classic Agent.

In earlier releases, the TAG_IS_OPEN_AGENT tag was defined on the root window declaration of a control
hierarchy to identify that the Open Agent should be used. This is no longer necessary. When Silk Test
Classic detects a locator on the top-most window or detects a Find or FindAll command, the Open
Agent is automatically used. When a window declaration contains both locators and tags and either could
be used for resolving the window, check or uncheck the Prefer Locator check box in the General Options
dialog box to determine which method is used.

Agent Options
The following table lists the AgentClass options that can be manipulated with the GetOption method
and SetOption method. Only options that can be manipulated by the user are listed here; other options
are for internal use only.

Agent Option Agent Supported Description

OPT_AGENT_CLICKS_ONLY Classic Agent BOOLEAN

Open Agent | 23

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Agent Option Agent Supported Description

FALSE to use the API-based clicks;
TRUE to use agent-based clicks. The
default is FALSE. This option applies
to clicks on specific HTML options
only. For additional information, see
API Click Versus Agent Click.

This option can be set through the
Compatibility tab on the Agent
Options dialog box,
Agent.SetOption, or
BindAgentOption(), and may be
retrieved through
Agent.GetOption().

OPT_ALTERNATE_RECORD_BREAK Classic Agent

Open Agent

BOOLEAN

TRUE pauses recording when Ctrl
+Shift is pressed. Otherwise, Ctrl+Alt
is used. By default, this is FALSE.

OPT_APPREADY_RETRY Classic Agent

Open Agent

NUMBER

The number of seconds that the agent
waits between attempts to verify that
an application is ready. The agent
continues trying to test the application
for readiness if it is not ready until the
time specified with
OPT_APPREADY_TIMEOUT is
reached.

OPT_APPREADY_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds that the agent
waits for an application to become
ready. If the application is not ready
within the specified timeout, Silk Test
Classic raises an exception.

To require the agent to check the
ready state of an application, set
OPT_VERIFY_APPREADY.

This option applies only if the
application or extension knows how to
communicate to the agent that it is
ready. To find out whether the
extension has this capability, see the
documentation that comes with the
extension.

OPT_BITMAP_MATCH_COUNT Classic Agent

Open Agent

INTEGER

The number of consecutive snapshots
that must be the same for the bitmap
to be considered stable. Snapshots
are taken up to the number of

24 | Open Agent

Agent Option Agent Supported Description

seconds specified by
OPT_BITMAP_MATCH_TIMEOUT,
with a pause specified by
OPT_BITMAP_MATCH_INTERVAL
occurring between each snapshot.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_BITMAP_MATCH_INTERVAL Classic Agent

Open Agent

INTEGER

The time interval between snapshots
to use for ensuring the stability of the
bitmap image. The snapshots are
taken up to the time specified by
OPT_BITMAP_MATCH_TIMEOUT.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_BITMAP_MATCH_TIMEOUT Classic Agent

Open Agent

NUMBER

The total time allowed for a bitmap
image to become stable.

During the time period, Silk Test
Classic takes multiple snapshots of
the image, waiting the number of
seconds specified with
OPT_BITMAP_MATCH_TIMEOUT
between snapshots. If the value
returned by
OPT_BITMAP_MATCH_TIMEOUT is
reached before the number of
bitmaps specified by
OPT_BITMAP_MATCH_COUNT
match, Silk Test Classic stops taking
snapshots and raises the exception
E_BITMAP_NOT_STABLE.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• VerifyBitmap

Open Agent | 25

Agent Option Agent Supported Description

• WaitBitmap

OPT_BITMAP_PIXEL_TOLERANCE Classic Agent

Open Agent

INTEGER

The number of pixels of difference
below which two bitmaps are
considered to match. If the number of
pixels that are different is smaller than
the number specified with this option,
the bitmaps are considered identical.
The maximum tolerance is 32767
pixels.

Related methods:

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_CLASS_MAP Classic Agent

Open Agent

LIST OF STRING

The class mapping table for custom
objects, with each entry in the list in
the form custom_class =
standard_class.

OPT_CLOSE_CONFIRM_BUTTONS Classic Agent

Open Agent

LIST OF STRING

The list of buttons used to close
confirmation dialog boxes, which are
dialog boxes that display when
closing windows with the methods
Close, CloseWindows, and
Exit.

OPT_CLOSE_DIALOG_KEYS Classic Agent

Open Agent

LIST OF STRING

The keystroke sequence used to
close dialog boxes with the methods
Close, CloseWindows, and
Exit.

OPT_CLOSE_MENU_NAME Classic Agent STRING

A list of strings representing the list of
menu items on the system menu used
to close windows with the methods
Close, CloseWindows, and
Exit.

Default is Close.

OPT_CLOSE_WINDOW_BUTTONS Classic Agent

Open Agent

LIST OF STRING

The list of buttons used to close
windows with the methods Close,
CloseWindows, and Exit.

26 | Open Agent

Agent Option Agent Supported Description

OPT_CLOSE_WINDOW_MENUS Classic Agent

Open Agent

LIST OF STRING

The list of menu items used to close
windows with the methods Close,
CloseWindows, and Exit.

OPT_CLOSE_WINDOW_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds that Silk Test
Classic waits before it tries a different
close strategy for the Close method
when the respective window does not
close. Close strategies include Alt+F4
or sending the keys specified by
OPT_CLOSE_DIALOG_KEYS. By
default, this is 2.

OPT_COMPATIBLE_TAGS Classic Agent BOOLEAN

TRUE to generate and operate on
tags compatible with releases earlier
than Release 2; FALSE to use the
current algorithm.

The current algorithm affects tags that
use index numbers and some tags
that use captions. In general, the
current tags are more portable, while
the earlier algorithm generates more
platform-dependent tags.

OPT_COMPATIBILITY Open Agent STRING

Enables you to use the behavior of
the specified Silk Test Classic version
for specific features, when the
behavior of these features has
changed in a later version.

Example strings:

• 12

• 11.1

• 13.0.1

By default, this option is not set.

OPT_COMPRESS_WHITESPACE Classic Agent BOOLEAN

TRUE to replace all multiple
consecutive white spaces with a
single space for comparison of tags.
FALSE (the default) to avoid replacing
blank characters in this manner.

This is intended to provide a way to
match tags where the only difference
is the number of white spaces
between words.

Open Agent | 27

Agent Option Agent Supported Description

If at all possible, use "wildcard "
instead of this option.

This option can increase test time
because of the increased time it takes
for compressing of white spaces in
both source and target tags. If Silk
Test Classic processes an object that
has many children, this option may
result in increased testing times.

The tag comparison is performed in
two parts. The first part is a simple
comparison; if there is a match, no
further action is required. The second
part is to compress consecutive white
spaces and retest for a match.

Due to the possible increase in test
time, the most efficient way to use this
option is to enable and disable the
option as required on sections of the
testing that is affected by white space.
Do not enable this option to cover
your entire test.

Tabs in menu items are processed
before the actual tags are compared.
Do not modify the window
declarations of frame files by adding
tabs to any of the tags.

OPT_DROPDOWN_PICK_BEFORE_GET Classic Agent BOOLEAN

TRUE to drop down the combo box
before trying to access the content of
the combo box. This is usually not
needed, but some combo boxes only
get populated after they are dropped
down. If you are having problems
getting the contents of a combo box,
set this option to TRUE.

Default is FALSE.

OPT_ENABLE_ACCESSIBILITY Classic Agent

Open Agent

BOOLEAN

TRUE to enable Accessibility when
you are testing a Win32 application
and Silk Test Classic cannot
recognize objects. Accessibility is
designed to enhance object
recognition at the class level. FALSE
to disable Accessibility.

Note: For Mozilla Firefox and
Google Chrome, Accessibility
is always activated and cannot
be deactivated.

28 | Open Agent

Agent Option Agent Supported Description

Default is FALSE.

OPT_ENSURE_ACTIVE_WINDOW Open Agent BOOLEAN

TRUE ensures that the main window
of the call is active before a call is
executed. By default, this is FALSE.

OPT_EXTENSIONS Classic Agent LIST OF STRING

The list of loaded extensions. Each
extension is identified by the name of
the .dll or .vxx file associated with the
extension.

Unlike the other options,
OPT_EXTENSIONS is read-only and
works only with GetOption().

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES Classic Agent BOOLEAN

TRUE returns an empty list if no text
is selected. FALSE removes any
blank lines within the selected text.

By default, this is TRUE.

OPT_ITEM_RECORD Open Agent BOOLEAN

For SWT applications, TRUE records
methods that invoke tab items directly
rather than recording the tab folder
hierarchy. For example, you might
record
SWTControls.SWTTabControl
1.TabFolder.Select(). If this
option is set to FALSE, SWT tab
folder actions are recorded. For
example, you might record
SWTControls.SWTTabControl
1.Select("TabFolder").

By default, this is TRUE.

OPT_KEYBOARD_DELAY Classic Agent

Open Agent

NUMBER

Default is 0.02 seconds; you can
select a number in increments of .001
from .001 to up to 1000 seconds.

Be aware that the optimal number can
vary, depending on the application
that you are testing. For example, if
you are testing a Web application, a
setting of .001 radically slows down
the browser. However, setting this to 0
(zero) may cause basic application
testing to fail.

OPT_KEYBOARD_LAYOUT Classic Agent STRING

Open Agent | 29

Agent Option Agent Supported Description

Provides support for international
keyboard layouts in the Windows
environment. Specify an operating-
system specific name for the
keyboard layout. Refer to the
Microsoft Windows documentation to
determine what string your operating
system expects. Alternatively, use the
GetOption method to help you
determine the current keyboard
layout, as in the following example:
Print (Agent.GetOption
(OPT_KEYBOARD_LAYOUT))

OPT_KILL_HANGING_APPS Classic Agent

Open Agent

BOOLEAN

Specifies whether to shutdown the
application if communication between
the Agent and the application fails or
times out. Set this option to TRUE
when testing applications that cannot
run multiple instances. By default, this
is FALSE.

OPT_LOCATOR_ATTRIBUTES_CASE_SENSIT
IVE

Open Agent BOOLEAN

Set to Yes to add case-sensitivity to
locator attribute names, or to No to
match the locator names case
insensitive.

OPT_MATCH_ITEM_CASE Classic Agent

Open Agent

BOOLEAN

Set this option to TRUE to have Silk
Test Classic consider case when
matching items in combo boxes, list
boxes, radio lists, and popup lists, or
set this option to FALSE to ignore
case differences during execution of a
Select method. This option has no
effect on a Verify function or a
VerifyContents method.

OPT_MENU_INVOKE_POPUP Classic Agent STRING

The command, keystrokes or mouse
buttons, used to display pop-up
menus, which are menus that popup
over a particular object. To use mouse
buttons, specify <button1>,
<button2>, or <button3> in the
command sequence.

OPT_MENU_PICK_BEFORE_GET Classic Agent BOOLEAN

TRUE to pick the menu before
checking whether an item on it exists,

30 | Open Agent

Agent Option Agent Supported Description

is enabled, or is checked, or FALSE to
not pick the menu before checking.
When TRUE, you may see menus
pop up on the screen even though
your script does not explicitly call the
Pick method.

Default is FALSE.

OPT_MOUSE_DELAY Classic Agent

Open Agent

NUMBER

The delay used before each mouse
event in a script. The delay affects
moving the mouse, pressing buttons,
and releasing buttons. By default, this
is 0.02.

OPT_MULTIPLE_TAGS Classic Agent

Open Agent

BOOLEAN

TRUE to use multiple tags when
recording and playing back. FALSE to
use one tag only, as done in previous
releases.

This option cannot be set through the
Agent Options dialog box. Its default
is TRUE and is only set by the INI file,
option file, and through
Agent.SetOption.

This option overrides the Record
multiple tags check box that displays
in both the Recorder Options dialog
box and the Record Window
Declaration Options dialog box.

If the Record multiple tags check
box is grayed out and you want to
change it, check this setting.

OPT_NO_ICONIC_MESSAGE_BOXES Classic Agent BOOLEAN

TRUE to not have minimized windows
automatically recognized as message
boxes.

Default is FALSE.

OPT_PAUSE_TRUELOG Classic Agent BOOLEAN

TRUE to disable TrueLog at runtime
for a specific portion of a script, or
FALSE to enable TrueLog.

This option has no effect if Truelog is
not enabled.

Default is FALSE.

OPT_PLAY_MODE Classic Agent STRING

Open Agent | 31

Agent Option Agent Supported Description

Used to specify playback mechanism.
For additional information for
Windows applications, see Playing
Back Mouse Actions.

OPT_POST_REPLAY_DELAY Classic Agent

Open Agent

NUMBER

The time in seconds to wait after
invoking a function or writing
properties. Increase this delay if you
experience replay problems due to
the application taking too long to
process mouse and keyboard input.
By default, this is 0.00.

OPT_RADIO_LIST Classic Agent BOOLEAN

TRUE to view option buttons as a
group; FALSE to use the pre-Release
2 method of viewing option buttons as
individual objects.

OPT_RECORD_LISTVIEW_SELECT_BY_TYP
EKEYS

Open Agent BOOLEAN

TRUE records methods with typekeys
statements rather than with keyboard
input for certain selected values. By
default, this is FALSE.

OPT_RECORD_MOUSE_CLICK_RADIUS Open Agent INTEGER

The number of pixels that defines the
radius in which a mouse down and
mouse up event must occur in order
for the Open Agent to recognize it as
a click. If the mouse down and mouse
up event radius is greater than the
defined value, a PressMouse and
ReleaseMouse event are scripted.
By default, this is set to 5 pixels.

OPT_RECORD_MOUSEMOVES Classic Agent

Open Agent

BOOLEAN

TRUE records mouse moves for Web
pages, Win32 applications, and
Windows Forms applications that use
mouse move events. You cannot
record mouse moves for child
domains of the xBrowser technology
domain, for example Apache Flex and
Swing. By default, this is FALSE.

OPT_RECORD_SCROLLBAR_ABSOLUT Open Agent BOOLEAN

TRUE records scroll events with
absolute values instead of relative to
the previous scroll position. By
default, this is FALSE.

32 | Open Agent

Agent Option Agent Supported Description

OPT_REL1_CLASS_LIBRARY Classic Agent BOOLEAN

TRUE to use pre-Release 2 versions
of GetChildren, GetClass, and
GetParent, or FALSE to use
current versions.

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT Open Agent BOOLEAN

TRUE to remove the focus from a
window before text is captured. By
default, this is FALSE.

OPT_REPLAY_HIGHLIGHT_TIME Open Agent NUMBER

The number of seconds before each
invoke command that the object is
highlighted.

By default, this is 0, which means that
objects are not highlighted by default.

OPT_REPLAY_MODE Classic Agent

Open Agent

NUMBER

The replay mode defines how replays
on a control are executed: They can
be executed with mouse and
keyboard (low level) or using the API
(high level). Each control defines
which replay mode is the default
mode for the control. When the
default replay mode is enabled, most
controls use a low level replay. The
default mode for each control is the
mode that works most reliably. If a
replay fails, the user can change the
replay mode and try again. Each
control that supports that mode will
execute the replay in the specified
mode. If a control does not support
the mode, it executes the default
mode. For example, if PushButton
supports low level replay but uses
high level replay by default, it will use
low level replay only if the option
specifies it. Otherwise, it will use the
high level implementation.

Possible values include 0, 1, and 2. 0
is default, 1 is high level, 2 is low
level. By default, this is 0.

OPT_REQUIRE_ACTIVE Classic Agent BOOLEAN

Setting this option to FALSE allows
4Test statements to be attempted
against inactive windows.

Open Agent | 33

Agent Option Agent Supported Description

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_SCROLL_INTO_VIEW Classic Agent BOOLEAN

TRUE to scroll a control into view
before recording events against it or
capturing its bitmap. This option
applies only when
OPT_SHOW_OUT_OF_VIEW is set
to TRUE. This option is useful for
testing Web applications in which
dialog boxes contain scroll bars. This
option applies only to HTML objects
when you are using the DOM
extension.

OPT_SET_TARGET_MACHINE Classic Agent STRING

The IP address and port number to
use for the target machine in
distributed testing using the
SetOption method. To set the
target machine, type:
Agent.SetOption(OPT_SET_T
ARGET_MACHINE, <
IPAddress >:< PortNumber
>) .

Note: A colon must separate
the IP address and the port
number.

To return the IP address and port
number of the current target machine,
type:
Agent.GetOption(OPT_SET_T
ARGET_MACHINE)

OPT_SHOW_OUT_OF_VIEW Classic Agent BOOLEAN

TRUE to have the agent see a control
not currently scrolled into view;
FALSE to have the Agent consider an
out-of-view window to be invisible.
This option applies only to HTML
objects when you are using the DOM
extension.

OPT_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: When you upgrade from a Silk
Test version prior to Silk Test 13.0,
and you had set the

34 | Open Agent

Agent Option Agent Supported Description

OPT_XBROWSER_SYNC_TIMEOUT
option, the Options dialog box will
display the default value of the
OPT_SYNC_TIMEOUT, although
your timeout is still set to the value
you have defined.

OPT_TEXT_NEW_LINE Classic Agent STRING

The keys to type to enter a new line
using the SetMultiText method
of the TextField class. The default
value is "<Enter>".

OPT_TRANSLATE_TABLE Classic Agent STRING

Specifies the name of the translation
table to use. If a translation DLL is in
use, the QAP_SetTranslateTable
entry point is called with the string
specified in this option.

OPT_TRIM_ITEM_SPACE Classic Agent BOOLEAN

TRUE to trim leading and trailing
spaces from items on windows, or
FALSE to avoid trimming spaces.

OPT_USE_ANSICALL Classic Agent BOOLEAN

If set to TRUE, each following DLL
function is called as ANSI. If set to
FALSE, which is the default value,
UTF-8 DLL calls are used. For single
ANSI DLL calls you can also use the
ansicall keyword.

OPT_USE_SILKBEAN Classic Agent BOOLEAN

TRUE to enable the agent to interact
with the SilkBean running on a UNIX
machine.

Default is FALSE.

OPT_VERIFY_ACTIVE Classic Agent

Open Agent

BOOLEAN

TRUE to verify that windows are
active before interacting with them;
FALSE to not check. See Active and
Enabled Statuses for information
about how this option affects Silk Test
Classic methods.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_APPREADY Classic Agent BOOLEAN

Open Agent | 35

Agent Option Agent Supported Description

TRUE to synchronize the agent with
the application under test. Calls to the
agent will not proceed unless the
application is ready.

OPT_VERIFY_CLOSED Classic Agent BOOLEAN

TRUE to verify that a window has
closed. When FALSE, Silk Test
Classic closes a window as usual, but
does not verify that the window
actually closed.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_COORD Classic Agent BOOLEAN

TRUE to check that coordinates
passed to a method are inside the
window before the mouse is pressed;
FALSE to not check. Typically, you
use the checking feature unless you
need to be able to pass coordinates
outside of the window, such as
negative coordinates.

If this option is set to TRUE and
coordinates fall outside the window,
Silk Test Classic raises the exception
E_COORD_OUTSIDE_WINDOW.

OPT_VERIFY_CTRLTYPE Classic Agent BOOLEAN

TRUE to check that objects are of the
specified type before interacting with
them; FALSE to not check.

When TRUE, Silk Test Classic
checks, for example, that an object
that claims to be a listbox is actually a
listbox. For custom objects, you must
map them to the standard types to
prevent the checking from signaling
an exception, using the Silk Test
Classic class map facility.

Default is FALSE.

OPT_VERIFY_ENABLED Classic Agent BOOLEAN

TRUE to verify that windows are
enabled before interacting with them;
FALSE to not check. For information
about how this option affects various
Silk Test Classic methods, see Active
and Enabled Statuses.

OPT_VERIFY_EXPOSED Classic Agent BOOLEAN

36 | Open Agent

Agent Option Agent Supported Description

TRUE to verify that windows are
exposed (that is, not covered,
obscured, or logically hidden by
another window) before interacting
with them; FALSE to not check.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_RESPONDING Classic Agent BOOLEAN

Setting this option to FALSE
suppresses "control not responding"
errors.

OPT_VERIFY_UNIQUE Classic Agent

Open Agent

BOOLEAN

TRUE to raise the
E_WINDOW_NOT_UNIQUE
exception upon encountering two or
more windows with the same tag;
FALSE to not raise the exception.
When OPT_VERIFY_UNIQUE is
FALSE, Silk Test Classic ignores the
duplication and chooses the first
window with that tag that it
encounters.

You can use a modified tag syntax to
refer to a window with a non-unique
tag, even when
OPT_VERIFY_UNIQUE is TRUE. You
can either include an index number
after the object, as in
myDialog("Cancel[2]"), or you can
specify the window by including the
text of a child that uniquely identifies
the window, such as "myDialog/
uniqueText/...", where the unique text
is the tag of a child of that window.

OPT_WAIT_ACTIVE_WINDOW Open Agent NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active. If a window does not become
active within the specified time, Silk
Test Classic raises an exception.

To require the Open Agent to check
the active state of a window, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW is set
to 2 seconds.

Open Agent | 37

Agent Option Agent Supported Description

OPT_WAIT_ACTIVE_WINDOW_RETRY Open Agent NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active before trying to verify again that
the window is active.

To require the Open Agent to retry the
active state of an object, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW_RET
RY is set to 0.5 seconds.

OPT_WINDOW_MOVE_TOLERANCE Classic Agent INTEGER

The number of pixels allowed for a
tolerance when a moved window does
not end up at the specified position.

For some windows and GUIs, you
cannot always move the window to
the specified pixel. If the ending
position is not exactly what was
specified and the difference between
the expected and actual positions is
greater than the tolerance, Silk Test
Classic raises an exception.

On Windows, the tolerance can be set
through the Control Panel, by setting
the desktop window granularity
option. If the granularity is zero, you
can place a window at any pixel
location. If the granularity is greater
than zero, the desktop is split into a
grid of the specified pixels in width,
determining where a window can be
placed. In general, the tolerance
should be greater than or equal to the
granularity.

OPT_WINDOW_RETRY Classic Agent

Open Agent

NUMBER

The number of seconds Silk Test
Classic waits between attempts to
verify a window, if the window does
not exist or is in the incorrect state.
Silk Test Classic continues trying to
find the window until the time
specified with
OPT_WINDOW_TIMEOUT is
reached.

The correct state of the window
depends on various options. For

38 | Open Agent

Agent Option Agent Supported Description

example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

• OPT_VERIFY_ENABLED

• OPT_VERIFY_ACTIVE

• OPT_VERIFY_EXPOSED

• OPT_VERIFY_UNIQUE

OPT_WINDOW_SIZE_TOLERANCE Classic Agent INTEGER

The number of pixels allowed for a
tolerance when a resized window
does not end at the specified size.

For some windows and GUIs, you
cant always resize the window to the
particular size specified. If the ending
size is not exactly what was specified
and the difference between the
expected and actual sizes is greater
than the tolerance, Silk Test Classic
raises an exception.

On Windows, windows cannot be
sized smaller than will fit comfortably
with the menu bar.

OPT_WINDOW_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds Silk Test
Classic waits for a window to appear
and be in the correct state. If a
window does not appear within the
specified timeout, Silk Test Classic
raise an exception.

The correct state of the window
depends on various options. For
example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

• OPT_VERIFY_ENABLED

• OPT_VERIFY_ACTIVE

• OPT_VERIFY_EXPOSED

• OPT_VERIFY_UNIQUE

OPT_WPF_CUSTOM_CLASSES Open Agent LIST OF STRING

Specify the names of any WPF
classes that you want to expose
during recording and playback. For

Open Agent | 39

Agent Option Agent Supported Description

example, if a custom class called
MyGrid derives from the WPF Grid
class, the objects of the MyGrid
custom class are not available for
recording and playback. Grid objects
are not available for recording and
playback because the Grid class is
not relevant for functional testing
since it exists only for layout
purposes. As a result, Grid objects
are not exposed by default. In order to
use custom classes that are based on
classes that are not relevant to
functional testing, add the custom
class, in this case MyGrid, to the
OPT_WPF_CUSTOM_CLASSES
option. Then you can record,
playback, find, verify properties, and
perform any other supported actions
for the specified classes.

OPT_WPF_PREFILL_ITEMS Open Agent BOOLEAN

Defines whether items in a
WPFItemsControl, like
WPFComboBox or WPFListBox,
are pre-filled during recording and
playback. WPF itself lazily loads items
for certain controls, so these items
are not available for Silk Test Classic
if they are not scrolled into view. Turn
pre-filling on, which is the default
setting, to additionally access items
that are not accessible without
scrolling them into view. However,
some applications have problems
when the items are pre-filled by Silk
Test Classic in the background, and
these applications can therefore
crash. In this case turn pre-filling off.

OPT_XBROWSER_SYNC_MODE Open Agent STRING

Configures the supported
synchronization mode for HTML or
AJAX. Using the HTML mode ensures
that all HTML documents are in an
interactive state. With this mode, you
can test simple Web pages. If more
complex scenarios with Java script
are used, it might be necessary to
manually script synchronization
functions, such as
WaitForObject,
WaitForProperty,

40 | Open Agent

Agent Option Agent Supported Description

WaitForDisappearance, or
WaitForChildDisappearance
. Using the AJAX mode eliminates the
need to manually script
synchronization functions. By default,
this value is set to AJAX.

OPT_XBROWSER_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: Deprecated. Use the
option OPT_SYNC_TIMEOUT
instead.

OPT_XBROWSER_SYNC_EXCLUDE_URLS Open Agent STRING

Specifies the URL for the service or
Web page that you want to exclude
during page synchronization. Some
AJAX frameworks or browser
applications use special HTTP
requests, which are permanently
open in order to retrieve
asynchronous data from the server.
These requests may let the
synchronization hang until the
specified synchronization timeout
expires. To prevent this situation,
either use the HTML synchronization
mode or specify the URL of the
problematic request in the
Synchronization exclude list setting.

Type the entire URL or a fragment of
the URL, such as http://
test.com/timeService or
timeService.

Setting the Default Agent
Silk Test Classic automatically assigns a default agent to your project or scripts. When you create a new
project, the agent currently selected in the toolbar is the default agent. Silk Test Classic automatically starts
the default agent when you open a project or create a new project. You can configure Silk Test Classic to
automatically connect to the Open Agent or the Classic Agent by default.

To set the default agent, perform one of the following:

• Click Options > Runtime and set the default agent in the Runtime Options dialog box.
• Click the appropriate agent icon in the toolbar.

When you enable extensions, set the recovery system, configure the application, or record a test case, Silk
Test Classic uses the default agent. When you run a test, Silk Test Classic automatically connects to the
appropriate agent. Silk Test Classic uses the window declaration, locator, or Find or FindAll command
to determine which agent to use.

Open Agent | 41

Setting the Default Agent Using the Runtime Options
Dialog Box
To set the default agent using the Runtime Options dialog box:

1. In the main menu, click Options > Runtime. The Runtime Options dialog box opens.

2. Select the agent that you want to use as the default from the Default Agent list box.

3. If you use the Classic Agent, select the type of network you want to use in the Network list box. If you
select the Open Agent, TCP/IP is automatically selected.

4. If you use named agents, select the local agent name from the Agent Name list box. For instance, if
your environment uses multiple agents or a port that uses a value other than the default, select the local
agent.

5. Click OK.

When you record a test case, Silk Test Classic automatically uses the default agent.

Setting the Default Agent Using the Toolbar Icons
From the main toolbar, click the following icons to set the default agent:

• to use the Classic Agent.
• to use the Open Agent.

Connecting to the Default Agent
Typically, the default agent starts automatically when it is needed by Silk Test Classic. However, you can
connect to the default agent manually if it does not start or to verify that it has started.

To connect to the default Agent, from the main menu, click Tools > Connect to Default Agent.

The command starts the Classic Agent or the Open Agent on the local machine, depending on which agent
is specified as the default in the Runtime Options dialog box. If the Agent does not start within 30
seconds, a message is displayed. If the default Agent is configured to run on a remote machine, you must
connect to it manually.

Creating a Script that Uses Both Agents
You can create a script that uses the Classic Agent and the Open Agent. Recording primarily depends on
the default agent while replaying the script primarily depends on the window declaration of the underlying
control. If you create a script that does not use window declarations, the default agent is used to replay the
script.

1. Set the default agent to the Classic Agent.

2. In the Basic Workflow bar, enable extensions for the application automatically.

3. In the Basic Workflow bar, click Record Testcase and record your test case.

4. When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s).

5. Click OK. The frame now contains window declarations from the Classic Agent.

6. Click File > Save to save the test case.

7. Type a name for the file into the File name field and click Save.

42 | Open Agent

8. Set the default agent to the Open Agent.

9. Click Options > Application Configurations. The Edit Application Configurations dialog box opens.

10.Click Add.

The Select Application dialog box opens.

11.Configure a standard or Web site test configuration.

12.Click OK.

13.Click Record Testcase in the Basic Workflow bar and record your test case.

14.When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s). The frame now contains window declarations from both the Classic Agent and the Open
Agent. Silk Test Classic automatically detects which agent is required for each test based on the
window declaration and changes the agent accordingly.

15.Click File > Save to save the test case.

16.Click Run Testcase in the Basic Workflow bar to replay the test case. Silk Test Classic automatically
recognizes which agent to use based on the underlying window declarations.

You can also use the function Connect([sMachine, sAgentType]) in a script to connect a machine
explicitly with either the Classic Agent or the Open Agent. Using the connect function changes the default
agent temporarily for the current test case, but it does not change the default agent of your project.
However, this does not override the agent that is used for replay, which is defined by the window
declaration.

Overview of Record Functionality Available for the Silk
Test Agents

The Open Agent provides the majority of the same record capabilities as the Classic Agent and the same
replay capabilities.

The following table lists the record functionality available for each Silk Test agent.

Record
Command

Classic Agent Open Agent

Window
Declarations

Supported Supported

Application
State

Supported Supported

Testcase Supported Supported

Actions Supported Supported

Window
Identifiers

Supported Not Supported

Window
Locations

Supported Not Supported

Window
Locators

Not Supported Supported

Class/Scripted Supported Not Supported

Class/
Accessibility

Supported Not Supported

Method Supported Not Supported

Defined
Window

Supported Not Supported

Open Agent | 43

Note: Silk Test Classic determines which agent to use by detecting whether a locator or Find or
FindAll command is used. If a locator or Find or FindAll command is present, Silk Test Classic
uses the Open Agent. As a result, you do not need to record window declarations for the Open Agent.
For calls that use window declarations, the agent choice is made based on the presence or absence
of the locator keyword and on the presence or absence of TAG_IS_OPEN_AGENT in a tag or multitag.
When a window declaration contains both locators and tags and either could be used for resolving the
window, check or uncheck the Prefer Locator check box in the General Options dialog box to
determine which method is used.

Setting Record and Replay Options for the Open Agent
You can set agent options using the Recording Options dialog box or you can use SetOption within a
script. If you use SetOption, it overrides the values specified in the Recording Options dialog box. If you
do not set an option with SetOption, the value specified in the Recording Options dialog box is the
default. Choose Options > Recorder to open the Recording Options dialog box. Using the Recording
Options dialog box you can:

• Set recording preferences.
• Set recording options for xBrowser.
• Set custom attributes to use in locators.
• Set classes to ignore.
• Set WPF classes to expose during recording and playback.
• Set xBrowser synchronization options.
• Set replay options.

Setting the Window Timeout Value to Prevent Window Not
Found Exceptions

The window timeout value is the number of seconds Silk Test Classic waits for a window to display. If the
window does not display within that period, the Window not found exception is raised. For example, loading
an Apache Flex application and initializing the Apache Flex automation framework may take some time,
depending on the machine on which you are testing and the complexity of your Apache Flex application. In
this case, setting the Window timeout value to a higher value enables your application to fully load.

If you suspect that Silk Test Classic is not waiting long enough for a window to display, you can increase
the window timeout value in the following ways:

• Change the window timeout value on the Timing tab of the Agent Options dialog box.
• Manually add a line to the script.

If the window is on the screen within the amount of time specified in the window timeout, the tag for the
object might be the problem.

Manually Setting the Window Timeout Value
In some cases, you may want to increase the window timeout value for a specific test, rather than for all
tests in general. For example, you may want to increase the timeout for Flex application tests, but not for
browser tests.

1. Open the test script.

2. Add the following to the script: Agent.SetOption (OPT_WINDOW_TIMEOUT, numberOfSeconds).

44 | Open Agent

Setting the Window Timeout Value in the Agent
Options Dialog Box
To change the window timeout value in the Agent Options dialog box:

1. Click Options > Agent.

2. Click the Timing tab.

3. Type the value into the Window timeout text box.

The value should be based on the speed of the machine, on which you are testing, and the complexity
of the application that you are testing. By default, this value is set to 5 seconds. For example, loading
and initializing complex Flex applications generally requires more than 5 seconds.

4. Click OK.

Configuring Open Agent Port Numbers
Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the agent. Then,
the information service forwards communication to the port that the agent uses. However, if you have a port
number conflict or an issue with a firewall, you must configure the port number for that machine or for the
information service.

The default port of the information service is 22901. When you can use the default port, you can type
hostname without the port number for ease of use. If you do specify a port number, ensure that it matches
the value for the default port of the information service or one of the additional information service ports.
Otherwise, communication will fail.

After changing the port number, restart the Open Agent, Silk Test Classic, Silk Test Recorder, and the
application that you want to test.

Configuring the Port that Clients Use to Connect to the
Information Service

Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Agent. Then,
the information service forwards communication to the port that the Agent uses.

The default port of the information service is 22901. When you can use the default port, you can type
hostname without the port number for ease of use. If you do specify a port number, ensure that it matches
the value for the default port of the information service or one of the additional information service ports.
Otherwise, communication will fail.

If necessary, you can change the port number that all clients use to connect to the information service.

1. Navigate to the infoservice.properties.sample file and open it.

This file is located in C:\Documents and Settings\All Users\Application Data\Silk
\SilkTest\conf, where “C:\Documents and Settings\All Users” is equivalent to the content
of the ALLUSERSPROFILE environment variable, which is set by default on Windows systems.

This file contains commented text and sample alternate port settings.

2. Change the value for the appropriate port.

Open Agent | 45

Typically, you configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

Port numbers can be any number from 1 to 65535.

• infoservice.default.port – The default port where the information service runs. By default,
this port is set to 22901.

• infoservice.additional.ports – A comma separated list of ports on which the information
service runs if the default port is not available. By default, ports 2966, 11998, and 11999 are set as
alternate ports.

3. Save the file as infoservice.properties.

4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Open Agent Port Numbers
When the Open Agent starts, a random available port is assigned to Silk Test Classic, Silk Test Recorder,
and the application that you are testing. The port numbers are registered on the information service. Silk
Test Classic and Silk Test Recorder contact the information service to determine the port to use to connect
to the Open Agent. The information service communicates the appropriate port, and Silk Test Classic or
the Silk Test Recorder connect to that port. Communication runs directly between Silk Test Classic or the
Silk Test Recorder and the agent.

By default, the Open Agent communicates with the information service on port 22901. You can configure
additional ports for the information service as alternate ports that work when the default port is not
available. By default, the information service uses ports 2966, 11998, and 11999 as alternate ports.

Typically, you do not have to configure port numbers manually. However, if you have a port number conflict
or an issue with a firewall, you must configure the port number for that machine or for the information
service. You can use a different port number for a single machine or you can use the same available port
number for all your machines.

Stopping the Open Agent After Test Execution
You can stop the Open Agent from a script, to ensure that the agent does not continue running after the
end of the test execution.

1. Open or create a script that is executed when the test execution is finished.

For example, open an existing script that is used for cleanup after test execution.

2. Add the ShutDown method to the script.

Note: The Open Agent will restart as soon as the agent is required by another script.

46 | Open Agent

Basic Workflow for the Open Agent
The Basic Workflow bar guides you through the process of creating a test case. To create and execute a
test case, click each icon in the workflow bar to perform the relevant procedures. The procedures and the
appearance of the workflow bar differ depending on whether your test uses the Open Agent or the Classic
Agent.

The Basic Workflow bar is displayed by default. You can display it or hide it by checking and un-checking
the Workflows > Basic check box. If your test uses both the Open Agent and the Classic Agent, the Basic
Workflow bar changes when you switch between the agents.

When you use the Open Agent, the Basic Workflow uses dynamic object recognition to record and replay
test cases that use XPath queries to find and identify objects.

Creating a New Project
You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar.

2. On the Create Project dialog box, type the Project Name and Description.

3. Click OK to save your project in the default location, C:\Users\<Current user>\Documents\Silk
Test Classic Projects.

To save your project in a different location, click Browse and specify the folder in which you want to
save your project.
Silk Test Classic creates a <Project name> folder within this directory, saves the projectname.vtp
and projectname.ini to this location and copies the extension .ini files, which are appexpex.ini,
axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you do not want to save
your project in the default location, click Browse and specify the folder in which you want to save your
project. Silk Test Classic then creates your project and displays nodes on the Files and Global tabs for
the files and resources associated with this project.

4. Perform one of the following steps:

• If your test uses the Open Agent, configure the application to set up the test environment.
• If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Configuring Applications
When you configure an application, Silk Test Classic automatically creates a base state for the application.
An application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended execution.

Silk Test Classic has slightly different procedures depending on which type of application you are
configuring:

Basic Workflow for the Open Agent | 47

• A standard application, which is an application that does not use a Web browser, for example a
Windows application or a Java SWT application.

• A Web application, which is an application that uses a Web browser, for example a Web page, a Web
application on a mobile device, or an Apache Flex application.

Configuring Web Applications
Configure the Web application that you want to test to set up the environment that Silk Test Classic will
create each time you record or replay a test case. If you are testing a Web application or an application that
uses a child technology domain of the xBrowser technology domain, for example an Apache Flex
application, use this configuration.

1. Click Configure Application on the basic workflow bar.

If you do not see Configure Application on the workflow bar, ensure that the default agent is set to the
Open Agent.

The Select Application dialog box opens.

2. Select the Web tab.

3. Select the browser that you want to use from the list of available browsers.

If you want to record a test against a Web application, select Internet Explorer or a mobile browser.
You can use one of the other supported browsers to replay tests but not to record them.

4. Optional: Specify the Web page to open in the Browse to URL text box.

5. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

6. Click OK.

• If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame.inc by default.

• If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application. By default,
Silk Test Classic lists the caption of the main window of the application as the locator for the base state.
Then Silk Test Classic opens the Web page.

9. Record the test case whenever you are ready.

Configuring Standard Applications
A standard application is an application that does not use a Web browser, such as a Windows application
or Java SWT application.

Configure the application that you want to test to set up the environment that Silk Test Classic will create
each time you record or replay a test case.

48 | Basic Workflow for the Open Agent

1. Start the application that you want to test.

2. Click Configure Application on the basic workflow bar.

If you do not see Configure Application on the workflow bar, ensure that the default agent is set to the
Open Agent.

The Select Application dialog box opens.

3. Select the Windows tab.

4. Select the application that you want to test from the list.

Note: If the application that you want to test does not appear in the list, uncheck the Hide
processes without caption check box. This option, checked by default, is used to filter only those
applications that have captions.

5. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

6. Click OK.

• If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame.inc by default.

• If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application and opens
the include file.

9. Record the test case whenever you are ready.

Note: For SAP applications, you must set Ctrl+Alt as the shortcut key combination to use. To change
the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

Recording Test Cases for Standard and Web Applications
This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Record Testcase dialog box opens.

2. Type the name of your test case in the Testcase name text box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

Basic Workflow for the Open Agent | 49

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you chose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

4. If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.

Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

5. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Testcase dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Select Application dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Recording window.
• Waits for you to take further action.

6. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

7. To stop recording, click Stop in the Recording window. Silk Test Classic displays the Record Testcase
dialog box, which contains the code that has been recorded for you.

8. To resume recording your interactions, click Resume Recording.

9. To add the recorded interactions to a script, click Paste to Editor in the Record Testcase window. If
you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens.

10.Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Recording Test Cases for Mobile Web Applications
This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Record Testcase dialog box opens.

2. Type the name of your test case in the Testcase name text box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you chose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

50 | Basic Workflow for the Open Agent

4. If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.

Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

5. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Testcase dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Configure Test dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Mobile Recording window.
• Waits for you to take further action.

6. Interact with your application, driving it to the state that you want to test.

7. In the Mobile Recording window, perform the actions that you want to record.

a) Click on the object with which you want to interact. The Choose Action dialog box opens.
b) From the list, select the action that you want to perform against the object.
c) Optional: If the action has parameters, type the parameters into the parameter fields. Silk Test

Classic automatically validates the parameters.
d) Click OK. Silk Test Classic adds the action to the recorded actions and replays it on the mobile

device or emulator.

For information about how to record an interaction with a mobile device, see Interacting with a Mobile
Device.

8. To verify an image or a property of a control during recording, click Ctrl+Alt.

For additional information, see Adding a Verification to a Script while Recording.

9. Optional: To interact with an object that is currently not visible in the Mobile Recording window, use the
Hierarchy View:

a) Click Toggle Hierarchy View. The Hierarchy View opens.
b) In the object tree, right-click on the object on which you want to perform an action.
c) Click Add New Action. The Choose Action dialog box opens.
d) Proceed as with any other action.

For example, to open the main menu of the device or emulator, right-click on the MobileDevice object in
the object tree and select the action PressMenu().

10.To pause the recording of interactions with the application, for example to move the application into a
different state, click Pause Recording.

11.To resume recording interactions, click Start Recording.

12.To add the recorded interactions to a script, click Stop Recording. If you have interacted with objects in
your application that have not been identified in your include files, the Update Files dialog box opens.

13.Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Running a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files

Basic Workflow for the Open Agent | 51

whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.

Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag
Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can click both Shift keys at the same time to stop the execution of the test.

Viewing Test Results
Whenever you run tests, a results file is generated which indicates how many tests passed and how many
failed, describes why tests failed, and provides summary information.

1. Click Explore Results on the Basic Workflow or the Data Driven Workflow bars.

2. On the Results Files dialog box, navigate to the file name that you want to review and click Open.

By default, the results file has the same name as the executed script, suite, or test plan. To review a file in
the TrueLog Explorer, open a .xlg file. To review a results file, open a .res file.

52 | Basic Workflow for the Open Agent

Migrating from the Classic Agent to the
Open Agent

This section includes several useful topics that explain the differences between the Classic Agent and the
Open Agent. If you plan to migrate from testing using the Classic Agent to the Open Agent, review this
information to learn how to migrate your existing assets including window declarations and scripts.

Differences for Agent Options Between the Classic Agent
and the Open Agent

Before you migrate existing Classic Agent scripts to the Open Agent, review the Agent Options listed below
to determine if any additional action is required to facilitate the migration.

Agent Option Action for Open Agent

OPT_AGENT_CLICKS_ONLY Option not needed.

Note: Use OPT_REPLAY_MODE for switching
between high-level (API) clicks and low-level clicks.

OPT_CLOSE_MENU_NAME Not supported by Open Agent.

OPT_COMPATIBLE_TAGS Option not needed.

OPT_COMPRESS_WHITESPACE Not supported by Open Agent.

OPT_DROPDOWN_PICK_BEFORE_GET Option not needed. The Open Agent performs this action by
default during replay.

OPT_EXTENSIONS Option not needed.

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES Not supported by Open Agent.

OPT_KEYBOARD_LAYOUT Not supported by Open Agent.

OPT_MENU_INVOKE_POPUP No action. Pop-up menu handling using the Open Agent
does not need such an option.

OPT_MENU_PICK_BEFORE_GET Option not needed.

OPT_NO_ICONIC_MESSAGE_BOXES Option not needed.

OPT_PLAY_MODE Option not needed.

OPT_RADIO_LIST Open Agent always sees RadioList items as individual
objects.

OPT_REL1_CLASS_LIBRARY Obsolete option.

OPT_REQUIRE_ACTIVE Use the option OPT_ENSURE_ACTIVE instead.

OPT_SCROLL_INTO_VIEW Option not needed. Open Agent only requires scrolling into
view for low-level replay. By default, high-level replay is used,
so no scrolling needs to be performed. However,
CaptureBitmap never scrolls an object into view.

OPT_SET_TARGET_MACHINE Option not needed.

Migrating from the Classic Agent to the Open Agent | 53

Agent Option Action for Open Agent

OPT_SHOW_OUT_OF_VIEW Option not needed. Out-of-view objects are always
recognized.

OPT_TEXT_NEW_LINE Option not needed. The Open Agent always uses Enter to
type a new line.

OPT_TRANSLATE_TABLE Not supported by Open Agent.

OPT_TRAP_FAULTS Fault trap is no longer active.

OPT_TRAP_FAULTS_FLAGS Fault trap is no longer active.

OPT_TRIM_ITEM_SPACE Option not needed. If required, use a * wildcard instead.

OPT_USE_ANSICALL Not supported by Open Agent.

OPT_USE_SILKBEAN SilkBean is not supported on the Open Agent.

OPT_VERIFY_APPREADY Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_CLOSED Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_COORD Option not needed. The Open Agent does not typically check
for native input in order to allow clicking outside of an object.

OPT_VERIFY_CTRLTYPE Option not needed.

OPT_VERIFY_EXPOSED Option not needed. The Open Agent performs this action
when it sets a window to active.
OPT_ENSURE_ACTIVE_OBJECT_DEF should yield the
same result.

OPT_VERIFY_RESPONDING Option not needed.

OPT_WINDOW_MOVE_TOLERANCE Option not needed.

Differences in Object Recognition Between the Classic
Agent and the Open Agent

When recording and executing test cases, the Classic Agent uses the keywords tag or multitag in a window
declaration to uniquely identify an object in the test application. The tag is the actual name, as opposed to
the identifier, which is the logical name.

When using the Open Agent, you typically use dynamic object recognition with a Find or FindAll
function and an XPath query to locate objects in your test application. To make calls that use window
declarations using the Open Agent, you must use the keyword locator in your window declarations. Similar
to the tag or multitag keyword, the locator is the actual name, as opposed to the identifier, which is the
logical name. This similarity facilitates a smooth transition of legacy window declarations, which use the
Classic Agent, to dynamic object recognition, which leverages the Open Agent.

The following sections explain how to migrate the different tag types to valid locator strings.

Caption

Classic Agent tag “<caption string>”

Open Agent locator “//<class name>[@caption=’<caption string>’]”

Note: For convenience, you can use shortened forms for the XPath locator strings. Silk Test Classic
automatically expands the syntax to use full XPath strings when you run a script.

54 | Migrating from the Classic Agent to the Open Agent

You can omit:

• The hierarchy separator, “.//”. Silk Test Classic defaults to “//”.
• The class name. Silk Test Classic defaults to the class name of the window that contains the locator.
• The surrounding square brackets of the attributes, “[]”.
• The “@caption=” if the XPath string refers to the caption.

Note: Classic Agent removes ellipses (…) and ampersands (&) from captions. Open Agent removes
ampersands, but not ellipses.

Example

Classic Agent:

CheckBox CaseSensitive
 tag “Case sensitive”

Open Agent:

CheckBox CaseSensitive
 locator “//CheckBox[@caption='Case sensitive']”

Or, if using the shortened form:

CheckBox CaseSensitive
 locator “Case sensitive”

Prior text

Classic Agent tag “^Find What:”

Open Agent locator “//<class name>[@priorlabel=’Find What:’]”

Note: Only available for Windows API-based and Java Swing applications. For other technology
domains, use the Locator Spy to find an alternative locator.

Index

Classic
Agent

tag “#1”

Open Agent Record window locators for the test application. The Classic Agent creates index values
based on the position of controls, while the Open Agent uses the controls in the order
provided by the operating system. As a result, you must record window locators to identify
the current index value for controls in the test application.

Window ID

Classic Agent tag “$1041”

Open Agent locator “//<class name>[@windowid=’1041’]”

Location

Classic Agent tag “@(57,75)”

Open Agent not supported

Note: If you have location tags in your window declarations, use the Locator Spy to find an
alternative locator.

Migrating from the Classic Agent to the Open Agent | 55

Multitag

Classic Agent multitag “Case sensitive” “$1011”

Open Agent locator “//CheckBox[@caption=’Case sensitive’ or @windowid=’1011’]” ‘parent’ statement

No changes needed. Multitag works the same way for the Open Agent.

Differences in the Classes Supported by the Open Agent
and the Classic Agent

The Classic Agent and the Open Agent differ slightly in the types of classes that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

Windows-based applications

Both Agents support testing Windows API-based client/server applications. The Open Agent classes,
functions, and properties differ slightly from those supported on the Classic Agent for Windows API-based
client/server applications.

Classic Agent Open Agent

AnyWin AnyWin

AgentClass (Agent) AgentClass (Agent)

CheckBox CheckBox

ChildWin <no corresponding class>

ClipboardClass (Clipboard) ClipboardClass (Clipboard)

ComboBox ComboBox

Control Control

CursorClass (Cursor) CursorClass (Cursor)

CustomWin CustomWin

DefinedWin <no corresponding class>

DesktopWin (Desktop) DesktopWin (Desktop)

DialogBox DialogBox

DynamicText <no corresponding class>

Header HeaderEx

ListBox ListBox

ListView ListViewEx

MainWin MainWin

Menu Menu

MenuItem MenuItem

MessageBoxClass <no corresponding class>

56 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent

MoveableWin MoveableWin

PageList PageList

PopupList ComboBox

PopupMenu <no corresponding class>

PopupStart <no corresponding class>

PopupSelect <no corresponding class>

PushButton PushButton

RadioButton Note: Items in Radiolists are recognized as RadioButtons on the CA. OA only
identifies all of those buttons as RadioList.

RadioList RadioList

Scale Scale

ScrollBar ScrollBar, VerticalScrollBar, HorizontalScrollBar

StaticText StaticText

StatusBar StatusBar

SysMenu <no corresponding class>

Table TableEx

TaskbarWin (Taskbar) <no corresponding class>

TextField TextField

ToolBar ToolBar

Additionally: PushToolItem, CheckBoxToolItem

TreeView, TreeViewEx TreeView

UpDown UpDownEx

The following core classes are supported on the Open Agent only:

• CheckBoxToolItem
• DropDownToolItem
• Group
• Item
• Link
• MonthCalendar
• Pager
• PushToolItem
• RadioListToolItem
• ToggleButton
• ToolItem

Web-based Applications

Both Agents support testing Web-based applications. The Open Agent classes, functions, and properties
differ slightly from those supported on the Classic Agent for Windows API-based client/server applications.

Migrating from the Classic Agent to the Open Agent | 57

Classic Agent Open Agent

Browser BrowserApplication

BrowserChild BrowserWindow

HtmlCheckBox DomCheckBox

HtmlColumn <no corresponding class>

HtmlComboBox <no corresponding class>

HtmlForm DomForm

HtmlHeading <no corresponding class>

HtmlHidden <no corresponding class>

HtmlImage <no corresponding class>

HtmlLink DomLink

HtmlList <no corresponding class>

HtmlListBox DomListBox

HtmlMarquee <no corresponding class>

HtmlMeta <no corresponding class>

HtmlPopupList DomListBox

HtmlPushButton DomButton

HtmlRadioButton DomRadioButton

HtmlRadioList <no corresponding class>

HtmlTable DomTable

HtmlText <no corresponding class>

HtmlTextField DomTextField

XmlNode <no corresponding class>

Xul* Controls <no corresponding class>

Note: The DomElement class of the Open Agent enables you to access any element on an HTML
page. If the Open Agent has no class associated with a specific class supported on the Classic Agent,
you can use the DomElement class to access the controls in the class.

Java AWT/Swing Applications

Both Agents support testing Java AWT/Swing applications. The Open Agent classes, functions, and
properties differ slightly from those supported on the Classic Agent for Windows API-based client/server
applications.

Classic Agent Open Agent

JavaApplet AppletContainer

JavaDialogBox AWTDialog, JDialog

JavaMainWin AWTFrame, JFrame

JavaAwtCheckBox AWTCheckBox

58 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent

JavaAwtListBox AWTList

JavaAwtPopupList AWTChoice

JavaAwtPopupMenu <no corresponding class>

JavaAwtPushButton AWTPushButton

JavaAwtRadioButton AWTRadioButton

JavaAwtRadioList <no corresponding class>

JavaAwtScrollBar AWTScrollBar

JavaAwtStaticText AWTLabel

JavaAwtTextField AWTTextField, AWTTextArea

JavaJFCCheckBox JCheckBox

JavaJFCCheckBoxMenuItem JCheckBoxMenuItem

JavaJFCChildWin <no corresponding class>

JavaJFCComboBox JComboBox

JavaJFCImage <no corresponding class>

JavaJFCListBox JList

JavaJFCMenu JMenu

JavaJFCMenuItem JMenuItem

JavaJFCPageList JTabbedPane

JavaJFCPopupList JList

JavaJFCPopupMenu JPopupMenu

JavaJFCProgressBar JProgressBar

JavaJFCPushButton JButton

JavaJFCRadioButton JRadioButton

JavaJFCRadioButtonMenuItem JRadioButtonMenuItem

JavaJFCRadioList <no corresponding class>

JavaJFCScale JSlider

JavaJFCScrollBar JScrollBar, JHorizontalScrollBar, JVerticalScrollBar

JavaJFCSeparator JComponent

JavaJFCStaticText JLabel

JavaJFCTable JTable

JavaJFCTextField JTextField, JTextArea

JavaJFCToggleButton JToggleButton

JavaJFCToolBar JToolBar

JavaJFCTreeView JTree

Migrating from the Classic Agent to the Open Agent | 59

Classic Agent Open Agent

JavaJFCUpDown JSpinner

Java SWT/RCP Applications

Only the Open Agent supports testing Java SWT/RCP-based applications. For a list of the classes, see
Supported SWT Widgets for the Open Agent.

Differences in the Parameters Supported by the Open
Agent and the Classic Agent

The Classic Agent and the Open Agent differ slightly in the function parameters that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

For some parameters, the Open Agent uses a hard-coded default value internally. If one of these
parameters is set in a 4Test script, the Open Agent ignores the value and uses the value listed here.

Function Parameter Classic Agent Value Open Agent Value

AnyWin::PressKeys/
ReleaseKeys

nDelay Any number. 0

AnyWin::PressKeys/
ReleaseKeys

sKeys More than one key is
supported.

Only one key is supported.
The first key is used and
the remaining keys are
ignored. For example
MainWin.PressKeys(
"<Shift><Left>") will
only press the Shift key. To
press both keys, specify
MainWin.PressKeys(
"<Shift>")
MainWin.PressKeys(
"<Left >").

AnyWin::TypeKeys sEvents Keystrokes to type or
mouse buttons to press.

The Open Agent supports
keystrokes only.

AnyWin::GetChildren bInvisible TRUE or FALSE. FALSE.

AnyWin::GetChildren bNoTopLevel TRUE or FALSE. FALSE.

TextField::GetFontName iLine The Classic Agent
recognizes this parameter.

The Open Agent ignores
this parameter.

AnyWin::GetCaption bNoStaticText TRUE or FALSE. FALSE.

AnyWin::GetCaption,

Control::GetPriorStatic

bRawMode TRUE or FALSE. FALSE. However, the
returned strings include
trailing and leading spaces,
but ellipses, accelerators,
and hot keys are removed.

PageList::GetContents/

GetPageName

bRawMode TRUE or FALSE. FALSE. However, the
returned strings include
trailing and leading spaces,
ellipses, and hot keys but
accelerators are removed.

60 | Migrating from the Classic Agent to the Open Agent

Function Parameter Classic Agent Value Open Agent Value

AnyWin::Click/

DoubleClick/

MoveMouse/ MultiClick/

PressMouse/

ReleaseMouse,

PushButton::Click

bRawEvent The Classic Agent
recognizes this parameter.

The Open Agent ignores
this value.

Overview of the Methods Supported by the Silk Test
Classic Agents

The winclass.inc file includes information about which methods are supported for each Silk Test
Classic Agent. The following 4Test keywords indicate Agent support:

supported_ca Supported on the Classic Agent only.

supported_oa Supported on the Open Agent only.

Standard 4Test methods, such as AnyWin::GetCaption(), can be marked with one of the preceding
keywords. A method that is marked with the supported_ca or supported_oa keyword can only be executed
successfully on the corresponding Agent. Methods that do not have a keyword applied will run on both
Agents.

To find out which methods are supported on each Agent, open the .inc file, for instance winclass.inc,
and verify whether the supported_ca or supported_oa keyword is applied to it.

Classic Agent

Certain functions and methods run on the Classic Agent only. When these are recorded and replayed, they
default to the Classic Agent automatically. You can use these in an environment that uses the Open Agent.
Silk Test Classic automatically uses the appropriate Agent. The functions and methods include:

• C data types for use in calling functions in DLLs.
• ClipboardClass methods.
• CursorClass methods.
• Certain SYS functions.

SYS Functions Supported by the Open Agent and the
Classic Agent

The Classic Agent supports all SYS functions. The Open Agent supports all SYS functions with the
exception of SYS_GetMemoryInfo. SYS_GetMemoryInfo defaults to the Classic Agent when a script is
executed.

You can use the following SYS functions with the Open Agent or the Classic Agent.

SYS Function Description

SYS_GetRegistryValue With the Classic Agent, SYS_GetRegistryValue returns an incorrect value
when a binary value is used. Use the Open Agent with
SYS_GetRegistryValue to avoid this issue.

Migrating from the Classic Agent to the Open Agent | 61

SYS Function Description

SYS_FileSetPointer When setting the pointer after the end of the file, the Open Agent does not
throw an exception, while the Classic Agent does throw an exception.

SYS_IniFileGetValue The Open Agent does not allow the ‘]’ character to be part of a section name,
while the Classic Agent does allow it. Also, with the Open Agent, ‘=’ must not be
part of a key name. The Classic Agent allows ‘=’ to be part of a key name, but
produces incorrect results.

Note: Error messages and exceptions may differ between the Open Agent and the Classic Agent.

62 | Migrating from the Classic Agent to the Open Agent

Silk Test Classic Projects
Silk Test Classic projects organize all the resources associated with a test set and present them visually in
the Project Explorer, making it easy for you to see your test environment, and to manage it and work
within it.

Silk Test Classic projects store relevant information about your project, including the following:

• References to all the resources associated with a test set, such as plans, scripts, data, options sets, .ini
files, results, frame files, and include files.

• Configuration information.
• Editor settings.
• Data files for attributes and queries.

All of this information is stored at the project level, meaning that once you add the appropriate files to your
project and configure it once, you may never need to do it again. Switching among projects is easy - since
you need to configure the project only once, you can simply open the project and run your tests.

When you create a new project, Silk Test Classic automatically uses the agent that is selected in the
toolbar.

Each project is a unique testing environment

By default, new projects do not contain any settings, such as enabled extensions, class mappings, or agent
options. If you want to retain the settings from your current test set, save them as a options set by opening
Silk Test Classic and clicking Options > Save New Options Set. You can include the options set when you
create your project. You can create a project manually or you can let Silk Test Classic automatically
generate a project for you, based on existing files that you specify.

Note: To optimally use the functionality that Silk Test Classic provides, create an individual project for
each application that you want to test, except when testing multiple applications in the same test.

Storing Project Information
Silk Test Classic stores project-related information in the following project files:

projectname.vtp The project file has a Verify Test Project (.vtp) extension and is organized as
an .ini file. It stores the names and locations of files used by the project.

projectname.ini The project initialization file, similar to the partner.ini file, stores
information about options sets, queries, and other resources included in your
project.

SilkTestClassic.ini A user-specific initialization file that stores user-specific information about the
location of the last projects, the size of the project history, and the location of
the current project.

These files are created in the projectname folder. When you create your project, Silk Test Classic
prompts you to store your project in the default location C:\Users\<Current user>\Documents\Silk
Test Classic Projects. Silk Test Classic creates a <Project name> folder within this directory,
saves the projectname.vtp and projectname.ini to this location and copies the extension .ini files,
which are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If
you do not want to save your project in the default location, click Browse and specify the folder in which
you want to save your project.

When you export a project, the default location is the project directory.

Silk Test Classic Projects | 63

Note: The extension .ini files, which are appexpex.ini, axext.ini, domex.ini, and
javaex.ini, located in your <Silk Test Classic installation directory>\extend
folder are copied to the extend directory of your project, regardless of what extension you have
enabled. Do not rename the extend directory; this directory must exist in order for Silk Test Classic
to open your project.

You can have Silk Test Classic automatically enable the appropriate extension using the basic workflow
bar, or you can manually enable extensions. The current project uses the extension options in the
extension .ini file copied to the extend directory of your project. Any modifications you make to the options
for this enabled extension will be saved to the copy stored within the current project in the extend
directory.

The extend directory is used only for local testing on the host machine. If you want to test on remote
agent machines, you must copy the .ini files from the extend directory of your project to the extend
directory on the target machines.

File references

Whether you are emailing, packaging, or adding files to a project, it is important to understand how Silk
Test Classic stores the path of the file. The .vtp files of Silk Test Classic use relative paths for files on the
same root drive and absolute paths for files with different root drives. The use of relative and absolute file
paths is not configurable and cannot be overridden. If you modify the .vtp file to change file references from
relative paths to absolute paths, the next time you open and close the project it will have relative paths and
your changes will be lost.

Accessing Files Within Your Project
Working with Silk Test Classic projects makes it easy to access your files - once you have added a file to
your project, you can open it by double-clicking it in the Project Explorer. The Project Explorer contains
the following two tabs:

Tab Description

Files Lists all of the files included in the project. From the Files tab, you can view, edit, add, and
remove files from the project, as well as right-click to access menu options for each of the file
types. From the Files tab, you can also add, rename, remove and work with folders within each
category.

Global Displays all the resources that are defined at a global level within the project's files. For example
test cases, functions, classes, window declarations, and others. When you double-click an object
on the Global tab, the file in which the object is defined opens and your cursor displays at the
beginning of the line in which the object is defined. You can run and debug test cases and
application states from the Global tab. You can also sort the elements that display within the
folders on the Global tab.

Existing test sets do not display in the Project Explorer by default; you must convert them into projects.

Sharing a Project Among a Group
Apply the following guidelines to share a Silk Test Classic project among a group:

• Create the project in the location from which it will be shared. For example, you can create the project
on a network drive.

• Ensure that testers create the same directory structure on their machines.

64 | Silk Test Classic Projects

Project Explorer
Use the Project Explorer to view and work with all the resources within a Silk Test Classic project. You can
access the Project Explorer by clicking:

• File > Open Project and specifying the project you want to open.
• File > New Project and creating a new project.
• Project > View Explorer, if you currently have a project open and do not have the Project Explorer

view on.
• Project > New Project or Open Project on the Basic Workflow bar.

The resources associated with the project are grouped into categories. You can easily navigate among and
access all of these resources using the Files and Global tabs. When you double-click a file on the Files
tab, or an object on the Global tab, the file opens in the right pane. You can drag the divider to adjust the
size of the Project Explorer windows and click Project > Align to change the orientation of the tabs from
left to right.

Files tab

The Files tab lists all of the files that have been added to the project. The file name displays first, followed
by the path. If files exist on a network drive, they are referenced using Universal Naming Conventions
(UNC). Files are grouped into the following categories:

Category Description

Profile Contains project-specific initialization files, such as the projectname.ini and option
sets files, which means .opt files, that are associated with the project.

Script Contains test scripts, which means .t and .g.t files, that are associated with the project.

Include/Frame Contains include files, which means .inc files, and frame/object files that are associated
with the project.

Plan Contains test plans and suite files, which means .pln and .s files, that are associated with
the project.

Results Contains results, which means .res and .rex files, that are associated with the project.

Data Contains data associated with the project, such as Microsoft Word documents, text files,
bitmaps, and others. Double-click the file to open it in the appropriate application. You
must open files that are not associated with application types in the Windows Registry
using the File/Open dialog box.

From the Files tab, you can view, edit, add, remove and work with files within the project. For example, to
add a file to the project, right-click the category name, for example Script, and then click Add File. After
you have added the file, you can right-click the file name to view options for working with the file, such as
record test case and run test case. Silk Test Classic functionality has not changed - it is now accessible
through a project.

You can work with the folders within the categories on the Files tab, by adding, renaming, moving, and
deleting folders within each category.

Global tab

The Global tab lists resources that are defined at a global level within the entire project. The resource
name displays first, followed by the file in which it is defined. Resources contained within the project's files
are grouped into the following categories:

• Records

Silk Test Classic Projects | 65

• Classes
• Enums
• Window Declarations
• Testcases
• Appstates
• Functions
• Constants

From the Global tab, you can go directly to the location in which a global object or resource is defined.
Double-click any object within the folders to go to the location in which the object is defined. Silk Test
Classic opens the file and positions your cursor at the beginning of the line in which the object is defined.

You can also run and debug test cases and application states by right-clicking a test case or application
state, and then selecting the appropriate option. For example, right-click a test case within the Testcase
folder and then click Run. Silk Test Classic opens the file containing the test case you selected, and
displays the Run Testcase dialog box with the selected test case highlighted. You can input argument
values and run or debug the test case.

On the Global tab, you can sort the resources within each node by resource name, file name, or file date.

Note: Methods and properties are not listed on the Global tab since they are specific to classes or
window declarations. You can access methods and properties by double-clicking the class or window
declaration in which they are defined.

You cannot move files within the Project Explorer. For example, you cannot drag a script file under the
Frame file node. However, you can drag the file to another folder within the same category node.

Note: If you change the location or name of a file included in your project, outside of Silk Test Classic,
you must make sure the projectname.vtp contains the correct reference.

Creating a New Project
You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar.

2. On the Create Project dialog box, type the Project Name and Description.

3. Click OK to save your project in the default location, C:\Users\<Current user>\Documents\Silk
Test Classic Projects.

To save your project in a different location, click Browse and specify the folder in which you want to
save your project.

Silk Test Classic creates a <Project name> folder within this directory, saves the projectname.vtp
and projectname.ini to this location and copies the extension .ini files, which are appexpex.ini,
axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you do not want to save
your project in the default location, click Browse and specify the folder in which you want to save your
project. Silk Test Classic then creates your project and displays nodes on the Files and Global tabs for
the files and resources associated with this project.

4. Perform one of the following steps:

66 | Silk Test Classic Projects

• If your test uses the Open Agent, configure the application to set up the test environment.
• If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Opening an Existing Project
You can open a Silk Test Classic project as well as open an archived Silk Test Classic project. You can also
open a Silk Test Classic project or archived project through the command line.

To open an existing project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

If you already have a project open, a dialog box opens informing you that the open project will be
closed. If you associated Silk Test Classic file types with Silk Test Classic during installation, then you
can open a Silk Test Classic project or package by double-clicking the .vtp or .stp file.

2. If you are opening a packaged Silk Test Classic project, which means an .stp file, you must perform the
following steps:

a) Indicate into what directory you want to unpack the project in the Base path text box. The files are
unpacked to the directory you indicate in the Base path text box.

b) Enter a password into the Password text box if the archived Silk Test Classic project was saved with
a password.

If you open a package by double-clicking the .stp file, the base path is the directory that contains
the .stp file.

When you select a location for unpacking the archive on the Open Project dialog box, Silk Test
Classic uses that directory path, the base path, to substitute for the drive and root directory in the
Use Path and Use Files paths.

The Base path and Password text boxes are enabled only if you are opening an .stp file.

3. On the Open Project dialog box, specify the project that you want to open, and then click Open.

If you open a project file (.vtp) by clicking File > Open command, the projectname.vtp file will open
in the 4Test Editor, but the project and its associated settings will not be loaded. Projects do not display
in the recently opened files list. To close all open files within a project, click Window > Close All.

Converting Existing Tests to a Project
Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by clicking Options > Save New Options Set. You can include the
options set when you create your project.

To convert existing test sets to a project:

1. Create a new project.

2. Manually add the files to the project.

Using Option Sets in Your Project
To use an options set within your project, you must make sure that the options set is loaded into memory.
You can tell if an options set is loaded by looking at the Silk Test Classic title bar. If filename.opt
displays in the title bar, then the options set filename.opt is loaded. If an options set is loaded, it
overrides the settings contained in the projectname.ini file.

Silk Test Classic Projects | 67

Note: When an options set is loaded, the context menu options are available only for the loaded
options set; these menu options are grayed out for .ini and .opt files that are not loaded.

You can load an options set into your project using any of the following methods:

• If the options set is included in your project, within the Profile node on the Files tab, right-click the
options set that you want to load and then click Open Options Set.

• Right-click Save New Options Set to load the options set and add it under the Profile node on the
Files tab.

• Use the Options menu; click Options > Open Options Set, browse to the options set (.opt) that you
want to load, and then click Open.

• Load the options set at runtime using the optionset keyword. This loads the options set at the point in
the plan file in which the options set is called. All test cases that follow use this options set.

If an options set was loaded when you closed Silk Test Classic, Silk Test Classic automatically re-loads this
options set when you re-start Silk Test Classic.

To include an options set in your project, you can add the options set by right-clicking Profile on the Files
tab, clicking Add File, selecting the options set you want to add to the project, and then clicking OK. You
can also click Save New Options Set; this loads the options set and adds it under the Profile node on the
Files tab.

Editing an Options Set
To edit an options set in your project:

1. On the Files tab, expand the Profile node.

2. Right-click the options set that you want to edit and click Open Options Set. The options set is loaded
into memory.

3. Right-click the options set that you want to edit again and select the type of option you want to edit.

For example Runtime, Agent, Extensions, and others.

4. Modify your options and then click OK. Your current settings are changed and saved to the .opt file.

If you want to change settings for future use, double-click the options set that you want to edit on the Files
tab. This opens the options file in the Editor without loading the options file into memory. Changes you
make to the options set in the Editor will be saved, but will not take effect until you load the options set by
selecting Open Options Set from the Options menu or the right-click shortcut.

Silk Test Classic File Types
Silk Test Classic uses the following types of files in the automated testing process, each with a specific
function. The files marked with an * are required by Silk Test Classic to create and run test cases.

File Type Exte
nsio
n

Description

Project .vtp Silk Test Classic projects organize all the resources associated with a test set and present them
visually in the Project Explorer, making it easy to see, manage, and work within your test
environment.

The project file has a Verify Test Project (.vtp) extension and is organized as an .ini file; it
stores the names and locations of files used by the project. Each project file also has an
associated project initialization file: projectname.ini.

Exported
project

.stp A Silk Test Project (.stp) file is a compressed file that includes all the data that Silk Test Classic
exports for a project. A file of this type is created when you click File > Export Project.

68 | Silk Test Classic Projects

File Type Exte
nsio
n

Description

The .stp file includes the configuration files that are necessary for Silk Test Classic to set up
the proper testing environment.

Testplan .pln An automated test plan is an outline that organizes and enhances the testing process,
references test cases, and allows execution of test cases according to the test plan detail. It can
be of type masterplan or of subplan that is referenced by a masterplan.

Test
Frame*

.inc A specific kind of include file that upon creation automatically captures a declaration of the AUT’s
main window including the URL of the Web application or path and executable name for client/
server applications; acts as a central repository of information about the AUT; can also include
declarations for other windows, as well as application states, variables, and constants.

4Test
Script*

.t Contains recorded and hand-written automated test cases, written in the 4Test language, that
verify the behavior of the AUT.

Data driven
Script

.g.t Contains data-driven test cases that pull their data from databases.

4Test
Include File

.inc A file that contains window declarations, constants, variables, classes, and user defined
functions.

Suite .s Allows sequential execution of several test scripts.

Text File .txt An ASCII file that can be used for the following:

• Store data that will be used to drive a data driven test case.
• Print a file in another document (Word) or presentation (PowerPoint).
• Accompany your automation as a readme file.
• Transform a tab-delimited plan into a Silk Test Classic plan.

Results
File

.res Is automatically created to store a history of results for a test plan or script execution.

Results
Export File

.rex A single compressed results file that you can relocate to a different machine. Click Results >
Export to create a .rex file out of the existing results files of a project.

TrueLog
File

.xlg A file that contains the captured bitmaps and the logging information that is captured when
TrueLog is enabled during a test case run.

Organizing Projects
This section includes the topics that are available for organizing projects.

Adding Existing Files to a Project
You can add existing files to a project or create new files to add to the project. We recommend adding all
referenced files to your project so that you can easily see and access the files, and the objects contained
within them. Referenced files do not have to be included in the project. Plans and scripts will continue to
run, provided the paths that are referenced are accurate.

When you add a file to a project, project files (.vtp files) use relative paths for files on the same root drive
and absolute paths for files with different root drives. The use of relative and absolute files is not
configurable and cannot be overridden.

To add an existing file to a project:
1. If your project is not already open, click File > Open Project or click Open Project > Open Project on

the basic workflow bar, select the project to which you want to add a file, and then click Open.
2. On the Project Explorer, select the Files tab, right-click the node associated with the type of file you

want to add, and then click Add File.

Silk Test Classic Projects | 69

For example, to add a script file to the project, right-click Script, and then click Add File.

3. On the Add File to Project dialog box, specify the file you want to add to the open project, and then
click Open.

The file name, followed by the path, displays under the appropriate category on the Files tab sorted
alphabetically by name and is associated with the project through the projectname.vtp file. If files
exist on a network drive, they are referenced using Universal Naming Conventions (UNC).

You can also add existing files to the project by clicking Project > Add File. Silk Test Classic automatically
places the file in the appropriate node, based on the file type; for example if you add a file with a .pln
extension, it will display under the Plan node on the Files tab. We do not recommend adding
application .ini files or Silk Test Classic .ini files, which are qaplans.ini, propset.ini, and the
extension.ini files, to your project. If you add object files, which are .to and .ino files, to your project,
the files will display under the Data node on the Files tab. Objects defined in object files will not display in
the Global tab. You cannot modify object files within the Silk Test Classic editor because object files are
binary. To modify an object file, open the source file, which is a .t or .inc file, edit it, and then recompile.

Renaming Your Project
The projectname.ini and the projectname.vtp refer to each other; make sure the references are
correct in both files when you rename your project.

To rename your project:

1. Make sure the project you want to rename is closed.

2. In Windows Explorer, locate the projectname.vtp and projectname.ini associated with the
project name you want to change.

3. Change the names of projectname.vtp and projectname.ini. Make sure that you use the same
projectname for both files.

4. In a text editor outside of Silk Test Classic, open projectname.vtp, change the reference to the
projectname.ini file to the new name, and then save and close the file. Do not open the project in
Silk Test Classic yet.

5. In a text editor outside of Silk Test Classic, open projectname.ini, change the reference to the
projectname.vtp file to the new name, and then save and close the file.

6. In Silk Test Classic, open the project by clicking File > Open Project or Open ProjectOpen Project on
the basic workflow bar. The new project name displays.

Working with Folders in a Project
In addition to working with files, you can also add your own folders to all nodes listed on the File tab of the
Project Explorer. For example, the Files tab of the Project Explorer can include notes.

You can also right-click a folder and click the following:

• Expand All to display all contents of a folder.
• Collapse All to collapse the contents of the folder.
• Display Full Path to show the full path for the contents.
• Display Date/Time to show creation information for the content file.

Adding a Folder to the Files Tab of the Project Explorer
You may add a folder to any of the categories (nodes) on the Files tab of the Project Explorer. You may
not add a folder to the root project folder, nor change the titles of the root nodes.

To add a folder to a project:

70 | Silk Test Classic Projects

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Add Folder.

3. On the Add Folder dialog box, enter the name of the new folder, then click OK.

When you are naming a folder, you may use alphanumeric characters, underscore character, character
space, or hyphens. Folder names may be a maximum of 256 characters long. Creating folders with
more than 256 characters is possible, but Silk Test Classic will truncate the name when you save the
project. The concatenated length of the names of all folders within a project may not exceed 256
characters. You may not use periods or parentheses in folder names. Within a node, folder names must
be unique.

Moving Files and Folders
You may move an individual file or files between folders within the same category on the Files tab of the
Project Explorer. You cannot move the predefined Silk Test Classic folders (nodes) such as Profile Script,
Plan, Frame, and Data.

You may also move sub-folders within the same category on the Files tab. You cannot move sub-folders
across categories.

To move a folder or file:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab. Click a file, a folder, or shift-click to select several files or
folders, then drag the items to the new location.

3. Release the mouse to move the items.

There is no undo.

Removing a Folder from the Files tab of the Project Explorer
You may delete folders on the Files tab of the Project Explorer, however, you may not delete any of the
predefined Silk Test Classic categories (nodes) such as Profile Script, Plan, Frame, and Data.

Note: There is no undo.

To remove a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Remove Folder to delete it
from the Project Explorer. If you select a folder with child folders or a folder that contains items, Silk
Test Classic displays a warning before deleting the folder.

Renaming a Folder on the Files Tab of the Project Explorer
You may rename any folder that you have added to a project. You may not rename any of the predefined
Silk Test Classic folders (nodes) such as Profile, Script, Include/Frame, Plan, Results, or Data.

To rename a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, then navigate to the folder you want to rename.

3. Right-click the folder and select Rename Folder.

4. On the Rename Folder dialog box, enter the new name of the folder then click OK.

Silk Test Classic Projects | 71

When naming a folder, you may use alphanumeric characters, underscore character, character space,
or hyphens. Folder names may be a maximum of 64 characters long. You may not use periods or
parentheses in folder names. Within a node, folder names must be unique.

Sorting Resources within the Global Tab of the Project Explorer
On the Global tab of the Project Explorer, you can sort the resources within each category (node) by
resource name, file name, or file date.

To sort resources:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project whose elements you want to sort, and then click Open.

2. On the Project Explorer, click the Global tab, right-click the node associated with the type of element
you want to sort, and then click Sort by FileName or Sort by FileDate.

The default is sort by element name.

3. Click Ascending or Descending to indicate how you want to organize the sort.

For example, to sort the elements of a script file by file date in reverse chronological order, right-click the
Script node and select Sort by FileDate, then click Descending.

When you release the mouse, the elements are sorted by the parameters you selected.

Moving Files Between Projects
We recommend that you use Export Project to move projects, but if you want to move only a few files
rather than an entire project, you can open the project in Silk Test Classic and remove the files that you
want to move from the project. Move the files to their new location in Windows Explorer, and then add the
files back to the currently open project.

You can also move your project by opening the projectname.vtp and projectname.ini files in a text
editor outside of Silk Test Classic and updating references to the location of source files. However, we
recommend that you have strong knowledge of your files and how the partner and projectname .ini files
work before attempting this. We advise you to use great caution if you decide to edit the projectname .vtp
and projectname .ini files.

Removing Files from a Project
You cannot remove the projectname.ini file.

To remove a file from a project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

2. Click the plus sign [+] to expand the node associated with the type of file you want to remove, and then
choose one of the following:

• Right-click the file you want to remove, and then click Remove File.
• Select the file in the Project Explorer and press the Delete key.
• Select the file you want to remove on the Files tab, and then click Project > Remove File.

The file is removed from the project and references to the file are deleted from the projectname.vtp.
The file itself is not deleted; it is just removed from the project.

Turning the Project Explorer View On and Off
The Project Explorer view is the default. If you do not want to view the Project Explorer, uncheck Project
> View Explorer. You can continue to work with your files within the project, you just will not see the
Project Explorer.

72 | Silk Test Classic Projects

To turn Project Explorer view on, check Project > View Explorer.

If you do not want to use projects in Silk Test Classic, close the open project, if any, by clicking File > Close
Project, and then use Silk Test Classic as you would have in the past.

Viewing Resources Within a Project
1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar and select

the project that you want to open.

2. Click one of the following:

• The Files tab to view all the files associated with the open project.
• The Global tab to view global objects defined in the files associated with the project.

3. To close all open files within a project, click Window > Close All.

Packaging a Silk Test Classic Project
You can package your Silk Test Classic project into a single compressed file that you can relocate to a
different computer. When you unpack your project you will have a fully functional set of test files. This is
useful if you need to relocate a project, email a project to a co-worker, or send a project to technical
support.

Source files included in the packaged project

When you package a project, Silk Test Classic includes all of the source files, meaning the related files
used by a project, such as:

Description Extension

plan files .pln

script files .t

include files .inc

suite files .s

results files (optional) .res and .rex

data files -

Silk Test Classic takes these files and bundles them up into a new file with an .stp extension. The .stp file
includes the configuration files necessary for Silk Test Classic to set up the proper testing environment
such as project.ini, testplan.ini, optionset .opt files, and any .ini files found in the …\Silk Test
Classic projects\<Project name>\extend directory.

You have the option of including .res and .rex files when you package a Silk Test Classic project because
these files are sometimes quite large and not necessary to run the project.

Relative paths in comparison to absolute paths

When you work with Silk Test Classic projects, the files that make up the project are identified by
pathnames that are either absolute or relative. A relative pathname begins at a current folder or some
number of folders up the hierarchy and specifies the file’s location from there. An absolute pathname
begins at the root of the file system (the topmost folder) and fully specifies the file’s location from there. For
example:

Absolute path C:\Users\<Current user>\Documents\Silk Test Classic Projects
\<Project name>\options.ini

Silk Test Classic Projects | 73

Relative path ..\tesla\Silk Test\options\options.ini or SUSDir\options.inc

When you package a project, Silk Test Classic checks to make sure that the paths used within the project
are properly maintained. If you try to compress a project containing ambiguous paths, Silk Test Classic
displays a warning message. Silk Test Classic tracks the paths in a project in a log file.

Including all files needed to run tests

Files associated with a project, but not necessary to run tests, for example bitmap or document files, which
you have manually added to the project are included when Silk Test Classic packages a project.

If Silk Test Classic finds any include:, script:, or use: statements in the project files that refer to files with
absolute paths, c:\program files\Silk\Silk Test\, Silk Test Classic verifies if you have checked
the Use links for absolute files? check box on the Export Project or on the Email Project dialog boxes.

• If you check the Use links for absolute files? check box, Silk Test Classic treats any file referenced by
an absolute path in an include, script, or use statement as a placeholder and does not include those
files in the package. For example, if there are use files within the Runtime Options dialog box referred
to as "q:\qaplans\SilkTest\frame.inc" or "c", these files are not included in the package. The assumption
is that these files will also be available from wherever you unpack the project.

• If you uncheck the Use links for absolute files? check box, Silk Test Classic includes the files
referenced by absolute paths in the packaged project. For example, if the original file is stored on c:
\temp\myfile.t, when unpacked at the new location, the file is placed on c:\temp\myfile.t.

The following table compares the results of packaging projects based on whether there are any absolute
file references in your source files, and how you respond to the Use links for absolute files? check box on
the Export Project or on the Email Project dialog boxes.

Any absolute references in source
files?

Use links for absolute files? Results

No Checked or unchecked Package unpacks to any location.

Yes Checked Files referenced by absolute paths
are not included in the packaged
project.

Yes Unchecked Files referenced by absolute paths
are put into a ZIP file within the
packaged project.

Note:

• If there are any source files located on a different drive than the .vtp project file, and if there are
files referenced by absolute paths in the source files, Silk Test Classic treats the source files as
referenced by absolute paths. The assumption is that the absolute paths will be available from the
new location. Silk Test Classic therefore puts the files into a zip file within the packaged project for
you to unpack after you unpack the project.

• Files not included in the package - The assumption is that since these files are referenced by
absolute paths, these same files and paths will be available when the files are unpacked. On
unpacking, Silk Test Classic warns you about these files and lists them in a log file (manifest.XXX).

• ip files – Because you elected not to use links for files referenced by absolute paths, these files are
put into a zip file within the packaged project. The zip file is named with the root of the absolute
path. For example, if the files are located on c:/, the zip file is named c.zip.

Tips for successful packaging and unpacking

For best results when packaging and unpacking Silk Test Classic projects:

• Put your .vtp project file and source files on the same drive.

74 | Silk Test Classic Projects

• Use relative paths to reference the following:
• • include statements

• options sets
• use paths set within the Runtime Options dialog box
• use statements in 4Test scripts
• script statements

• Uncheck the default Use links for absolute files? check box if your source files are on a different drive
as the .vtp project file and if there are files referenced by absolute paths in your source files.

Packaging with Silk Test Classic Runtime and the Agent

If you are running Silk Test Classic Runtime, you may not package or email a project.

If you are running the Agent, you may package or email a project.

Emailing a Packaged Project
Emailing a project automatically packages a Silk Test Classic project and then emails it to an email
address. In order for this to work, you must have an email client installed on the computer that is running
Silk Test Classic.

You cannot email a project if you are running Silk Test Classic Runtime.

One of the options you can select before emailing is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the email.

Silk Test Classic supports any MAPI-compliant e-mail clients such as Outlook Express.

The maximum size for the emailed project is determined by your e-mail client. Silk Test Classic does not
place any limits on the size of the project.

To email your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Email Project.

You can only email a project if you have that project open.

3. On the Email Project dialog box, type the email address where you want to send the Silk Test Classic
project.

For example, enter support@acme.com to send a package to Acme Technical Support. You do not
have to specify an email address here; your email program will prompt you for one before sending the
email.

4. Select the options for the package you want to email.

For an explanation of these options, see the description of the Email Project dialog box. The Email
Address text box is required, though you can edit it later.

5. Click OK. If you opted to compile the project before packaging it, Silk Test Classic displays a warning
message if any file failed to compile. Silk Test Classic opens a new email message and attaches the
packaged project to a message. You can edit the recipient, add a subject line, and text, just as you can
for any outgoing message.

6. Click Send to add the project to your outgoing queue. If your email client is already open, your message
is sent automatically. If your email client was not open, the message is placed in your outgoing queue.

Note: If you have a crash during the email process, we recommend deleting the partially packaged
project or draft email message, if any, and starting the process again.

Silk Test Classic Projects | 75

Exporting a Project
Exporting a Silk Test Classic project lets you copy all the files associated with a project to a directory or a
single compressed file in a directory.

You cannot export a project if you are running Silk Test Classic Runtime.

Silk Test Classic will not change the file creation dates when copying the project’s files.

One of the options you can select before exporting is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the compile.

To export your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Export Project.

You can only export a project if you have the project open.

3. On the Export Project dialog box, enter the directory to which you want to export the project or click

 to locate the export folder.

The default location is the parent directory of the project folder, which means the folder containing the
project file, not the project's current location.

4. Check the Export to single Silk Test Classic package check box if you want to package the Silk Test
Classic project into a single compressed file.

5. In the Options area, select the appropriate options for your project.

For an explanation of these options, see the description of the Export Project dialog box.

Note: Using references for absolute paths produces a smaller package that can be opened more
quickly.

6. Click OK. Silk Test Classic determines all the files necessary for the project and copies them to the
selected directory or compresses them into a package. Silk Test Classic displays a warning message if
any of the files could not be successfully packaged and gives you the option of continuing.

If you have a crash during the export process, we recommend deleting the partially packaged project, if
any, and starting the process over again.

Troubleshooting Projects
This section provides solutions to common problems that you might encounter when you are working with
projects in Silk Test Classic.

Files Not Found When Opening Project
If, when opening your project, Silk Test Classic cannot find a file in the location referenced in the project
file, which is a .vtp file, an error message displays noting the file that cannot be found.

Silk Test Classic may not be able to find files that have been moved or renamed outside of Silk Test
Classic, for example in Windows Explorer, or files that are located on a shared network folder that is no
longer accessible.

• If Silk Test Classic cannot find a file in your project, we suggest that you note the name of missing file,
and click OK. Silk Test Classic will open the project and remove the file that it cannot find from the
project list. You can then add the missing file to your project.

76 | Silk Test Classic Projects

• If Silk Test Classic cannot open multiple files in your project, we suggest you click Cancel and
determine why the files cannot be found. For example a directory might have been moved. Depending
upon the problem, you can determine how to make the files accessible to the project. You may need to
add the files from their new location.

Silk Test Classic Cannot Load My Project File
If Silk Test Classic cannot load your project file, the contents of your .vtp file might have changed or
your .ini file might have been moved.

If you remove or incorrectly edit the ProjectIni= line in the ProjectProfile section of your
<projectname>.vtp file, or if you have moved your <projectname>.ini file and the ProjectIni=
line no longer points to the correct location of the .ini file, Silk Test Classic is not able to load your
project.

To avoid this, make sure that the ProjectProfile section exists in your .vtp file and that the section
refers to the correct name and location of your .ini file. Additionally, the <projectname>.ini file and
the <projectname>.vtp file refer to each other, so ensure that these references are correct in both files.
Perform these changes in a text editor outside of Silk Test Classic.

Example

The following code sample shows a sample ProjectProfile section in a
<projectname>.vtp file:

[ProjectProfile]
ProjectIni=C:\Program Files\<Silk Test install directory>
\SilkTest\Projects\<projectname>.ini

Silk Test Classic Cannot Save Files to My Project
You cannot add or remove files from a read-only project. If you attempt to make any changes to a read-only
project, a message box displays indicating that your changes will not be saved to the project.

For example, Unable to save changes to the current project. The project file has
read-only attributes.

When you click OK on the error message box, Silk Test Classic adds or removes the file from the project
temporarily for that session, but when you close the project, the message box displays again. When you re-
open the project, you will see your files have not been added or removed.

Additionally, if you are using Microsoft Windows 7 or later, you might need to run Silk Test Classic as an
administrator. To run Silk Test Classic as an administrator, right-click the Silk Test Classic icon in the Start
Menu and click Run as administrator.

Silk Test Classic Does Not Run
The following table describes what you can do if Silk Test Classic does not start.

If Silk Test Classic does not run because it is looking
for the following:

You can do the following:

Project files that are moved or corrupted. Open the SilkTestClassic.ini file in a text editor
and remove the CurrentProject= line from the
ProjectState section. Silk Test Classic should then
start, however your project will not open. You can
examine your <projectname>.ini and

Silk Test Classic Projects | 77

If Silk Test Classic does not run because it is looking
for the following:

You can do the following:

<projectname>.vtp files to determine and correct
the problem.

The following code example shows the ProjectState
section in a sample partner.ini file:

[ProjectState]
CurrentProject=C:\Program Files
\<SilkTest install directory>
 \SilkTest\Examples\ProjectName.vtp

A testplan.ini file that is corrupted. Delete or rename the corrupted testplan.ini file,
and then restart Silk Test Classic.

My Files No Longer Display In the Recent Files List
After you open or create a project, files that you had recently opened outside of the project do no longer
display in the Recent Files list.

Cannot Find Items In Classic 4Test
If you are working with Classic 4Test, objects display in the correct nodes on the Global tab, however when
you double-click an object, the file opens and the cursor displays at the top of the file, instead of in the line
in which the object is defined.

Editing the Project Files
You require good knowledge of your files and how the partner and <projectname>.ini files work before
attempting to edit these files. Be cautious when editing the <projectname>.vtp and
<projectname>.ini files.

To edit the <projectname>.vtp and <projectname>.ini files:

1. Update the references to the source location of your files. If the location of your projectname.vtp
and projectname.ini files has changed, make sure you update that as well. Each file refers to the
other.

The ProjectProfile section in the projectname.vtp file is required. Silk Test Classic will not be able to
load your project if this section does not exist.

1. Ensure that your project is closed and that all the files referenced by the project exist.

2. Open the <projectname>.vtp and <projectname>.ini files in a text editor outside of Silk Test
Classic.

Note: Do not edit the projectname.vtp and projectname.ini files in the 4Test Editor.

3. Update the references to the source location of your files.

4. The <projectname>.vtp and <projectname>.ini files refer to each other. If the relative location
of these files has changed, update the location in the files.

The ProjectProfile section in the <projectname>.vtp file is required. Silk Test Classic is not able to
load your project if this section does not exist.

78 | Silk Test Classic Projects

Enabling Extensions for Applications
Under Test

This functionality is supported only if you are using the Classic Agent.

This section describes how you can use extensions to extend the capabilities of a program or the data that
is available to the program.

An extension is a file that serves to extend the capabilities of, or the data available to, a basic program. Silk
Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Related Files

If you are using a project, the extension configuration information is stored in the partner.ini file. If you
are not using a project, the extension configuration information is stored in the extend.ini file.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box. Extensions that use
technologies on the Classic Agent are located in the <Silk Test Classic project directory>
\extend\ directory.

Extensions that Silk Test Classic can Automatically
Configure

This functionality is supported only if you are using the Classic Agent.

Using the Basic Workflow, Silk Test Classic can automatically configure extensions for many development
environments, including:

• Browser applications and applets running in one of the supported browsers.
• .NET standalone Windows Forms applications.
• Standalone Java and Java AWT applications.
• Java Web Start applications and InstallAnywhere applications and applets.
• Java SWT applications.
• Visual Basic applications.
• Client/Server applications.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

You cannot enable extensions for Silk Test Classic (partner.exe), Classic Agent (agent.exe), or Open
Agent (openAgent.exe).

You can also click Tools > Enable Extensions to have Silk Test Classic automatically set your extension.

If the Basic workflow does not support your configuration, you can enable the extension manually.

If you use the Classic Agent, the Basic Workflow does not automatically configure browser applications
containing ActiveX objects. To configure a browser application with ActiveX objects, check the ActiveX
check box in the row for the extension that you are enabling in the Extensions dialog box. Or use the Open
Agent.

Enabling Extensions for Applications Under Test | 79

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Extensions that Must be Set Manually
This functionality is supported only if you are using the Classic Agent.

Using the Basic Workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If the Basic Workflow does not support your configuration or you prefer to
enable extensions manually, enable the extension on your host machine and enable the extension on your
target machine, regardless of whether the application you plan to test will run locally or on remote
machines. Enable extensions manually if you:

• Want to change your currently enabled extension.
• Want to enable additional options for the extension you are using, such as Accessibility, Active X, or

Java.
• Are testing embedded browser applications using the Classic Agent, for example, if DOM controls are

embedded within a Windows Forms application.
• Are testing an application that does not have a standard name.

If you are testing Web applications using the Classic Agent, Silk Test Classic enables the extension
associated with the default browser you specified on the Select Default Browser dialog box during the Silk
Test Classic installation. If you want to use the extension you specified during the Silk Test Classic
installation, you do not need to complete this procedure unless you need additional options, such as
Accessibility, Java, or ActiveX.

If you are not testing Java but do have Java installed, we recommend that you disable the classpath before
using Silk Test Classic.

Silk Test Classic automatically enables Java support in the browser if your web page contains an applet.
The Enable Applet Support check box on the Extension Settings dialog for browser is automatically
selected when the Enable Extensions workflow detects an applet. You can uncheck the check box to
prevent Silk Test Classic from loading the extension. If no applet is detected, the check box is not available.

Extensions on Host and Target Machines
This functionality is supported only if you are using the Classic Agent.

You must define which extensions Silk Test Classic should load for each application under test, regardless
of whether the application will run locally or on remote machines. You do this by enabling extensions on
your host machine and on each target machine before you record or run tests.

Extensions on the host machine

On the host machine, we recommend that you enable only those extensions required for testing the current
application. Extensions for all other applications should be disabled on the host to conserve memory and
other system resources. By default, the installation program:

• Enables the extension for your default Web browser environment on the host machine.
• Disables extensions on the host machine for all other browser environments.
• Disables extensions for all other development environments.

When you enable an extension on the host machine, Silk Test Classic does the following:

• Adds the include file of the extension to the Use Files text box in the Runtime Options dialog box, so
that the classes of the extension are available to you.

• Makes sure that the classes defined in the extension display in the Library Browser. Silk Test Classic
does this by adding the name of the extension’s help file, which is browser.ht, to the Help Files For

80 | Enabling Extensions for Applications Under Test

Library Browser text box in General Options dialog box and recompiling the help file used by the
Library Browser.

• Merges the property sets defined for the extension with the default property sets. The web-based
property sets are in the browser.ps file in the Extend directory. The file defines the following property
sets: Color, Font, Values, and Location.

Extensions on the target machine

The Extension Enabler dialog box is the utility that allows you to enable or disable extensions on your
target machines. All information that you enter in the Extension Enabler is stored in the extend.ini file
and allows the Agent to recognize the non-standard controls you want to test on target machines.

Enabling Extensions Automatically Using the Basic
Workflow

An extension is a file that serves to extend the capabilities of, or data available to, a more basic program.
Silk Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

If you are testing a generic project that uses the Classic Agent, perform the following procedure to enable
extensions:

1. Start the application or applet for which you want to enable extensions.

2. Start Silk Test Classic and make sure the basic workflow bar is visible. If it is not, click Workflows >
Basic to enable it.

If you do not see Enable Extensions on the workflow bar, ensure that the default agent is set to the
Classic Agent.

3. If you are using Silk Test Classic projects, click Project and open your project or create a new project.

4. Click Enable Extensions.

You cannot enable extensions for Silk Test Classic (partner.exe), the Classic Agent (agent.exe), or
the Open Agent (openAgent.exe).

5. Select your test application from the list on the Enable Extensions dialog box, and then click Select.

6. If your test application does not display in the list, click Refresh. Or, you may need to add your
application to this list in order to enable its extension.

7. Click OK on the Extension Settings dialog box, and then close and restart your application.

8. If you are testing an applet, the Enable Applet Support check box is checked by default.

9. When the Test Extension Settings dialog box opens, restart your application in the same way in which
you opened it; for example, if you started your application by double-clicking the .exe, then restart it by
double-clicking the .exe.

10.Make sure the application has finished loading, and then click Test. When the test is finished, a dialog
box displays indicating that the extension has been successfully enabled and tested. You are now ready
to begin testing your application or applet. If the test fails, review the troubleshooting topics.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box.

Enabling Extensions on a Host Machine Manually
This functionality is supported only if you are using the Classic Agent.

Enabling Extensions for Applications Under Test | 81

Using the Basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A host machine is the system that runs the Silk Test Classic software process, in which you develop, edit,
compile, run, and debug 4Test scripts and test plans.

There is overhead to having more than one browser extension enabled, so you should enable only one
browser extension unless you are actually testing more than one browser in an automated session.

1. Start Silk Test Classic and click Options > Extensions.
2. If you are testing a client/server project, rich internet application project, or a generic project that uses

the Classic Agent, perform the following steps:
a) On the Extensions dialog box, click the extension you want to enable. You may need to add your

application to this list in order to enable its extension.
b) Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.
c) Disable other extensions that you will not be using by selecting Disabled in the Primary Extension

field. To disable a Visual Basic extension, uncheck the ActiveX check box for the Visual Basic
application.

d) Click OK.

Manually Enabling Extensions on a Target Machine
This functionality is supported only if you are using the Classic Agent.

Using the basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A target machine is a system (or systems) that runs the 4Test Agent, which is the software process that
translates the commands in your scripts into GUI-specific commands, in essence, driving and monitoring
your applications under test. One Agent process can run locally on the host machine, but in a networked
environment, any number of Agents can run on remote machines.

If you are running local tests, that is, your target and host are the same machine, complete this procedure
and enable extensions on a host machine manually.

1. Make sure that your browser is closed.
2. From the Silk Test Classic program group, choose Extension Enabler. To invoke the Extension

Enabler on a remote non-Windows target machine, run extinst.exe, located in the directory on the
target machine in which you installed the Classic Agent.

3. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate. To get
information about the files used by an extension, select an extension and click Details. You may need to
add your application to this list in order to enable its extension.

4. Click OK to close the Extension Enabler dialog box.

If you enable support for ActiveX in this dialog box, make sure that it is enabled in the Extensions
dialog box as well.

5. Restart your browser, if you enabled extensions for web testing.

Once you have set your extension(s) on your target and host machines, verify the extension settings to
check your work. Be sure to consider how you want to work with borderless tables. If you are testing
non-Web applications, you must disable browser extensions on your host machine. This is because the
recovery system works differently when testing Web applications than when testing non-Web
applications. For more information about the recovery system for testing Web applications, see Web
applications and the recovery system. When you select one or both of the Internet Explorer extensions
on the host machine’s Extension dialog box, Silk Test Classic automatically picks the correct version of
the host machine’s Internet Explorer application in the Runtime Options dialog box. If the target

82 | Enabling Extensions for Applications Under Test

machine’s version of Internet Explorer is not the same as the host machine’s, you must remember to
change the target machine’s version.

Enabling Extensions for Embedded Browser Applications
that Use the Classic Agent

This functionality is supported only if you are using the Classic Agent.

To test an embedded browser application, enable the Web browser as the primary extension for the
application in both the Extension Enabler and in the Silk Test Classic Extensions dialog boxes. For
instance, if you are testing an application with DOM controls that are embedded within a .NET application,
follow the following instructions to enable extensions.

1. Click Start > Programs > Silk > Silk Test > Tools > Extension Enabler.

2. Browse to the location of the application executable.

3. Select the executable file and then click Open.

4. Click OK.

5. From the Primary Extension list box, select the DOM extension for the application that you added.

6. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

7. Click OK.

8. Start Silk Test Classic and then choose Options > Extensions. The Extensions dialog box opens.

9. Click New.

10.Browse to the location of the application executable.

11.Select the executable file and then click Open.

12.Click OK.

13.From the Primary Extension list box, select the DOM extension for the application that you added.

14.Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

15.Click OK.

16.Restart Silk Test Classic.

Note: The IE DOM extension may not detect changes to a web page that occur when JavaScript
replaces a set of elements with another set of elements without changing the total number of
elements. To force the DOM extension to detect changes in this situation, call the FlushCache()
method on the top-level browserchild for the embedded browser. This problem might occur more often
for embedded browsers than for browser pages, because Silk Test Classic is not notified of as many
browser events for embedded browsers. Also call FlushCache() if you get a Coordinate out of
bounds exception when calling a method, for example Click(), on an object that previously had
been scrolled into view. The BrowserPage window identifier is not valid when using embedded
browsers because the default browser type is '(none)' (NULL).

Enabling Extensions for HTML Applications (HTAs)
This functionality is supported only if you are using the Classic Agent.

You must enable extensions on the host and target machines manually in order to use HTML applications
(HTAs).

Enabling Extensions for Applications Under Test | 83

Before you begin, create a project that uses the Classic Agent.

1. Click Options > Extensions to open the Extensions dialog box.

2. Click New to open the Extension Application dialog box.

3.
Click to navigate to the location of the .hta file that you want to enable. If the file name contains
spaces, be sure to enclose the name in quotation marks.

4. Select the .hta file and then click Open.

5. Click OK.

6. In the Primary Extension column next to the .hta application that you just enabled, select Internet
Explorer.

7. Click OK.

8. Click Start > Programs > Silk > Silk Test > Tools > Extension Enabler. (Or use the command line to
launch "C:\Progam Files\Silk\SilkTest\Tools\extinst.exe".)

9. On the Extension Enabler dialog box, click New to open the Extension Application dialog box.

10.
Click to navigate to the location of the .hta file that you want to enable. If the file name contains
spaces, be sure to enclose the name in quotation marks.

11.Select the .hta file and then click Open.

12.Click OK.

13.In the Primary Extension column next to the .hta application that you just enabled, select Internet
Explorer.

14.Click OK.

Adding a Test Application to the Extension Dialog Boxes
This functionality is available only for projects or scripts that use the Classic Agent.

You must manually add the following applications to the Extensions dialog box and the Extension
Enabler dialog box:

• Applications that are embedded in Web pages and use the Classic Agent.
• All test applications that do not have standard names and use the Classic Agent.
• When you add a test application to the Extensions dialog box on the host machine, you should

immediately add it to the Extension Enabler dialog box on each target machine on which you intend to
test the application.

You may also add new applications by duplicating existing applications and then changing the application
name.

To add a test application to the Extension dialog boxes:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test program group.

2. If you are testing a client/server project, Rich Internet Application project, or a generic project that uses
the Classic Agent, perform the following steps:

a) Click New to open the Extension Application dialog box.
b) Click ... to browse to the application’s executable or DLL file.

Separate multiple application names with commas. If the executable name contains spaces, be sure
to enclose the name in quotation marks.

c) Select the executable file and then click Open.
d) Click OK.

84 | Enabling Extensions for Applications Under Test

3. Click OK to close the dialog box.

Verifying Extension Settings
This functionality is available only for projects or scripts that use the Classic Agent.

If the extension settings for the host and target machines do not match, neither extension will load properly.

• To see the target machine setting, choose Options > Extensions. Verify that the Primary Extension is
enabled and other extensions are enabled, if appropriate. If you enabled a browser extension, you can
also verify the extension settings on the target machine by starting the browser and Silk Test Classic,
and then right-clicking the task bar Agent icon and selecting Extensions > Detail.

• To verify that the setting on the host machine is correct, choose Options > Runtime. Make sure that
the default browser in the Default Browser field on the Runtime Options dialog box is correct.

Why Applications do not have Standard Names
This functionality is supported only if you are using the Classic Agent.

In the following situations applications might not have standard names, in which case you must add them to
the Extension Enabler dialog box and the Extensions dialog box:

• Visual Basic applications can have any name, and therefore the Silk Test Classic installation program
cannot add them to the dialog box automatically.

• You are running an application developed in Java as a stand-alone application, outside of its normal
runtime environment.

• You have explicitly changed the name of a Java application.

Duplicating the Settings of a Test Application in Another
Test Application

This functionality is supported only if you are using the Classic Agent.

You can add new applications to the Extension Enabler dialog box or the Extensions dialog box by
duplicating existing applications and renaming the new application. All the settings of the original
application, that is, primary extension, other extensions, or options set on the Extensions dialog box, are
copied.

You can only duplicate applications that you entered manually and that use the Classic Agent.

To copy a test application’s settings into another application:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

2. Select the application that you want to copy.

3. Click Duplicate. The Extension Application dialog box opens.

4. Type the name of the new application you want to copy.

Separate multiple application names with commas.

5. Click OK to close the Extension Application dialog box. The new applications display in the dialog box
you opened.

6. Click OK to close the dialog box.

Enabling Extensions for Applications Under Test | 85

Deleting an Application from the Extension Enabler or
Extensions Dialog Box

This functionality is supported only if you are using the Classic Agent.

After completing your testing of an application or if you make a mistake, you might want to delete the
application from the Extension Enabler dialog box or the Extensions dialog box. You can delete only
applications that you have entered manually. Visual Basic applications fall into this category.

To remove an application from the Extension Enabler or Extensions dialog box:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

2. Select the application that you want to delete from the dialog box.

3. Click Remove. The application name is removed from the dialog box.

4. Click OK.

Disabling Browser Extensions
This functionality is supported only if you are using the Classic Agent.

1. In Silk Test Classic, choose Options > Extensions.

2. From the Primary Extension list, select Disabled for the extension you want to disable.

3. In the Other extensions field, uncheck any checked check boxes.

4. Click OK.

If you are testing non-Web applications, you must disable browser extensions on your host machine. This is
because the recovery system works differently when testing Web applications than when testing non-Web
applications.

Comparison of the Extensions Dialog Box and the
Extension Enabler Dialog Box

This functionality is supported only if you are using the Classic Agent.

The Extensions dialog box and the Extension Enabler dialog box look similar; they are both based on a
grid and have identical column headings and have some of the same buttons. However, they configure
different aspects of the product:

Extensions Dialog Box Extension Enabler Dialog Box

Enables AUTs and extensions On host machine On target machines

Provides information for Silk Test Classic Agent

Available from Options menu Silk Test Classic program group

Information stored in partner.ini extend.ini

When to enable/disable AUTs and
extensions

Enable the AUTs and extensions you
want to test now; disable others.

Enable all AUTs and extensions you
ever intend to test. No harm in leaving
them enabled, even if you are not
testing them now.

86 | Enabling Extensions for Applications Under Test

Extensions Dialog Box Extension Enabler Dialog Box

What you specify on each:

• Primary environment
• Java or ActiveX, if required
• Accessibility

• Yes, according to the type
• Enable and set options
• Enable and set options

• Yes, according to the type
• Enable only
• Enable only

What installation does:

• Default browser (If any)
• Other browsers (if any)
• Java runtime environment
• Oracle Forms runtime

environment
• Visual Basic 5 & 6

• Displayed and enabled
• Displayed but disabled
• Displayed but disabled
• Displayed but disabled
• Not displayed or enabled

• Displayed and enabled
• Displayed and enabled
• Displayed and enabled
• Displayed but disabled
• Not displayed or enabled

Configuring the Browser
This functionality is supported only if you are using the Classic Agent.

In order for Silk Test Classic to work properly, make sure that your browser is configured correctly.

If your tests use the recovery system of Silk Test Classic, that is, your tests are based on DefaultBaseState
or on an application state that is ultimately based on DefaultBaseState, Silk Test Classic makes sure that
your browser is configured correctly.

If your tests do not use the recovery system, you must manually configure your browser to make sure that
your browser displays the following items:

• The standard toolbar buttons, for example Home, Back, and Stop, with the button text showing. If you
customize your toolbars, then you must display at least the Stop button.

• The text box where you specify URLs. Address in Internet Explorer.
• Links as underlined text.
• The browser window’s menu bar in your Web application. It is possible through some development tools

to hide the browser window’s menu bar in a Web application. Silk Test Classic will not work properly
unless the menu bar is displayed. The recovery system cannot restore the menu bar, so you must make
sure the menu bar is displayed.

• The status bar at the bottom of the window shows the full URL when your mouse pointer is over a link.

We recommend that you configure your browser to update cached pages on a frequent basis.

Internet Explorer

1. Click Tools > Internet Options, then click the General tab.
2. In the Temporary Internet Files area, click Settings.
3. On the Settings dialog box, select Every visit to the page for the Check for newer versions of

stored pages setting.

Mozilla Firefox

1. Choose Edit > Preferences > Advanced > Cache.
2. Indicate when you want to compare files and update the cache. Select Every time I view the page at

the Compare the page in the cache to the page on the network field.

AOL

Even though AOL's Proxy cache is updated every 24 hours, you can clear the AOL Browser Cache and
force a page to reload. To do this, perform one of the following steps:

Enabling Extensions for Applications Under Test | 87

• Delete the files in the temporary internet files folder located in the Windows directory.
• Press the CTRL key on your keyboard and click the AOL browser reload icon (Windows PC only).

Friendly URLs

Some browsers allow you to display "friendly URLs," which are relative to the current page. To make sure
you are not displaying these relative URLs, in your browser, display a page of a web site and move your
mouse pointer over a link in the page.

• If the status bar displays the full URL (one that begins with the http:// protocol name and contains the
site location and path), the settings are fine. For example: http://www.mycompany.com/
products.htm

• If the status bar displays only part of the URL (for example, products.htm), turn off "friendly URLs."
(In Internet Explorer, this setting is on the Advanced tab of the Internet Options dialog box.)

Setting Agent Options for Web Testing
This functionality is supported only if you are using the Classic Agent.

When you first install Silk Test Classic, all the options for Web testing are set appropriately. If, for some
reason, for example if you were testing non-Web applications and changed them, you have problems with
testing Web applications, perform the following steps:

1. Click Options > Agent. The Agent Options dialog box opens.

2. Ensure the following settings are correct.

Tab Option Specifies Setting

Timing OPT_APPREADY_TIMEOU
T

The number of seconds that the agent
waits for an application to become
ready. Browser extensions support this
option.

Site-specific; default is 180
seconds.

Timing OPT_APPREADY_RETRY The number of seconds that the agent
waits between attempts to verify that
the application is ready.

Site-specific; default is 0.1
seconds.

Other OPT_SCROLL_INTO_VIE
W

That the agent scrolls a control into
view before recording events against it.

TRUE (checked); default is
TRUE.

Other OPT_SHOW_OUT_OF_VIE
W

Enables Silk Test Classic to see objects
not currently scrolled into view.

TRUE (checked); default is
TRUE.

Verification OPT_VERIFY_APPREADY Whether to verify that an application is
ready. Browser extensions support this
option.

TRUE (checked); default is
TRUE.

3. Click OK. The Agent Options dialog box closes.

Specifying a Browser for Silk Test Classic to Use in
Testing a Web Application
This functionality is supported only if you are using the Classic Agent.

You can specify a browser for Silk Test Classic to use when testing a Web application at runtime or you can
use the browser specified through the Runtime Options dialog box.

To completely automate your testing, consider specifying the browser at runtime. You can do this in one of
the following ways:

• Use the SetBrowserType function in a script. This function takes an argument of type BROWSERTYPE.

88 | Enabling Extensions for Applications Under Test

• Pass an argument of type BROWSERTYPE to a test case as the first argument.

For an example of passing browser specifiers to a test case, see the second example in BROWSERTYPE. It
shows you how to automate the process of running a test case against multiple browsers.

Specifying a browser through the Runtime Options dialog box

When you run a test and do not explicitly specify a browser, Silk Test Classic uses the browser specified in
Runtime Options dialog box. To change the browser type, you can:

1. Run a series of tests with a specific browser.
2. Specify a different browser in the Runtime Options dialog box.
3. Run the tests again with the new browser.

Most tests will run unchanged between browsers.

Specifying your Default Browser
Whenever you record and run test cases, you must specify the default browser that Silk Test Classic should
use. If you did not choose a default browser during the installation of Silk Test Classic or if want to change
the default browser, perform the following steps:

1. Click Options > Runtime. The Runtime Options dialog box opens.

2. Select the browser that you want to use from the Default Browser list box.

The list box displays the browsers whose extensions you have enabled.

3. Click OK.

Enabling Extensions for Applications Under Test | 89

Understanding the Recovery System for
the Open Agent

The built-in recovery system is one of the most powerful features of Silk Test Classic because it allows you
to run tests unattended. When your application fails, the recovery system restores the application to a
stable state, known as the BaseState, so that the rest of your tests can continue to run unattended.

The recovery system can restore your application to its BaseState at any point during test case execution:

• Before the first line of your test case begins running, the recovery system restores the application to the
BaseState even if an unexpected event corrupted the application between test cases.

• During a test case, if an application error occurs, the recovery system terminates the execution of the
test case, writes a message in the error log, and restores the application to the BaseState before
running the next test case.

• After the test case completes, if the test case was not able to clean up after itself, for example it could
not close a dialog box it opened, the recovery system restores the application to the BaseState.

• The recovery system cannot recover from an application crash that produces a modal dialog box, such
as a General Protection Fault (GPF).

Silk Test Classic uses the recovery system for all test cases that are based on DefaultBaseState or based
on a chain of application states that ultimately are based on DefaultBaseState.

• If your test case is based on an application state of none or a chain of application states ultimately
based on none, all functions within the recovery system are not called. For example, SetAppState and
SetBaseState are not called, while DefaultTestCaseEnter, DefaultTestCaseExit, and error handling are
called.

Such a test case will be defined in the script file as:

testcase Name () appstate none

Silk Test Classic records test cases based on DefaultBaseState as:

testcase Name ()

How the default recovery system is implemented

The default recovery system is implemented through several functions.

Function Purpose

DefaultBaseState Restores the default BaseState, then call the application’s BaseState function, if defined.

DefaultScriptEnte
r

Executed when a script file is first accessed.

Default action: none.

DefaultScriptExit Executed when a script file is exited.

Default action: Call the ExceptLog function if the script had errors.

DefaultTestCaseEn
ter

Executed when a test case is about to start.

Default action: Set the application state.

DefaultTestCaseEx
it

Executed when a test case has ended.

Default action: Call the ExceptLog function if the script had errors, then set the
BaseState.

90 | Understanding the Recovery System for the Open Agent

Function Purpose

DefaultTestPlanEn
ter

Executed when a test plan is entered.

Default action: none.

DefaultTestPlanEx
it

Executed when a test plan is exited.

Default action: none.

You can write functions that override some of the default behavior of the recovery system.

Setting the Recovery System for the Open Agent
The recovery system ensures that each test case begins and ends with the application in its intended state.
Silk Test Classic refers to this intended application state as the BaseState. The recovery system allows you
to run tests unattended. When your application fails, the recovery system restores the application to the
BaseState, so that the rest of your tests can continue to run unattended.

For applications that use the Open Agent and dynamic object recognition, the recovery system is
configured automatically whenever the New frame file dialog box opens and you save a file. This dialog
box opens when:

• You click Configure Applications on the Basic Workflow bar and follow the steps in the wizard.
• You click File > New and click Test frame.
• You click the Create a new file icon in the toolbar and then click Test frame.
• You click Record > Testcase, Record > Application State, or Record > Window Locators before you

configure an application, the New Test Frame dialog box opens before recording starts.

If you are testing an application that uses both the Classic Agent and the Open Agent, set the Agent that
will start the application as the default Agent and then set the recovery system. If you use the Classic
Agent to start the application, set the recovery system for the Classic Agent.

Base State
An application’s base state is the known, stable state that you expect the application to be in before each
test case begins execution, and the state the application can be returned to after each test case has ended
execution. This state may be the state of an application when it is first started.

Base states are important because they ensure the integrity of your tests. By guaranteeing that each test
case can start from a stable base state, you can be assured that an error in one test case does not cause
subsequent test cases to fail.

Silk Test Classic automatically ensures that your application is at its base state during the following stages:

• Before a test case runs.
• During the execution of a test case.
• After a test case completes successfully.

When an error occurs, Silk Test Classic does the following:

• Stops execution of the test case.
• Transfers control to the recovery system, which restores the application to its base state and logs the

error in a results file.
• Resumes script execution by running the next test case after the failed test case.

The recovery system makes sure that the test case was able to "clean up" after itself, so that the next test
case runs under valid conditions.

Understanding the Recovery System for the Open Agent | 91

DefaultBaseState Function
Silk Test Classic provides a DefaultBaseState for applications, which ensures the following conditions
are met before recording and executing a test case:

• The application is running.
• The application is not minimized.
• The application is the active application.
• No windows other than the application’s main window are open. If the UI of the application is localized,

you need to replace the strings, which are used to close a window, with the localized strings. The
preferred way to replace these buttons is with the lsCloseWindowButtons variable in the object’s
declaration. You can also replace the strings in the Close tab of the Agent Options dialog box.

For Web applications that use the Open Agent, the DefaultBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

• The browser is running.
• Only one browser tab is open, if the browser supports tabs and the frame file does not specify

otherwise.
• The active tab is navigated to the URL that is specified in the frame file.

For web applications that use the Classic Agent, the DefaultBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

• The browser is ready.
• Constants are set.
• The browser has toolbars, location and status bar are displayed.
• Only one tab is opened, if the browser supports tabs.

DefaultBaseState Types

Silk Test Classic includes two slightly different base state types depending on whether you use the Open
Agent and dynamic object recognition or traditional hierarchical object recognition. When you use dynamic
object recognition, Silk Test Classic creates a window object named wDynamicMainWindow in the base
state. When you set the recovery system for a test that uses hierarchical object recognition, Silk Test
Classic creates a window object called wMainWindow in the base state. Silk Test Classic uses the window
object to determine which type of DefaultBaseState to execute.

Adding Tests that Use the Open Agent to the
DefaultBaseState

If you want the recovery system to perform additional steps after it restores the default base state, record a
new test case based on no application state and paste it into the declaration of the main window of your
application.

1. Open your test application and the frame file of the test application.

2. Click Record > Testcase. Silk Test Classic displays the Record Testcase dialog box.

3. From the Application state list box, select (None).

4. Click Start Recording. Silk Test Classic opens the Recording window, which indicates that you can
begin recording.

5. When you have finished recording the actions that you want to perform whenever the base state is
restored, click Stop Recording on the Recording window. Silk Test Classic displays the Record
Testcase dialog box.

92 | Understanding the Recovery System for the Open Agent

6. Click Paste to Editor.

7. In the Update Files dialog box, select Paste testcase and update window declarations(s).

8. Click OK. Silk Test Classic creates a new script file with the new test case.

9. Add a new method named BaseState to the declaration of the main window in the test frame file.

10.Paste the recorded actions from the script file into the new BaseState method.

11.Choose File > Save to save the test frame file.

Example

For example, if you want the Insurance company Web application to preselect Auto
Quote each time the base state is restored, the new declaration for the main window in
the frame file should look similar to the following:

window BrowserApplication WebBrowser
 locator "//BrowserApplication"

 // Go to Options -> Application Configurations... to switch
the browser
 // Alternatively set sDir and sCmdLine if you want to start a
custom browser

 // The working directory of the application when it is invoked
 // const sDir = "."

 // The command line used to invoke the application
 // const sCmdLine = ""

 // The start URL
 const sUrl = "http://demo.borland.com/InsuranceWebExtJS/
index.jsf"

 const bCloseOtherTabs = TRUE

 // The list of windows the recovery system is to leave open
 // const lwLeaveOpenWindows = {?}
 // const lsLeaveOpenLocators = {?}
 BrowserWindow BrowserWindow
 locator "//BrowserWindow"
 DomListBox QuickLinkJumpMenu
 locator "SELECT[@id='quick-link:jump-menu']"
 // ...

 // Recorded actions, which should be performed whenever the
base state of the application is restored
 Basestate()
 WebBrowser.BrowserWindow.QuickLinkJumpMenu.Select("Auto
Quote")

DefaultBaseState and the wDynamicMainWindow Object
Silk Test Classic executes the DefaultBaseState for dynamic object recognition when the default agent
is the Open Agent and the global constant wDynamicMainWindow is defined. DefaultBaseState works
with the wDynamicMainWindow object in the following ways:

1. If the wDynamicMainWindow object does not exist, invoke it, either using the Invoke method defined
for the MainWin class or a user-defined Invoke method built into the object.

2. If the wDynamicMainWindow object is minimized, restore it.

Understanding the Recovery System for the Open Agent | 93

3. If there are child objects of the wDynamicMainWindow open, close them.

4. If the wDynamicMainWindow object is not active, make it active.

5. If there is a BaseState method defined for the wDynamicMainWindow object, execute it.

Flow of Control
This section describes the flow of control during the execution of each of your test cases.

The Non-Web Recovery Systems Flow of Control
Before you modify the recovery system, you need to understand the flow of control during the execution of
each of your test cases. The recovery system executes the DefaultTestcaseEnter function. This
function, in turn, calls the SetAppState function, which does the following:

1. Executes the test case.

2. Executes the DefaultTestcaseExit function, which calls the SetBaseState function, which calls
the lowest level application state, which is either the DefaultBaseState or any user defined
application state.

Note: If the test case uses AppState none, the SetBaseState function is not called.

DefaultTestCaseEnter() is considered part of the test case, but DefaultTestCaseExit() is not.
Instead, DefaultTestCaseExit() is considered part of the function that runs the test case, which
implicitly is main() if the test case is run standalone. Therefore an unhandled exception that occurs during
DefaultTestCaseEnter() will abort the current test case, but the next test case will run. However, if the
exception occurs during DefaultTestCaseExit(), then it is occurring in the function that is calling the
test case, and the function itself will abort. Since an application state may be called from both
TestCaseEnter() and TestCaseExit(), an unhandled exception within the application state may cause
different behavior depending on whether the exception occurs upon entering or exiting the test case.

How the Non-Web Recovery System Closes Windows
The built-in recovery system restores the base state by making sure that the non-Web application is
running, is not minimized, is active, and has no open windows except for the main window. To ensure that
only the main window is open, the recovery system attempts to close all other open windows, using an
internal procedure that you can customize as you see fit.

To make sure that there are no application windows open except the main window, the recovery system
calls the built-in CloseWindows method. This method starts with the currently active window and attempts
to close it using the sequence of steps below, stopping when the window closes.

1. If a Close method is defined for the window, call it.

2. Click the Close menu item on the system menu, on platforms and windows that have system menus.

3. Click the window’s close box, if one exists.

4. If the window is a dialog box, type each of the keys specified by the OPT_ CLOSE_DIALOG_KEYS
option and wait one second for the dialog box to close. By default, this option specifies the Esc key.

5. If there is a single button in the window, click that button.

6. Click each of the buttons specified by the OPT_CLOSE_WINDOW_ BUTTONS option. By default, this
option specifies the Cancel, Close, Exit, and Done keys.

7. Select each of the menu items specified by the OPT_CLOSE_WINDOW_ MENUS option. By default, this
option specifies the File > Exit and the File > Quit menu items.

94 | Understanding the Recovery System for the Open Agent

8. If the closing of a window causes a confirmation dialog box to open, CloseWindows attempts to close
the dialog box by clicking each of the buttons specified with the OPT_CLOSE_CONFIRM_BUTTONS
option. By default, this option specifies the No button.

When the window, and any resulting confirmation dialog box, closes, CloseWindows repeats the
preceding sequence of steps with the next window, until all windows are closed.

If any of the steps fails, none of the following steps is executed and the recovery system raises an
exception. You may specify new window closing procedures.

In a Web application, you are usually loading new pages into the same browser, not closing a page before
opening a new one.

How the Non-Web Recovery System Starts the
Application
To start a non-Web application, the recovery system executes the Invoke method for the main window of
the application. The Invoke method relies on the sCmdLine constant as recorded for the main window
when you create a test frame.

For example, here is how a declaration for the sCmdLine constant might look for a sample Text Editor
application running under Windows:

const sCmdLine = "c:\ProgramFiles\<SilkTest install directory>\SilkTest
\TextEdit.exe"

After it starts the application, the recovery system checks whether the main window is minimized, and, if it
is, uses the Restore method to open the icon and restore the application to its proper size.

The limit on the sCmdLine constant is 8191 characters.

Modifying the Default Recovery System
The default recovery system is implemented in defaults.inc, which is located in the directory in which
you installed Silk Test Classic. If you want to modify the default recovery system, instead of overriding
some of its features, as described in Overriding the default recovery system, you can modify
defaults.inc.

We cannot provide support for modifying defaults.inc or the results. We recommend that you do not
modify defaults.inc. This file might change from version to version. As a result, if you manually modify
defaults.inc, you will encounter issues when upgrading to a new version of Silk Test Classic.

If you decide to modify defaults.inc, be sure that you:

• Make a backup copy of the shipped defaults.inc file.
• Tell Technical Support when reporting problems that you have modified the default recovery system.

Overriding the Default Recovery System
The default recovery system specifies what Silk Test Classic does to restore the base state of your
application. It also specifies what Silk Test Classic does whenever:

• A script file is first accessed.
• A script file is exited.
• A test case is about to begin.
• A test case is about to exit.

You can write functions that override some of the default behavior of the recovery system.

Understanding the Recovery System for the Open Agent | 95

To override Define the following

DefaultScriptEnter ScriptEnter

DefaultScriptExit ScriptExit

DefaultTestCaseEnter TestCaseEnter

DefaultTestCaseExit TestCaseExit

DefaultTestPlanEnter TestPlanEnter

DefaultTestPlanExit TestPlanExit

If ScriptEnter, ScriptExit, TestcaseEnter, TestcaseExit, TestPlanEnter, or
TestPlanExit are defined, Silk Test Classic uses them instead of the corresponding default function. For
example, you might want to specify that certain test files are copied from a server in preparation for running
a script. You might specify such processing in a function called ScriptEnter in your test frame.

If you want to modify the default recovery system, instead of overriding some of its features, you can modify
defaults.inc. We do not recommend modifying defaults.inc and cannot provide support for
modifying defaults.inc or the results.

Example

If you are planning on overriding the recovery system, you need to write your own
TestCaseExit(Boolean bException). In the following example, DefaultTestcaseExit() is
called inside TestCaseExit() to perform standard recovery systems steps and the bException
argument is passed into DefaultTestCaseExit().

if (bException)
 DefaultTestcaseExit(bException)

If you are not planning to call DefaultTestcaseExit() and plan to handle the error logging in your own
way, then you can use the TestcaseExit() signature without any arguments.

Use the following function signature if you plan on calling DefaultTestCaseExit(Boolean
bException) or if your logic depends on whether an exception occurred. Otherwise, you can simply use
the function signature of TestcaseExit() without any arguments. For example, the following is from the
description of the ExceptLog() function.

TestCaseExit (BOOLEAN bException)
if (bException)
 ExceptLog()

Here, DefaultTestcaseExit() is not called, but the value of bException is used to determine if an
error occurred during the test case execution.

Handling Login Windows
Silk Test Classic handles login windows differently, depending on whether you are testing Web or client/
server applications. These topics provide information on how to handle login windows in your application
under test.

Handling Login Windows in Non-Web Applications that Use the Open
Agent
Although a non-Web application’s main window is usually displayed first, it is also common for a login or
security window to be displayed before the main window.

Use the wStartup constant and the Invoke method

To handle login windows, record a declaration for the login window, set the value of the wStartup
constant, and write a new Invoke method for the main window that enters the appropriate information into

96 | Understanding the Recovery System for the Open Agent

the login window and dismisses it. This enables the DefaultBaseState routine to perform the actions
necessary to get past the login window.

You do not need to use this procedure for splash screens, which disappear on their own.

1. Open the login window that precedes the application’s main window.

2. Open the test frame.

3. Click Record > Window Locators to record a locator for the window.

4. Point to the title bar of the window and then press Ctrl+Alt. The locator is captured in the Record
Window Locators dialog box.

5. Click Paste to Editor to paste the locator into the test frame.

6. In the Record Window Locators dialog box, click Close.

7. Close your application.

8. In your test frame file, find the stub of the declaration for the wStartup constant, located at the top of
the declaration for the main window:

// First window to appear when application is invoked
// const wStartup = ?

9. Complete the declaration for the wStartup constant by:

• Removing the comment characters, the two forward slash characters, at the beginning of the
declaration.

• Replacing the question mark with the identifier of the login window, as recorded in the window
declaration for the login window.

10.Define an Invoke method in the main window declaration that calls the built-in Invoke method and
additionally performs any actions required by the login window, such as entering a name and password.

After following this procedure, your test frame might look like this:

window MainWin MyApp
 locator "/MainWin[@caption='MyApp']"
 const wStartup = Login

 // the declarations for the MainWin should go here
 Invoke ()
 derived::Invoke ()
 Login.Name.SetText ("Your name")
 Login.Password.SetText ("password")
 Login.OK.Click ()

window DialogBox Login
 locator "/DialogBox[@caption='Login']"

 // the declarations for the Login window go here
 PushButton OK
 locator "OK"

Note: Regarding the derived keyword and scope resolution operator. The statement
derived::Invoke () uses the derived keyword followed by the scope resolution operator
(::) to call the built-in Invoke method, before performing the operations needed to fill in and
dismiss the login window.

Specifying Windows to be Left Open for Tests that Use
the Open Agent
By default, the non-Web recovery system closes all windows in your test application except the main
window. To specify which windows, if any, need to be left open — such as a child window that is always
open — use the lwLeaveOpenWindows or lsLeaveOpenLocators constant.

Understanding the Recovery System for the Open Agent | 97

lwLeaveOpenWindows and lsLeaveOpenLocators constants

When you record and paste the declarations for your application’s main window, the stub of a declaration
for the lwLeaveOpenWindows constant is automatically included. Additionally, it is possible to specify
windows to leave open by using XPath locator strings. These can be specified with the variable
lsLeaveOpenLocators, which must be a list of strings. The following example shows the
lwLeaveOpenWindows and lsLeaveOpenLocators constants before they have been edited:

// The list of windows the recovery system is to leave open
// const lwLeaveOpenWindows = {?}
// const lsLeaveOpenLocators = {?}

To complete the declaration for these constants:

1. For lwLeaveOpenWindows, replace the question mark in the comment with the 4Test identifiers of the
windows you want to be left open. Separate each identifier with a comma.

2. For lsLeaveOpenLocators, click Record > Window Locators and record the locators that you want
to include.

3. Replace the question mark in the comment with the locator strings for the windows that you want to be
left open. Separate each identifier with a comma.

4. Remove the comment characters (the two forward slash characters) at the beginning of the
lwLeaveOpenWindows declaration.

For example, the following code shows how to set the lwLeaveOpenWindows constant so that the
recovery system leaves open the window with the identifier DocumentWindow when it restores the
BaseState.

const lwLeaveOpenWindows = {DocumentWindow}

5. Remove the comment characters (the two forward slash characters) at the beginning of the
lsLeaveOpenLocators declaration.

For example, the following code shows how to set the lsLeaveOpenLocators constant so that the
recovery system leaves open the About dialog box when it restores the BaseState.

lsLeaveOpenLocators = {“/MainWin[@caption=’*Information*’]”, “//
Dialog[@caption=’About’]”}

Specifying New Window Closing Procedures
When the recovery system cannot close a window using its normal procedure, you can reconfigure it in one
of two ways:

• If the window can be closed by a button press, key press, or menu selection, specify the appropriate
option either statically in the Close tab of the Agent Options dialog box or dynamically at runtime.

• Otherwise, record a Close method for the window.

This is only for classes derived from the MoveableWin class: DialogBox, ChildWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChild objects/classes.

Specifying Buttons, Keys, and Menus that Close
Windows

Specify statically

To specify statically the keys, menu items, and buttons that the non-Web recovery system should use to
close all windows, choose Options > Agent and then click the Close tab.

The Close tab of the Agent Options dialog box contains a number of options, each of which takes a
comma-delimited list of character string values.

98 | Understanding the Recovery System for the Open Agent

Specify dynamically

As you set close options in the Agent Options dialog box, the informational text at the bottom of the dialog
box shows the 4Test command you can use to specify the same option from within a script; add this 4Test
command to a script if you need to change the option dynamically as a script is running.

Specify for individual objects

If you want to specify the keys, menu items, and buttons that the non-web recovery system should use to
close an individual dialog box, define the appropriate variable in the window declaration for the dialog box:

• lsCloseWindowButtons

• lsCloseConfirmButtons

• lsCloseDialogKeys

• lsCloseWindowMenus

This is only for classes derived from the MoveableWin class: DialogBox, ChildWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChild objects/classes.

Recording a Close Method for Tests that Use the Open
Agent
To specify the keys, menu items, and buttons that the non-web recovery system uses to close an individual
dialog box, record a Close method to define the appropriate variable in the window declaration for the
dialog box.

1. Open your application.

2. Open the application’s test frame file.

3. Choose Record > Testcase. Silk Test Classic displays the Record Testcase dialog box.

4. From the Application state list box, click (None).

5. Click Start Recording. Silk Test Classic opens the Recording window, which indicates that you can
begin recording the Close method.

6. When you have finished recording the Close method, click Stop Recording on the Recording window.
Silk Test Classic redisplays the Record Testcase dialog box.

7. Click Paste to Editor and then copy and paste the script in the declaration for the dialog box in the test
frame file.

8. Choose File > Save to save the test frame file.

You can also specify buttons, keys, and menus that close windows. This is only for classes derived from the
MoveableWin class: DialogBox, ChildWin, and MessageBox. Specifying window closing procedures
is not necessary for Web pages, so this does not apply to BrowserChild objects/classes.

Understanding the Recovery System for the Open Agent | 99

Test Plans
A test plan usually is a hierarchically-structured document that describes the test requirements and
contains the statements, 4Test scripts, and test cases that implement the test requirements. A test plan is
displayed in an easy-to-read outline format, which lists the test requirements in high-level prose
descriptions. The structure can be flat or many levels deep.

Indentation and color indicate the level of detail and various test plan elements. Large test plans can be
divided into a master plan and one or more sub-plans. A test plan file has a .pln extension, such as
find.pln.

Structuring your test plan as an hierarchical outline provides the following advantages:

• Assists the test plan author in developing thoughts about the test problem by promoting and supporting
a top-down approach to test planning.

• Yields a comprehensive inventory of test requirements, from the most general, through finer and finer
levels of detail, to the most specific.

• Allows the statements that actually implement the tests to be shared by group descriptions or used by
just a single test description.

• Provides reviewers with a framework for evaluating the thoroughness of the plan and for following the
logic of the test plan author.

• If you are using the test plan editor, the first step in creating automated tests is to create a test plan. If
you are not using the test plan editor, the first step is creating a test frame.

Structure of a Test Plan
A test plan is made up of the following elements, each of which is identified by color and indentation on the
test plan.

Element Description Color

Comment Provide documentation throughout the test plan;
preceded by //.

Green

Group Description High level line in the test requirements outline that
describes a group of tests.

Black

Test Description Lowest level line describing a single test case; is a
statement of the functionality to be tested by the
associated test case.

Blue

Test Plan Statement Used to provide script name, test case name, test data,
or include statement.

Red when a sub plan is not
expanded.

Magenta statement when sub-plan is
expanded

A statement placed at the group description level applies to all the test descriptions contained by the group.
Conversely, a statement placed at the test description level applies only to that test description. Levels in
the test plan are represented by indentation.

Because there are many ways to organize information, you can structure a test plan using as few or as
many levels of detail as you feel are necessary. For example, you can use a list structure, which is a list of
test descriptions with no group description, or a hierarchical structure, which is a group description and test
description. The goal when writing test plans is to create a top-down outline that describes all of the test
requirements, from the most general to the most specific.

100 | Test Plans

Overview of Test Plan Templates
Because a test plan is initially empty, you may want to insert a template, which is a hierarchical outline you
can use as a guide when you create a new test plan.

The template contains placeholders for each GUI object in your application. Although you may not want to
structure the test plan in a way which mirrors the hierarchy of your application’s GUI, this can be a good
starting point if you are new to creating test plans.

In order to be able to insert a template, you must first record a test frame, which contains declarations for
each of the GUI objects in your application.

Example Outline for Word Search Feature
Because a test plan is made up of a large amount of information, a structured, hierarchical outline provides
an ideal model for organizing and developing the details of the plan. You can structure an outline using as
few or as many levels of detail as you feel necessary.

The following is a series of sample outlines, ranging from a simple list structure to a more specific
hierarchical structure. For completeness, each of the plans also shows the script and test case statements
that link the descriptions to the 4Test scripts and test cases that implement the test requirements.

For example, consider the Find dialog box from the Text Editor application, which allows a user to search in
a document. A user enters the characters to search for in the Find What text box, checks the Case
sensitive check box to consider case, and clicks either the Up or Down radio button to indicate the
direction of the search.

List Structure

At its simplest, an outline is a hierarchy with just a single level of detail. In other words, it is a list of test
descriptions, with no group descriptions.

Using the list structure, each test is fully described by a single line, which is followed by the script and test
case that implement the test. You may find this style of plan useful in the beginning stages of test plan
design, when you are brainstorming the list of test requirements, without regard for the way in which the
test requirements are related. It is also useful if you are creating an ad hoc test plan that runs a set of
unrelated 4Test scripts and test cases.

Example for List Structure

For example:

Test Plans | 101

Hierarchical Structure

The following test plan has a single level of group description, preceding the level that contains each of the
test descriptions. The group description indicates that all the tests are for the Find dialog box.

As the figure shows, the test plan editor indicates levels in the outline with indentation. Each successive
level is indented one level to the right. The minus icons indicate that each of the levels is fully expanded. By
clicking on the minus icon at any level, you collapse the branch below that level. When working with large
test plans, collapsing and expanding test plan detail makes it easy to see as much or as little of the test
plan as you need. You could continue this test plan by adding a second level of group description,
indicating whether or not the tests in the group are case sensitive, and even more detail by adding a third
level of group descriptions which indicate whether the tests in the group search in the forward or backward
direction.

102 | Test Plans

Converting a Results File to a Test Plan
Using Silk Test Classic, you can convert a results file into a test plan. This is useful when converting suite-
based tests into test plans.

1. Open a results file that was generated by Silk Test Classic, not one generated by the test plan editor
from a test plan.

2. Click Results > Convert to Plan.

3. Select the results file you want to convert, which is typically the most recent, and click OK. The test plan
editor converts the results file to a test plan.

When creating a test plan from a results file generated for a script, the test plan editor uses the #
symbol so that when this test plan is run, the testdata statement doubles as description. Since the
results file was for a script, not a test plan, it does not contain any group or test case descriptions. The #
symbol can be used with any test plan editor statement so that the statement will double as description.

Working with Test Plans
This section describes how you can work with test plans.

Creating a New Test Plan
1. Click File > New.

2. Click Test plan and click OK. An empty test plan window opens.

Test Plans | 103

3. Create your test plan and then click File > Save.

4. Specify the name and location in which to save the file, and then click OK.

5. If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes
if you want to add the file to the open project, or No if you do not want to add this file to the project.

Before you can begin testing, you must enable extensions for applications you plan to test on both the
target machine and the host machine.

Indent and Change Levels in an Outline
You can use menu, keyboard, or toolbar commands to enter or change group and test descriptions as you
are typing them. The following table summarizes the commands:

Action Menu Item Key

Indent one level Outline/Move Right ALT + forward arrow

Outdent one level Outline/Move Left ALT + back arrow

Swap with line above Outline/Transpose Up ALT + up arrow

Swap with line below Outline/Transpose Down ALT + down arrow

Each command acts on the current line or currently selected lines.

Silk Test Classic ignores comments when compiling, with the exception of functions and test cases.
Comments within functions and test cases must be within the scope of the function/test case. If a comment
is outdented beyond the scope of the function/test case, the compiler assumes that the function/test case
has ended. As long as comments do not violate the function/test case scope, they can be placed anywhere
on a line.

Note: Comments beyond the scope can also impact expand/collapse functionality and may prevent a
function/test case from being fully expanded/collapsed. We recommend that you keep comments
within scope.

Adding Comments to Test Plan Results
You can add comments to your test plans which will display in the results when you run your tests. You can
annotate your tests with such comments to ease the interpretation of the test results.

To add a comment to a test plan, include the following statement in the test plan:

comment: Your comment text

For example, running the following piece of a test plan:

Find dialog
 Get the default button
 comment: This test should return Find.FindNext
 script: find.t
 testcase: GetButton

produces the following in the results file:

Find dialog
 Get the default button
 Find.FindNext
 comment: This test should return Find.FindNext

Note: You can also preface lines in all 4Test files with // to indicate a single-line comment. Such
comments do not display in test plan results.

104 | Test Plans

Documenting Manual Tests in the Test Plan
Your QA department might do some of its testing manually. You can document the manual testing in the
test plan. In this way, the planning, organization, and reporting of all your testing can be centralized in one
place. You can describe the state of each of your manual tests. This information is used in reports.

To indicate that a test description in the test plan is implemented with a manual test, use the value manual
in the testcase statement, as in:

testcase: manual

By default, whenever you generate a report, it includes information on the tests run for that results file, plus
the current results of any manual tests specified in the test plan. If the manual test results are subsequently
updated, the next time you generate the report, it incorporates the latest manual results. However, this
might not be what you want. If you want the report to use a snapshot of manual results, not the most recent
manual results, merge the results of manual tests into the results file.

Describing the State of a Manual Test
1. Open a test plan containing manual tests.
2. Click Testplan > Run Manual Tests.
3. Select a manual test from the Update Manual Tests dialog box and document it. The Update Manual

Tests dialog box lists all manual tests in the current test plan.

Mark the test
complete

Click the Complete option button.

Complete means that a test has been defined. A manual test marked here as
Complete will be tabulated as complete in Completion reports.

Indicate whether
the test passed or
failed

1. Click the Has been run option button.
2. Select Passed or Failed.
3. Specify when the test was run and optionally, specify the machine.

To specify when the test was run, use the following syntax:

YYYY-MM-DD HH:MM:SS

Hours, minutes, and seconds are optional. For example, enter 2006-01-10 to
indicate that the test was run Jan 10, 2006.

Manual tests marked as Passed or Failed will be tabulated as such in Pass/
Fail reports, as long as you have also specified the time at which they were run.

A test marked Has been run is also considered complete in Completion
reports.

Add any
comments you
want about the
test

Fill in the Comments text box.

Inserting a Template
1. Click Testplan > Insert Template. The Insert Testplan Template dialog box, which lists all the GUI

objects declared in your test frame, opens.
2. Select each of the GUI objects that are related to the application features you want to test.

Because this is a multi-select list box, the objects do not have to be contiguous.
For each selected object, Silk Test Classic inserts two lines of descriptive text into the test plan.

Test Plans | 105

For example, the test plan editor would create the following template for the Find dialog box of the Text
Editor application:

Tests for DialogBox Find
Tests for StaticText FindWhatText
(Insert tests here)
Tests for TextField FindWhat
(Insert tests here)
Tests for CheckBox CaseSensitive
(Insert tests here)
Tests for StaticText DirectionText
(Insert tests here)
Tests for PushButton FindNext
(Insert tests here)
Tests for PushButton Cancel
(Insert tests here)
Tests for RadioList Direction
(Insert tests here)

Changing Colors in a Test Plan
You can customize your test plan so that different test plan components display in unique colors.

To change the default colors:

1. Click Options > Editor Colors.
2. On the Editor Colors dialog box, select the outline editor item you want to change in the Editor Item

list box at the left of the dialog box.
3. Apply a color to the item by selecting a pushbutton from the list of predefined colors or create a new

color to apply by selecting the red, green, and blue values that compose the color.

Default
color

Component Description

Blue Test description Lowest level of the hierarchical test plan outline that describes a single
testcase.

Red Test plan statement Link scripts, test cases, test data, closed sub-plans, or an include file (such
as a test frame) to the test plan.

Magenta Include statement
when sub-plan is open

Sub-plans to be included in a master plan.

Green Comment Additional user information that is incidental to the outline; preceded by
double slashes (//); provides documentation throughout the test plan.

Black Other line (group
description)

Higher level lines of the hierarchical test plan outline that describe a group of
tests; may be several levels in depth.

Linking the Test Plan to Scripts and Test Cases
After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:
• Linking a description to a script or test case using the Testplan Detail dialog box if you want to

automate the process of linking scripts and test cases to the test plan.
• Linking to a test plan manually.
• Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and

testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually

106 | Test Plans

good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

Working with Large Test Plans
For large or complicated applications, the test plan can become quite large. This raises the following
issues:

Issue Solution

How to keep track of where you are in the test plan and
what is in scope at that level.

Use the Testplan Detail dialog box.

How to determine which portions of the test plan have
been implemented.

Produce a Completion report.

How to allow several staff members to work on the test
plan at the same time.

Structure your test plan as a master plan with one or
more sub-plans.

This section describes how you can divide your test plan into a master plan with one or more sub-plans to
allow several staff members to work on the test plan at the same time.

Determining Where Values are Defined in a Large Test
Plan
1. Place the insertion point at the relevant point in the test plan and click Testplan > Detail. The Testplan

Detail dialog box opens.

2. Click the level in the list box at the top of the Testplan Detail dialog box, to see just the set of symbols,
attributes, and statements that are defined on a particular level.

3. Once you find the level at which a symbol, attribute, or statement was defined, you can change the
value at that level, causing the inherited value at the lower levels to change also.

Dividing a Test Plan into a Master Plan and Sub-Plans
If several engineers in your QA department will be working on a test plan, it makes sense to break up the
plan into a master plan and sub-plans. This approach allows multi-user access, while at the same time
maintaining a single point of control for the entire project.

The master plan contains only the top few levels of group descriptions, and the sub-plans contain the
remaining levels of group descriptions and test descriptions. Statements, attributes, symbols, and test data
defined in the master plan are accessible within each of the sub-plans.

Sub-plans are specified with an include statement. To expand the sub-plan files so that they are visible
within the master plan, double-click in the left margin next to the include statement. Once a sub-plan is
expanded inline, the sub-plan statement changes from red (the default color for statements) to magenta,
indicating that the line is now read-only and that the sub-plan is expanded inline. At the end of the
expanded sub-plan is the <eof> marker, which indicates the end of the sub-plan file.

Test Plans | 107

Creating a Sub-Plan
You create a sub-plan in the same way you create any test plan: by opening a new test plan file and
entering the group descriptions, test descriptions, and the test plan editor statements that comprise the
sub-plan, either manually or using the Testplan Detail dialog.

Copying a Sub-Plan
When you copy and paste the include statement and the contents of an open include file, note that only the
include statement will be pasted.

To view the contents of the sub-plan, open the pasted include file by clicking Include > Open or double-
click the margin to the left of the include statement.

Opening a Sub-Plan
Open the sub-plan from within the master plan. To do this, you can either:

• double-click the margin to the left of the include statement or
• highlight the include statement and choose Include > Open. (Compiling a script also automatically

opens all sub-plans.)

If a sub-plan does not inherit anything (that is, statements, attributes, symbols, or data) from the master
plan, you can open the sub-plan directly from the File > Open dialog box.

Connecting a Sub-Plan with a Master Plan
To connect the master plan to a sub-plan file, you enter an include statement in the master plan at the
point where the sub-plan logically fits. The include statement cannot be entered through the Testplan
Detail dialog box; you must enter it manually.

The include statement uses this syntax:

include: myinclude.pln

where myinclude is the name of the test plan file that contains the sub-plan.

If you enter the include statement correctly, it displays in red, the default color used for the test plan
editor statements. Otherwise, the statement displays in blue or black, indicating a syntax error (the compiler
is interpreting the line as a description, not a statement).

Refreshing a Local Copy of a Sub-Plan
When another user modifies a sub-plan, those changes are not automatically reflected in your read-only
copy of the sub-plan. Once the other user has released the lock on the sub-plan, there are two ways to
refresh your copy:

1. Close and then reopen the sub-plan.

2. Acquire a lock for the sub-plan.

Sharing a Test Plan Initialization File
All QA engineers working on a test plan that is broken up into a master plan and sub-plans must use the
same test plan initialization file.

To share a test plan initialization file:

108 | Test Plans

1. Click Options > General.

2. On the General Options dialog box, specify the same file name in the Data File for Attributes and
Queries text box.

Saving Changes
When you finish editing, choose Include > Save to save the changes to the sub-plan.

Include > Save saves changes to the current sub-plan while File > Save saves all open master plans and
sub-plans.

Overview of Locks
When first opened, a master plan and its related sub-plans are read-only. This allows many users to open,
read, run, and generate reports on the plan. When you need to edit the master plan or a sub-plan, you
must first acquire a lock, which prevents others from making changes that conflict with your changes.

Acquiring and Releasing a Lock
Acquire a lock Place the cursor in or highlight one or more sub-plans and then choose Include >

Acquire Lock.

The bar in the left margin of the test plan changes from gray to yellow.

Release a lock Select Include > Release Lock.

The margin bar changes from yellow to gray.

Generating a Test Plan Completion Report
To measure your QA department’s progress in implementing a large test plan, you can generate a
completion report. The completion report considers a test complete if the test description is linked to a test
case with two exceptions:

• If the test case statement invokes a data-driven test case and a symbol being passed to the data-driven
test case is assigned the value ? (undefined), the test is considered incomplete.

• If the test case is manual and marked as Incomplete in the Update Manual Tests dialog box, the test is
considered incomplete. A manual test case is indicated with the testcase:manual syntax.

To generate a test plan completion report:

1. Open the test plan on which you want to report.

2. Click Testplan > Completion Report to display the Testplan Completion Report dialog box.

3. In the Report Scope group box, indicate whether the report is for the entire plan or only for those tests
that are marked.

4. To subtotal the report by a given attribute, select an attribute from the Subtotal by Attribute text box.

5. Click Generate.

The test plan editor generates the report and displays it in the lower half of the dialog box. If the test
plan is structured as a master plan with associated sub-plans, the test plan editor opens any closed
sub-plans before generating the report.

You can:

• Print the report.
• Export the report to a comma-delimited ASCII file. You can then bring the report into a spreadsheet

application that accepts comma-delimited data.

Test Plans | 109

• Chart (graph) the report, just as you can chart a Pass/Fail report.

Adding Data to a Test Plan
This section describes how you can add data to a test plan.

Specifying Unique and Shared Data
If a data value is
unique to a single test
description

You should place it in the plan at the same level as the test description, using
the testdata statement. You can add the testdata statement using the
Testplan Detail dialog box or type the testdata statement directly into the
test plan.

If data is common to
several tests

You can factor out the data that is common to a group of tests and define it at a
level in the test plan where it can be shared by the group. To do this, you define
symbols and assign them values. Using symbols results in less redundant data,
and therefore, less maintenance.

Adding Comments in the Test Plan Editor
Use two forward slash characters to indicate that a line in a test plan is a comment. For example:

// This is a comment

Comments preceded by // do not display in the results file. You can also specify comments using the
comment statement; these comments will display in the results files.

Testplan Editor Statements
You use the test plan editor keywords to construct statements, using this syntax:

keyword : value

keyword: One of the test plan editor keywords.

value: A comment, script, test case, include file, attribute name, or data value.

For example, this statement associates the script myscript.t with the plan:

script : myscript.t

Spaces before and after the colon are optional.

The # Operator in the Testplan Editor
When a # character precedes a statement, the statement will double as a test description in the test plan.
This helps eliminate possible redundancies in the test plan. For example, the following test description and
script statement:

Script is test.t
 script:test.t

can be reduced to one line in the test plan:

#script: test.t

The test plan editor considers this line an executable statement as well as a description. Any statements
that follow this "description" in the test plan and that trigger test execution must be indented.

110 | Test Plans

Using the Testplan Detail Dialog Box to Enter the
testdata Statement
1. Place the insertion point at the end of the test description. If a testdata statement is not associated

with a test description, the compiler generates an error.

2. Click Testplan > Detail. To provide context, the multi-line list box at the top of the Testplan Detail
dialog box displays the line in the test plan that the cursor was on when the dialog box was invoked,
indicated by the black arrow icon. If the test case and script associated with the current test description
are inherited from a higher level in the test plan, they are shown in blue; otherwise, they are shown in
black.

3. Enter the data in the Test Data text box, separating each data element with a comma.

Remember, if the test case expects a record, you need to enclose the list of data with the list
constructor operator (the curly braces); otherwise, Silk Test Classic interprets the data as individual
variables, not a record, and will generate a data type mismatch compiler error.

4. Click OK. Silk Test Classic closes the Testplan Detail dialog box and enters the testdata statement and
data values in the plan.

Entering the testdata Statement Manually
1. Open up a new line after the test description and indent the line one level.

2. Enter the testdata statement as follows.

• If the test case expects one or more variables, use this syntax: testdata: data [,data], where
data is any valid 4Test expression.

• A record, use the same syntax as above, but open and close the list of record fields with curly
braces: testdata: {data [,data]}, where data is any valid 4Test expression.

Be sure to follow the testdata keyword with a colon. If you enter the keyword correctly, the statement
displays in dark red, the default color. Otherwise, the statement displays in either blue or black,
indicating the compiler is interpreting the line as a description.

Linking Test Plans
This section describes how Silk Test Classic handles linking from a test plan to a script or test case.

Linking a Description to a Script or Test Case using the
Testplan Detail Dialog Box
1. Place the insertion cursor on either a test description or a group description.

2. Click Testplan > Detail. The test plan editor invokes the Testplan Detail dialog box, with the Test
Execution tab showing. The multi-line list box at the top of the dialog box displays the line in the test
plan that the cursor was on when the dialog box was invoked, as well as its ancestor lines. The black
arrow icon indicates the current line. The current line appears in black and white, and the preceding
lines display in blue.

3. If you:

• know the names of the script and test case, enter them in the Script and Testcase fields,
respectively.

• are unsure of the script name, click the Scripts button to the right of the Script field to browse for
the script file.

Test Plans | 111

4. On the Testplan Detail - Script dialog box, navigate to the appropriate directory and select a script
name by double-clicking or by selecting and then clicking OK. Silk Test Classic closes the Testplan
Detail - Script dialog box and enters the script name in the Script field.

5. Click the Testcases button to the right of the Testcase field, to browse for the test case name.

The Testplan Detail – Testcase dialog box shows the names of the test cases that are contained in the
selected script. Test cases are listed alphabetically, not in the order in which they occur in the script.

6. Select a test case from the list and click OK.

7. Click OK. The script and test case statements are entered in the plan.

If you feel comfortable with the syntax of the test plan editor statements and know the locations of the
appropriate script and test case, you can enter the script and test case statements manually.

Linking a Test Plan to a Data-Driven Test Case
To link a group of test descriptions in the plan with a data-driven test case, add the test case declaration to
the group description level. There are three ways to do this:

• Linking a test case or script to a test plan using the Testplan Detail dialog box to automate the process.
• Link to a test plan manually.
• Record the test case from within the test plan.

Linking to a Test Plan Manually
If you feel comfortable with the syntax of the test plan editor statements and know the locations of the
appropriate script and test case, you can enter the script and testcase statements manually.

1. Place the insertion cursor at the end of a test or group description and press Enter to create a new line.

2. Indent the new line one level.

3. Enter the script and/or test case statements using the following syntax:

script:
scriptfilename.t testcase:
testcasename

Where script and testcase are keywords followed by a colon, scriptfilename.t is the name of the
script file, and testcasename is the name of the test case.

If you enter a statement correctly, it displays in dark red, the default color used for statements. If not, it
will either display in blue, indicating the line is being interpreted as a test description, or black, indicating
it is being interpreted as a group description.

Linking a Test Case or Script to a Test Plan using the
Testplan Detail Dialog Box
The Testplan Detail dialog box automates the process of linking to scripts and test cases. It lets you
browse directories and select script and test case names, and it enters the correct the test plan editor
syntax into the plan for you.

Linking the Test Plan to Scripts and Test Cases
After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:

112 | Test Plans

• Linking a description to a script or test case using the Testplan Detail dialog box if you want to
automate the process of linking scripts and test cases to the test plan.

• Linking to a test plan manually.
• Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and

testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually
good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

Example of Linking a Test Plan to a Test Case
For example, consider the data driven test case FindTest, which takes a record of type SEARCHINFO as a
parameter:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for
 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search
 STRING sExpected // The expected match

testcase FindTest (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()
 Find.Cancel.Click ()
 DocumentWindow.Document.VerifySelText ({Data.sExpected})
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

The following test plan is associated with the FindTest testcase (the testcase statement is
highlighted for emphasis). The statement occurs at the Find dialog group description level, so that each of
the test descriptions in the group can call the test case, passing it a unique set of data:

Testplan FindTest.pln

Find dialog
script: findtest.t
testcase: FindTest
. . . .

Categorizing and Marking Test Plans
This section describes how you can work with selected tests in a test plan.

Test Plans | 113

Marking a Test Plan
Marks are temporary denotations that allow you to work with selected tests in a test plan. For example, you
might want to run only those tests that exercise a particular area of the application or to report on only the
tests that were assigned to a particular QA engineer. To work with selected tests rather than the entire test
plan, you denote or mark those tests in the test plan.

Marks can be removed at any time, and last only as long as the current work session. You can recognize a
marked test case by the black stripe in the margin.

You can mark test cases by:

Choice Select the individual test description, group description, or entire plan that you want to mark,
and then choosing the appropriate marking command on the Testplan menu.

Query You can also mark a test plan according to a certain set of characteristics it possesses. This is
called marking by query. You build a query based on one or more specific test characteristics;
its script file, data, symbols, or attributes, and then mark those tests that match the criteria set
up in the query. For example, you might want to mark all tests that live in the find.t script
and that were created by the developer named Peter. If you name and save the query, you can
reapply it in subsequent work sessions without having to rebuild the query or manually remark
the tests that you’re interested in working with.

Test
failure

After running a test plan, the generated results file might indicate test failures. You can mark
these failures in the plan by selecting Results > Mark Failures in Plan. You then might fix the
errors and re-run the failed tests.

How the Marking Commands Interact
When you apply a mark using the Mark command, the new mark is added to existing marks.

When you mark tests through the query marking commands, the test plan editor by default clears all
existing marks before running the query. Mark by Named Query supports sophisticated query
combinations, and it would not make sense to retain previous marks. However, Mark by Query, which
allows one-time-only queries, lets you override the default behavior and retain existing marks.

To retain existing marks, uncheck the Unmark All Before Query check box in the Mark by Query dialog
box.

Marking One or More Tests
To mark:

A single test Place the cursor on the test description and click Testplan > Mark.

A group of related tests Place the cursor on the group description and click Testplan > Mark. The
test plan editor marks the group description, its associated statements, and
all test descriptions and statements subordinate to the group description.

Two or more adjacent
tests and their
subordinate tests

Select the test description of the adjacent tests and click Testplan > Mark.
The test plan editor marks the test descriptions and statements of each
selected test and any subordinate tests.

Printing Marked Tests
1. Click File > Print.
2. In the Print dialog box, make sure the Print Marked Only check box is checked, as well as any other

options you want.

114 | Test Plans

3. Click OK.

Using Symbols
This section describes symbols, which represent pieces of data in a data driven test case.

Overview of Symbols
A symbol represents a piece of data in a data driven test case. It is like a 4Test identifier, except that its
name begins with the $ character. The value of a symbol can be assigned locally or inherited. Locally
assigned symbols display in black and symbols that inherit their value display in blue in the Testplan Detail
dialog box.

For example, consider the following test plan:

The test plan in the figure uses six symbols:

• $Text is the text to enter in the document window.
• $Position is the position of the insertion point in the document window.

Test Plans | 115

• $Pattern is the pattern to search for in the document window.
• $Case is the state of the Case Sensitive check box.
• $Direction is the direction of the search.
• $Expected is the expected match.

The symbols are named in the parameter list to the FindTest testcase, within the parentheses after
the test case name.

testcase: FindTest ({ $Text, $Position, $Pattern, $Case, $Direction,
$Expected })

• The symbols are only named in the parameter list; they are not assigned values. The values are
assigned at either the group or test description level, depending on whether the values are shared by
several tests or are unique to a single test. If a symbol is defined at a level in the plan where it can be
shared by a group of tests, each test can assign its own local value to the symbol, overriding whatever
value it had at the higher level. You can tell whether a symbol is locally assigned by using the Testplan
Detail dialog box: Locally assigned symbols display in black. Symbols that inherit their values display in
blue.

For example, in the preceding figure, each test description assigns its own unique values to the $Pattern
and the $Expected symbols. The remaining four symbols are assigned values at a group description level:

• The $Text symbol is assigned its value at the Find dialog group description level, because all eight
tests of the Find dialog enter the text Silk Test Classic into the document window of the Text Editor
application.

• The $Case symbol is assigned the value TRUE at the Case sensitive group description level and the
value FALSE at the Case insensitive group description level.

• The $Direction symbol is assigned the value Down at the Forward group description level, and the
value Up at the Backward group description level.

• The $Position symbol is assigned the value <HOME> at the Forward group description level, and the
value <END> at the Backward group description level.

Because the data that is common is factored out and defined at a higher level, it is easy to see exactly what
is unique to each test.

Symbol Definition Statements in the Test Plan Editor
Use symbols to define data that is shared by a group of tests in the plan. Symbol definitions follow these
syntax conventions:

• The symbol name can be any valid 4Test identifier name, but must begin with the $ character.
• The symbol value can be any text. When the test plan editor encounters the symbol, it expands it (in the

same sense that another language expands macros). For example, the following test plan editor
statement defines a symbol named Color and assigns it the STRING value "Red":

$Color = "Red"

• To use a $ in a symbol value, precede it with another $. Otherwise, the compiler will interpret everything
after the $ as another symbol. For example, this statement defines a symbol with the value Some
$String: $MySymbol = "Some$$String "

• To assign a null value to a symbol, do not specify a value after the equals sign. For example:
$MyNullSymbol =

• To indicate that a test is incomplete when generating a test plan completion report, assign the symbol
the ? character. For example: $MySymbol = ?

If a symbol is listed in the argument list of a test case, but is not assigned a value before the test case is
actually called, the test plan editor generates a runtime error that indicates that the symbol is undefined. To
avoid this error, assign the symbol a value or a ? if the data is not yet finalized.

116 | Test Plans

Defining Symbols in the Testplan Detail Dialog box
Place the insertion cursor in the plan where you need to assign a value to a symbol.

1. Click Testplan > Detail.

2. Select the Symbols tab on the Testplan Detail dialog box, and enter the symbol definition in the text
box to the left of the Add button.

You do not need to enter the $ character; the test plan editor takes care of this for you when it inserts
the definitions into the test plan.

3. Click Add. Silk Test Classic adds the symbol to the list box above the Add text text box.

4. Define additional symbols in the same manner, and then click OK when finished.

Silk Test Classic closes the Testplan Detail dialog box and enters the symbol definitions, including the
$ character, into the plan. If a symbol is defined at a level in the plan where it can be shared by a group
of tests, each test can assign its own local value to the symbol, overriding whatever value it had at the
higher level. You can tell whether a symbol is locally assigned by using the Testplan Detail dialog box:
Locally assigned symbols display in black. Symbols that inherit their values display in blue.

Assigning a Value to a Symbol
You can define symbols and assign values to them by typing them into the test plan, using this syntax:

$symbolname = symbolvalue

where symbolname is any valid 4Test identifier name, prefixed with the $ character and symbolvalue is
any string, list, array, or the ? character (which indicates an undefined value).

For example, the following statement defines a symbol named Color and assigns it the STRING value
"Red":

$Color = "Red"

If a symbol is defined at a level in the plan where it can be shared by a group of tests, each test can assign
its own local value to the symbol, overriding whatever value it had at the higher level.

Specifying Symbols as Arguments when Entering a
testcase Statement
1. Place the insertion cursor in the test plan at the location where the testcase statement is to be

inserted. Placing a symbol name in the argument list of a testcase statement only specifies the name
of the symbol; you also need to define the symbol and assign it a value at either the group or test case
description level, as appropriate.

If you do not know the value when you are initially writing the test plan, assign a question mark (?) to
avoid getting a compiler error when you compile the test plan; doing so will also cause the tests to be
counted as incomplete when a Completion report is generated.

2. Click Testplan > Detail.

3. Enter the name of a data driven test case on the Testplan Detail dialog box, followed by the argument
list enclosed in parenthesis. If the test case expects a record, and not individual values, you must use
the list constructor operator (curly braces).

4. Click OK. Silk Test Classic dismisses the Testplan Detail dialog box and inserts the testcase
statement into the test plan.

Test Plans | 117

Attributes and Values
This section describes site-specific characteristics that you can define for your test plan and assign to test
descriptions and group descriptions.

Overview of Attributes and Values
Attributes are site-specific characteristics that you can define for your test plan and assign to test
descriptions and group descriptions. Attributes are used to categorize tests, so that you can reference them
as a group. Attributes can also be incorporated into queries, which allow you to mark tests that match the
query’s criteria. Marked tests can be run as a group.

By assigning attributes to parts of the test plan, you can:

• Group tests in the plan to distinguish them from the whole test plan.
• Report on the test plan based on a given attribute value.
• Run parts of the test plan that have a given attribute value.

For example, you might define an attribute called Engineer that represents the set of QA engineers that are
testing an application through a given test plan. You might then define values for Engineer like David,
Jesse, Craig, and Zoe, the individual engineers who are testing this plan. You can then assign the values of
Engineer to the tests in the test plan. Certain tests are assigned the value of David, others the value of
Craig, and so on. You can then run a query to mark the tests that have a given value for the Engineer
attribute. Finally, you can run just these marked tests.

Attributes are also used to generate reports. For example, to generate a report on the number of passed
and failed tests for Engineer Craig, simply select this value from the Pass/Fail Report dialog box. You do
not need to mark the tests or build a query in this case.

Attributes and values, as well as queries, are stored by default in testplan.ini which is located in the
Silk Test Classic installation directory. The initialization file is specified in the Data File for Attributes and
Queries field in the General Options dialog box.

Silk Test Classic ships with predefined attributes. You can also create up to 254 user-defined attributes.

Make sure that all the QA engineers in your group use the same initialization body file. You can modify the
definition of an attribute.

Modifying attributes and values through the Define Attributes dialog box has no effect on existing
attributes and values already assigned to the test plan. You must make the changes in the test plan
yourself.

Predefined Attributes
The test plan editor has three predefined attributes:

Developer Specifies the group of QA engineers who developed the test cases called by the test plan.

Component Specifies the application modules to be tested in this test plan.

Category Specifies the kinds of tests used in your QA Department, for example, Smoke Test.

User Defined Attributes
You can define up to 254 attributes. You can also rename the predefined attributes.

The rules for naming attributes include:

118 | Test Plans

• Attribute names can be up to 11 characters long.
• Attribute and value names are not case sensitive.

Adding or Removing Members of a Set Attribute
Tests can be assigned more than one value at a time for attributes whose type is Set.

For example, you might have a Set variable called RunWhen with three values: UI, regression,
andsmoke. You can assign any combination of these three values to a test or group of tests. Separate
each value with a semicolon.

You can use the + or – operator to add or subtract elements to what were previously assigned.

Consider the following examples:

Using + to add numbers

RunWhen: UI; regression Test 1 testcase: t1 RunWhen: + smoke
Test 2 testcase: t2

In this example, Test 1 has the values UI and regression . The statement

RunWhen: + smoke

adds the value smoke to the previously assigned values, so Test 2 has the values UI,
regression, and smoke.

Using - to remove numbers

RunWhen: UI; regression Test 1 testcase: t1 RunWhen: -
regression Test 2

testcase: t2

In this example, Test 1 has the values UI and regression. The statement

RunWhen: - regression

removes the value regression from the previously assigned values, so Test2 has the
value UI.

Rules for Using + and -
• You must follow the + or – with a space.
• You can add or remove any number of elements with one statement. Separate each element with a

semicolon.
• You can specify + elements even if no assignments had previously been made. The result is that the

elements are now assigned.
• You can specify – elements even if no assignments had previously been made. The result is that the

set’s complement is assigned. Using the previous example, specifying:

RunWhen: - regression

when no RunWhen assignment had previously been made results in the values UI and smoke being
assigned.

Defining an Attribute and its Values
1. Click Testplan > Define Attributes, and then click New.

Test Plans | 119

2. Name the attribute.

3. Select one of the following types, and then click OK.

Normal You specify values when you define the attribute. Users of the attribute in a test plan pick one
value from the list.

Edit You don't specify values when you define the attribute. Users type their own values when they
use the attribute in a test plan.

Set Like normal, except that users can pick more than one value.

4. On the Define Attributes dialog box, if you:

• have defined an Edit type attribute, you are done. Click OK to close the dialog box.
• are defining a Normal or Set type attribute, type a value in the text box and click Add.

Once attributes have been defined, you can modify them.

Assigning Attributes and Values to a Test Plan
Attributes and values have no connection to a test plan until you assign them to one or more tests using an
assignment statement. To add an assignment statement, you can do one of the following:

• Type the assignment statement yourself directly in the test plan.
• Use the Testplan Detail dialog box.

Format

An assignment statement consists of the attribute name, a colon, and a valid attribute value, in this format:

attribute-name: attribute value

For example, the assignment statement that associates the Searching value of the Module attribute to a
given test would look like:

Module: Searching

Attributes of type Set are represented in this format:

attribute-name: attribute value; attribute
value; attribute value; ...

Placement

Whether you type an assignment statement yourself or have the Testplan Detail dialog box enter it for you,
the position of the statement in the plan is important.

To have an assignment statement apply to Place it directly after the

An individual test test description

A group of tests group description

Assigning an Attribute from the Testplan Detail Dialog
Box
1. Place the cursor in the test plan where you would like the assignment statement to display, either after

the test description or the group description.

2. Click Testplan > Detail, and then click the Test Attributes tab on the Testplan Detail dialog box. The
arrow in the list box at the top of the dialog box identifies the test description at the cursor position in the
test plan. The attribute will be added to this test description. The Test Attributes tab lists all your
current attributes at this level of the test plan.

120 | Test Plans

3. Do one of the following:

• If the attribute is of type Normal, select a value from the list.
• If the attribute is of type Set, select on or more values from the list.
• If the attribute is of type Edit, type a value.

4. Click OK. Silk Test Classic closes the dialog box and places the assignment statements in the test plan.

Modifying the Definition of an Attribute
Be aware that modifying attributes and values through the Define Attributes dialog box has no effect on
existing attributes and values already assigned to the test plan. You must make the changes in the test plan
yourself.

1. Click Testplan > Define Attributes.

2. On the Define Attributes dialog box, select the attribute you want to modify, then:

Rename an attribute Edit the name in the Name text box.

Assign a new value
to the attribute

Type the value in the text box at the bottom right of the dialog box, and click
Add. The value is added to the list of values.

Modify a value Select the value from the Values list box, and click Edit. The value displays in
the text box at the bottom right of the dialog box and the Add button is
renamed to Replace. Modify the value and click Replace.

Delete a value Select the value from the Values list box and click Remove. The text box is
cleared and the value is removed from the Values list box.

Delete an attribute Click Delete.

3. Click OK. The attributes and values are saved in the initialization file specified in the General Options
dialog box.

Queries
This section describes how you can use a test plan query to mark all tests that match a user-selected set
of criteria, or test characteristics.

Overview of Test Plan Queries
You can use a test plan query to mark all tests that match a user-selected set of criteria, or test
characteristics. A query comprises one or more of the following criteria:

• Test plan execution: script file, test case name, or test data
• Test attributes and values
• Symbols and values

Test attributes and symbols must have been previously defined to be used in a query.

Named queries are stored by default in testplan.ini. The initialization file is specified in the Data File
for Attributes and Queries text box in the General Options dialog box. The testplan.ini file is in the
Silk Test Classic installation directory. Make sure that all the QA engineers in your group use the same
initialization file.

Test Plans | 121

Overview of Combining Queries to Create a New Query
You can combine two or more existing queries into a new query using the Mark by Named Query dialog
box. The new query can represent the union of the constituent queries (logical OR) or the intersection of
the constituent queries (logical AND).

Combining by union

Combining two or more queries by union creates a new named query that marks all tests that would have
been marked by running each query one after the other while retaining existing marks. Since Mark by
Named Query clears existing marks before running a query, the only way to achieve this result is to create
a new query that combines the constituent queries by union.

Example

Suppose you have two queries, Query1 and Query2, that you want to combine by union.

Query1 Query2

Developer: David Developer: Jesse

Component: Searching TestLevel: 2

The new query created from the union of Query1 and Query2 will first mark those tests
that match all the criteria in Query1 (Developer is David and Component is Searching)
and then mark those tests that match all the criteria in Query2 (Developer is Jesse and
TestLevel is 2).

Combining by intersection

Combining two or more queries by intersection creates a new named query that marks every test that has
the criteria specified in all constituent queries.

Example

For example, combining Query1 and Query2 by intersection would create a new query
that comprised these criteria: Developer is David and Jesse, Component is Searching,
and TestLevel is 2. In this case, the new query would not mark any tests, since it is
impossible for a test to have two different values for the attribute Developer (unless
Developer were defined as type Set under Windows). Use care when combining queries
by intersection.

Guidelines for Including Symbols in a Query
• Use ? (question mark) to indicate an unset value. For example, Mysymbol = ? in a query would mark

those tests where Mysymbol is unset. Space around the equals sign (=) is insignificant.
• If you need to modify the symbol in the query, select it from the list box and click Edit. The test plan

editor places it in the text box and changes the Add button to Replace. Edit the symbol or value and
click Replace.

• To exclude the symbol from the query, select it from the list box and click Remove. The test plan editor
deletes it from the list box.

122 | Test Plans

The Differences between Query and Named Query
Commands
Testplan > Mark by Query or Testplan > Mark by Named Query both create queries, however, Mark by
Named Query provides extra features, like the ability to combine queries or to create a query without
running it immediately. If the query-creation function and the query-running function are distinct in your
company, then use Mark by Named Query. If you intend to run a query only once, or run a query while
keeping existing marks, then use Mark by Query.

The following table highlights the differences between the two commands.

Mary by Query Mark by Named Query

Builds a query based on criteria you select and runs
query immediately.

Builds a new query based on criteria you select. Can run
query at any time.

Name is optional, but note that only named queries are
saved and can be rerun at any time in the Mark by
Named Query dialog box.

Name is required. Query is saved.

Cannot edit or delete a query. Can edit or delete a query.

Cannot combine queries. Can combine queries into a new query.

Lets you decide whether or not to clear existing marks
before running new query. Unmarks by default.

Clears existing marks before running new query.

Unnamed queries can be run only once. If you name the query, you can have the test plan editor run it in
the same or subsequent work sessions without having to rebuild the query or manually remark the tests
that you’re interested in rerunning or reporting on.

Create a New Query
You can create a new query through either Testplan > Mark by Query or Testplan > Mark by Named
Query. You can also create a new query by combining existing queries.

1. Open the test plan and any associated sub-plans.

2. Click Testplan > Mark by Query or Testplan > Mark by Named Query.

3. Identify the criteria you want to include in the query. To include:

• A script, test case, or test data, use the Test Execution tab. Use the Script and Testcase buttons to
select a script and test case, or type the full specification yourself. To build a query that marks only
manual tests, enter the keyword manual in the Testcase text box.

• Existing attributes and values in the query, use the Test Attributes tab.
• One or more existing symbols and values, use the Symbols panel. Type the information and click

Add. The symbol and value are added to the list box.

Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters * (asterisk) and ?
(question mark) are supported for partial matches: * is a placeholder for 0 or more characters, and ? is
a placeholder for 1 character.

Example 1

If you type find_5 (* in the Testcase field, the query searches all the testcase statements in the
plan and marks those test descriptions that match, as well as all subordinate descriptions to which the
matching testcase statement applies (those where the find_5 testcase passed in data).

Example 2

If you type find.t in the Script field, the query searches all script statements in the plan and marks
those test descriptions that match exactly, as well as all subordinate descriptions to which the matching

Test Plans | 123

script statement applies (those in which you had specified find.t exactly). It would not match any
script statements in which you had specified a full path.

4. Take one of the following actions, depending on the command you chose to create the query:

Mark by
Query

Click Mark to run the query against the test plan. The test plan editor closes the dialog
box and marks the test plan, retaining the existing marks if requested.

Mark by
Named
Query

Click OK to create the query. The New Testplan Query dialog box closes, and the
Mark by Named Query dialog box is once again visible. The new query displays in the
Testplan Queries list box.

If you want to:

• Run the query, select it from the list box and click Mark.
• Close the dialog box without running the query, click Close.

Edit a Query
1. Click Testplan > Mark by Named Query to display the Mark by Named Query dialog box.

2. Select a query from the Testplan Queries list box and click Edit.

3. On the Edit Testplan Query dialog box, edit the information as appropriate, and then click OK .

4. To run the query you just edited, select the query and click Mark . To close the dialog box without
running the edited query, click Close .

Delete a Query
1. Click Testplan > Mark by Named Query to open the Mark by Named Query dialog box.

2. Select a query from the Testplan Queries box and click Remove.

3. Click Yes to delete the query, and then click Close to close the dialog box.

Combining Queries
1. Click Testplan > Mark by Named Query to display the Mark by Named Query dialog box.

2. Click Combine. The Combine Testplan Queries dialog box lists all existing named queries in the
Queries to Combine list box.

3. Specify a name for the new query in the Query Name text box.

4. Select two or more queries to combine from the Queries to Combine list box.

5. Click the option button that represents the combination method to use: either Union of Queries or
Intersection of Queries.

6. Click OK to save the new query. The Mark by Named Query dialog box displays with the new query in
the Testplan Queries list box.

7. To run the query, select the query and click Mark or click Close to close the dialog box without running
the query.

124 | Test Plans

Designing and Recording Test Cases with
the Open Agent

This section describes how you can design and record test cases with the Open Agent.

Dynamic Object Recognition
Dynamic object recognition enables you to create test cases that use XPath queries to find and identify
objects. Dynamic object recognition uses a Find or FindAll method to identify an object in a test case.
For example, the following query finds the first top-level Shell with the caption SWT Test Application:

Desktop.find("/Shell[@caption='SWT Test Application']")

To create tests that use dynamic object recognition, you must use the Open Agent.

Examples of the types of test environments where dynamic object recognition works well include:

• In any application environment where the graphical user interface is undergoing changes. For example,
to test the Check Me check box in a dialog box that belongs to a menu where the menu and the dialog
box name are changing, using dynamic object recognition enables you to test the check box without
concern for what the menu and dialog box are called. You can then verify the check box name, dialog
box name, and menu name to ensure that you have tested the correct component.

• In a Web application that includes dynamic tables or text. For example, to test a table that displays only
when the user points to a certain item on the web page, use dynamic object recognition to have the test
case locate the table without regard for which part of the page needs to be clicked in order for the table
to display.

• In an Eclipse environment that uses views. For example, to test an Eclipse environment that includes a
view component, use dynamic object recognition to identify the view without regard to the hierarchy of
objects that need to open prior to the view.

Using dynamic object recognition compared to using hierarchical object recognition

The benefits of using dynamic object recognition rather than hierarchical object recognition include:

• Dynamic object recognition uses a subset of the XPath query language, which is a common XML-based
language defined by the World Wide Web Consortium, W3C. Hierarchical object recognition is based on
the concept of a complete description of the application's object hierarchy and as a result is less flexible
than dynamic object recognition.

• Dynamic object recognition requires a single object rather than an include file that contains window
declarations for the objects in the application that you are testing. Using XPath queries, a test case can
locate an object using a Find command followed by a supported XPath construct. Hierarchical object
recognition uses the include file to identify the objects within the application.

You can create tests for both dynamic and hierarchical object recognition in your test environment. You can
use both recognition methods within a single test case if necessary. Use the method best suited to meet
your test requirements.

Using dynamic object recognition and window declarations

Silk Test Classic provides an alternative to using Find or FindAll functions in scripts that use dynamic
object recognition. By default, when you record a test case with the Open Agent, Silk Test Classic uses
locator keywords in an include (.inc) file to create scripts that use dynamic object recognition and window
declarations. Using locator keywords with dynamic object recognition enables users to combine the
advantages of INC files with the advantages of dynamic object recognition. For example, scripts can use

Designing and Recording Test Cases with the Open Agent | 125

window names in the same manner as traditional, Silk Test Classic tag-based scripts and leverage the
power of XPath queries.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file. You must manually record test cases that use dynamic
object recognition without locator keywords. You can record the XPath query strings to include in test cases
by using the Locator Spy dialog box.

XPath Basic Concepts
Silk Test Classic supports a subset of the XPath query language. For additional information about XPath,
see http://www.w3.org/TR/xpath20/.

XPath expressions rely on the current context, the position of the object in the hierarchy on which the Find
method was invoked. All XPath expressions depend on this position, much like a file system. For example:

• "//Shell" finds all shells in any hierarchy starting from the current context.
• "Shell" finds all shells that are direct children of the current context.

Additionally, some XPath expressions are context sensitive. For example, myWindow.find(xPath) makes
myWindow the current context.

Silk Test Classic provides an alternative to using Find or FindAll functions in scripts that use XPath
queries. You can use locator keywords in an INC file to create scripts that use dynamic object recognition
and window declarations.

Object Type and Search Scope
A locator typically contains the type of object to identify and a search scope. The search scope is one of
the following:

• //
• /

Locators rely on the current object, which is the object for which the locator is specified. The current object
is located in the object hierarchy of the application's UI. All locators depend on the position of the current
object in this hierarchy, much like a file system.

XPath expressions rely on the current context, which is the position of the object in the hierarchy on which
the Find method was invoked. All XPath expressions depend on this position, much like a file system.

Note:

The object type in a locator for an HTML element is either the HTML tag name or the class name that
Silk Test Classic uses for this object. For example, the locators //a and //DomLink, where DomLink
is the name for hyperlinks in Silk Test Classic, are equivalent. For all non-HTML based technologies
only the Silk Test Classic class name can be used.

Example

• //a identifies hyperlink objects in any hierarchy relative to the current object.
• /a identifies hyperlink objects that are direct children of the current object.

Note: <a> is the HTML tag for hyperlinks on a Web page.

Example

The following code sample identifies the first hyperlink in a browser. This example
assumes that a variable with the name browserWindow exists in the script that refers to

126 | Designing and Recording Test Cases with the Open Agent

http://www.w3.org/TR/xpath20

a running browser instance. Here the type is "a" and the current object is
browserWindow.

Using Attributes to Identify an Object
To identify an object based on its properties, you can use locator attributes. The locator attributes are
specified in square brackets after the type of the object.

Example

The following sample uses the textContents attribute to identify a hyperlink with the
text Home. If there are multiple hyperlinks with the same text, the locator identifies the
first one.

Supported XPath Subset
Silk Test Classic supports a subset of the XPath query language. Use a FindAll or a Find command
followed by a supported construct to create a test case.

To create tests that use dynamic object recognition, you must use the Open Agent.

The following table lists the constructs that Silk Test Classic supports.

Supported XPath Construct Sample Description

Attribute MenuItem[@caption='abc'] Finds all menu items with the given
caption attribute in their object definition
that are children of the current context.
The following attributes are supported:

• caption (without caption index)

• priorlabel (without index)

• windowid

Index MenuItem[1] Finds the first menu item that is a child
of the current context. Indices are 1-
based in XPath.

Logical Operators: and, or, not, =, != MenuItem[not(@caption='a'
or @windowid!='b') and
@priorlabel='p']

. TestApplication.Find(“//
Dialog[@caption='Check
Box']/././.”)

Finds the context on which the Find
command was executed. For instance,
the sample could have been typed as
TestApplication.Find(“//
Dialog[@caption='Check
Box']”).

.. Desktop.Find(“//
PushButton[@caption='Previ
ous']/../
PushButton[@caption=’Ok’]”
)

Finds the parent of an object. For
instance, the sample finds a
PushButton with the caption “Ok” that
has a sibling PushButton with the
caption “Previous.”

/ /Shell Finds all shells that are direct children
of the current object.

Designing and Recording Test Cases with the Open Agent | 127

Supported XPath Construct Sample Description

"./Shell" is equivalent to "/Shell" and
"Shell".

/ /Shell/MenuItem Finds all menu items that are a child of
the current object.

// //Shell Finds all shells in any hierarchy relative
to the current object.

// //Shell//MenuItem Finds all menu items that are direct or
indirect children of a Shell that is a
direct child of the current object.

// //MenuItem Finds all menu items that are direct or
indirect children of the current context.

* *[@caption='c'] Finds all objects with the given caption
that are a direct child of the current
context.

* .//MenuItem/*/Shell Finds all shells that are a grandchild of
a menu item.

The following table lists the XPath constructs that Silk Test Classic does not support.

Unsupported XPath Construct Example

Comparing two attributes with each other. PushButton[@caption = @windowid]

An attribute name on the right side is not supported. An
attribute name must be on the left side.

PushButton['abc' = @caption]

Combining multiple XPath expressions with 'and' or 'or'. PushButton [@caption = 'abc'] or .//
Checkbox

More than one set of attribute brackets. PushButton[@caption = 'abc] [@windowid =
'123']

Use PushButton [@caption = 'abc and
@windowid = '123'] instead.

More than one set of index brackets. PushButton[1][2]

Any construct that does not explicitly specify a class or the
class wildcard, such as including a wildcard as part of a
class name.

//[@caption = 'abc']

Use //*[@caption = 'abc'] instead.

"//*Button[@caption='abc']"

XPath Samples
The following table lists sample XPath queries and explains the semantics for each query.

XPath String Description

desktop.Find("/Shell[@caption='SWT
Test Application'] ")

Finds the first top-level Shell with the given caption.

desktop.Find("//
MenuItem[@caption='Control']")

Finds the MenuItem in any hierarchy with the given
caption.

128 | Designing and Recording Test Cases with the Open Agent

XPath String Description

myShell.Find("//MenuItem[@caption!
='Control']")

Finds an MenuItem in any child hierarchy of myShell
that does not have the given caption.

myShell.Find("Menu[@caption='Control']
/MenuItem[@caption!='Control']")

Looks for a specified MenuItem with the specified
Menu as parent that has myShell as parent.

myShell.Find("//
MenuItem[@caption='Control' and
@windowid='20']")

Finds a MenuItem in any child hierarchy of myWindow
with the given caption and windowId.

myShell.Find("//
MenuItem[@caption='Control' or
@windowid='20']")

Finds a MenuItem in any child hierarchy of myWindow
with the given caption or windowId.

desktop.FindAll("/Shell[2]/*/
PushButton")

Finds all PushButtons that have an arbitrary parent that
has the second top-level shell as parent.

desktop.FindAll("/Shell[2]//
PushButton")

Finds all PushButtons that use the second shell as direct
or indirect parent.

myBrowser.Find("//FlexApplication[1]//
FlexButton[@caption='ok']")

Looks up the first FlexButton within the first
FlexApplication within the given browser.

myBrowser.FindAll("//
td[@class='abc*']//a[@class='xyz']")

Finds all link elements with attribute class xyz that are
direct or indirect children of td elements with attribute
class abc*.

Supported Locator Attributes
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. If necessary, you can change the attribute type in one of the following ways:

• Manually typing another attribute type and value.
• Specifying another preference for the default attribute type by changing the custom attributes list values.

To create tests that use locators, you must use the Open Agent.

Using Locators
Within Silk Test Classic, literal references to identified objects are referred to as locators. For convenience,
you can use shortened forms for the locator strings in scripts. Silk Test Classic automatically expands the
syntax to use full locator strings when you playback a script. When you manually code a script, you can
omit the following parts in the following order:

• The search scope, //.
• The object type name. Silk Test Classic defaults to the class name.
• The surrounding square brackets of the attributes, [].

When you manually code a script, we recommend that you use the shortest form available.

Note: When you identify an object, the full locator string is captured by default.

The following locators are equivalent:

• The first example uses the full locator string.

To confirm the full locator string, use the dialog box.

Designing and Recording Test Cases with the Open Agent | 129

• The second example works when the browser window already exists. Alternatively, you can use the
shortened form.

To find an object that has no real attributes for identification, use the index. For instance, to select the
second hyperlink on a Web page, you can type:

Additionally, to find the first object of its kind, which might be useful if the object has no real attributes, you
can type:

Using Locators to Check if an Object Exists
You can use the Exists method to determine if an object exists in the application under test.

The following code checks if a hyperlink with the text Log out exists on a Web page:

if (browserWindow.Exists("//a[@textContents='Log out']")) {
 // do something
}

Using the Find method

You can use the Find method and the FindOptions method to check if an object, which you want to use
later, exists.

The following code searches for a window and closes the window if the window is found:

Window mainWindow = desktop.Find("//Window[@caption='My Window']", new
FindOptions(false))
if (mainWindow != null){
 mainWindow.CloseSynchron()
}

Identifying Multiple Objects with One Locator
You can use the FindAll method to identify all objects that match a locator rather that only identifying the
first object that matches the locator.

Example

The following code example uses the FindAll method to retrieve all hyperlinks of a
Web page:

LIST OF DOMLINK links = browserWindow.FindAll("//a")

Locator Customization
This section describes how you can create stable locators that enable Silk Test Classic to reliably recognize
the controls in your application under test (AUT).

Silk Test Classic relies on the identifiers that the AUT exposes for its UI controls and is very flexible and
powerful in regards to identifying UI controls. Silk Test Classic can use any declared properties for any UI
control class and can also create locators by using the hierarchy of UI controls. From the hierarchy, Silk
Test Classic chooses the most appropriate items and properties to identify each UI control.

Silk Test Classic can exclude dynamic numbers of controls along the UI control hierarchy, which makes the
object recognition in Silk Test Classic very robust against changes in the AUT. Intermediate grouping
controls that change the hierarchy of the UI control tree, like formatting elements in Web pages, can be
excluded from the object recognition.

Some UI controls do not expose meaningful properties, based on which they can be identified uniquely.
Applications which include such controls are described as applications with bad testability. Hierarchies, and
especially dynamic hierarchies, provide a good means to create unique locators for such applications.

130 | Designing and Recording Test Cases with the Open Agent

Applications with good testability should always provide a simple mechanism to identify UI controls
uniquely.

One of the simplest and most effective practices to make your AUT easier to test is to introduce stable
identifiers for controls and to expose these stable identifiers through the existing interfaces of the
application.

Stable Identifiers
A stable identifier for a UI control is an identifier that does not change between invocations of the control
and between different versions of the application, in which the UI control exists. A stable identifier needs to
be unique in the context of its usage, meaning that no other control with the same identifier is accessible at
the same time. This does not necessarily mean that you need to use GUID-style identifiers that are unique
in a global context. Identifiers for controls should be readable and provide meaningful names. Naming
conventions for these identifiers will make it much easier to associate the identifier to the actual control.

Example: Is the caption a good identifier for a control?

Very often test tools are using the caption as the default identifier for UI controls. The
caption is the text in the UI that is associated with the control. However, using the
caption to identify a UI control has the following drawbacks:

• The caption is not stable. Captions can change frequently during the development
process. For example, the UI of the AUT might be reviewed at the end of the
development process. This prevents introducing UI testing early in the development
process because the UI is not stable.

• The caption is not unique. For example, an application might include multiple buttons
with the caption OK.

• Many controls are not exposing a caption, so you need to use another property for
identification.

• Using captions for testing localized applications is cumbersome, as you need to
maintain a caption for a control in each language and you also have to maintain a
complex script logic where you dynamically can assign the appropriate caption for
each language.

Creating Stable Locators

One of the main advantages of Silk Test Classic is the flexible and powerful object-recognition mechanism.
By using XPath notation to locate UI controls, Silk Test Classic can reliably identify UI controls that do not
have any suitable attributes, as long as there are UI elements near the element of interest that have
suitable attributes. The XPath locators in Silk Test Classic can use the entire UI control hierarchy or parts of
it for identifying UI controls. Especially modern AJAX toolkits, which dynamically generate very complex
Document Object Models (DOMs), do not provide suitable control attributes that can be used for locating UI
controls.

In such a case, test tools that do not provide intelligent object-recognition mechanisms often need to use
index-based recognition techniques to identity UI controls. For example, identify the n-th control with icon
Expand. This often results in test scripts that are hard to maintain, as even minor changes in the
application can break the test script.

A good strategy to create stable locators for UI controls that do not provide useful attributes is to look for an
anchor element with a stable locator somewhere in the hierarchy. From that anchor element you can then
work your way to the element for which you want to create the locator.

Silk Test Classic uses this strategy when creating locators, however there might be situations in which you
have to manually create a stable locator for a control.

Designing and Recording Test Cases with the Open Agent | 131

Example: Locating the Expand Icon in a Dynamic GWT Tree

The Google Widget Toolkit (GWT) is a very popular and powerful toolkit, which is hard to test. The dynamic
tree control is a very commonly used UI control in GWT. To expand the tree, we need to identify the
Expand icon element.

You can find a sample dynamic GWT tree at http://gwt.google.com/samples/Showcase/Showcase.html#!
CwTree.

The default locator generated by Silk Test Classic is the following:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-debug-cwTree-dynamicTree-
root-child0']/DIV/DIV[1]//IMG[@border='0']

For the following reasons, this default locator is no reliable locator for identifying the Expand icon for the
control Item 0.0:

• The locator is complex and built on multiple hierarchies. A small change in the DOM structure, which is
dynamic with AJAX, can break the locator.

• The locator contains an index for some of the controls along the hierarchy. Index based locators are
generally weak as they find controls by their occurrence, for example finding the sixth expand icon in a
tree does not define the control well. An exception to that rule would be if the index is used to express
different data sets that you want to identify, for example the sixth data row in a grid.

Often a good strategy for finding better locators is to search for siblings of elements that you need to locate.
If you find siblings with better locators, XPath allows you to construct the locator by identifying those
siblings. In this case, the tree item Item 0.0 provides a better locator than the Expand icon. The locator of
the tree item Item 0.0 is a stable and simple locator as it uses the @textContents property of the control.

By default, Silk Test Classic uses the property @id, but in GWT the @id is often not a stable property,
because it contains a value like ='gwt-uid-<nnn>', where <nnn> changes frequently, even for the same
element between different calls.

You can manually change the locator to use the @textContents property instead of the @id.

Original Locator:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-uid-109']

Alternate Locator:

/BrowserApplication//BrowserWindow//DIV[@textContents='Item 0.0']

Or you can instruct Silk Test Classic to avoid using @id='gwt-uid-<nnn>'. In this case Silk Test Classic
will automatically record the stable locator. You can do this by adding the text pattern that is used in @id
properties to the locator attribute value blacklist. In this case, add gwt-uid* to the blacklist.

When inspecting the hierarchy of elements, you can see that the control Item 0.0 and the Expand icon
control have a joint root node, which is a DomTableRow control.

To build a stable locator for the Expand icon, you first need to locate Icon 0.0 with the following locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']

Then you need to go up two levels in the element hierarchy to the DomTableRow element. You express this
with XPath by adding /../.. to the locator. Finally you need to search from DomTableRow for the
Expand icon. This is easy as the Expand icon is the only IMG control in the sub-tree. You express this with
XPath by adding //IMG to the locator. The final stable locator for the Expand icon looks like the following:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/../..//IMG

You can also use the sibling approach to identify text fields. Text fields often do not provide any meaningful
attributes that can be used in locators. By using the label of a text field, you could create a meaningful
locator for the text field, because the label is the best identifier for the text field from the perspective of a
tester. You can easily use the label as a part of the locator for a test field by using the sibling approach.

132 | Designing and Recording Test Cases with the Open Agent

http://gwt.google.com/samples/Showcase/Showcase.html#!CwTree
http://gwt.google.com/samples/Showcase/Showcase.html#!CwTree

Custom Attributes
This functionality is supported only if you are using the Open Agent.

Add custom attributes to a test application to make a test more stable. You can use custom attributes with
the following technologies:

• Java SWT
• Swing
• WPF
• xBrowser
• Windows Forms
• SAP

For example, in Java SWT, the developer implementing the GUI can define an attribute (for example,
silkTestAutomationId) for a widget that uniquely identifies the widget in the application. A tester using
Silk Test Classic can then add that attribute to the list of custom attributes (in this case,
silkTestAutomationId), and can identify controls by that unique ID. Using a custom attribute is more
reliable than other attributes like caption or index, since a caption will change when you translate the
application into another language, and the index will change whenever another widget is added before the
one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different fields, both fields will return when you call the loginName attribute.

First, enable custom attributes for your application and then create the test.

Recording tests that use dynamic object recognition

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition. For example, If you create a button in the application that you want to test using the
following code:

Button myButton = Button(parent, SWT.NONE);
myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test case, you can use the following query:

Window button = Desktop.Find(".//
PushButton[@SilkTestAutomationId='myButton']")

Custom Attributes for Apache Flex Applications

Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding="utf-8"?>
 <s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <fx:Script>
 …
 </fx:Script>
 <s:Button x="247" y="81" label="Button" id="button1" enabled="true"
click="button1_clickHandler(event)"
 automationName="AID_buttonRepeat"/>
 <s:Label x="128" y="123" width="315" height="18" id="label1"
verticalAlign="middle"
 text="awaiting your click" textAlign="center"/>
 </s:Group>

Designing and Recording Test Cases with the Open Agent | 133

Apache Flex application locators look like the following:

…//SparkApplication//SparkButton[@caption='AID_buttonRepeat'

Attention: For Apache Flex applications, the automationName is always mapped to the locator
attribute caption in Silk Test Classic. If the automationName attribute is not specified, Silk Test
Classic maps the property ID to the locator attribute caption.

Java SWT Custom Attributes

You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, 'silkTestAutomationId')
for a widget that uniquely identifies the widget in the application. A tester using Silk Test Classic can then
add that attribute to the list of custom attributes (in this case, 'silkTestAutomationId'), and can
identify controls by that unique ID. Using a custom attribute is more reliable than other attributes like
caption or index, since a caption will change when you translate the application into another language, and
the index will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different text fields, both fields will return when you call the 'loginName' attribute.

Java SWT Example

If you create a button in the application that you want to test using the following code:

Button myButton = Button(parent, SWT.NONE);

myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton("@SilkTestAutomationId='myButton'")

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Custom Attributes for Web Applications

HTML defines a common attribute ID that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify UI controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose UI control information to Silk Test Classic.

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk Test Classic allows you to configure the attribute that
you want to use as the default attribute for identification, even if the attribute is a custom attribute of the
control class. To set the custom attribute as the default identification attribute for a specific technology
domain, click Options > Recorder > Custom Attributes and select the technology domain.

The application developer just needs to add the additional HTML attribute to the Web
element.

134 | Designing and Recording Test Cases with the Open Agent

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322..."
AUTOMATION_ID = "AID_Login" <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk Test Classic uses the custom attribute to
construct a unique locator whenever possible. Web locators look like the following:

…//DomLink[@AUTOMATION_ID='AID_Login'

Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = 'gwt-uid-<nnn>'

In this case <nnn> changes frequently.

Custom Attributes for Windows Forms Applications

Windows Forms applications use the predefined automation property automationId to specify a stable
identifier for the Windows forms control.

Silk Test Classic automatically will use this property for identification in the locator. Windows Forms
application locators look like the following:

/FormsWindow//PushButton[@automationId='btnBasicControls']

Custom Attributes for WPF Applications

WPF applications use the predefined automation property AutomationProperties.AutomationId to
specify a stable identifier for the WPF control as follows:

<Window x:Class="Test.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button AutomationProperties.AutomationId="AID_buttonA">The
Button</Button>
 </Grid>
</Window>

Silk Test Classic automatically uses this property for identification in the locator. WPF application locators
look like the following:

/WPFWindow[@caption='MainWindow']//WPFButton[@automationId='AID_buttonA']

Troubleshooting Performance Issues for XPath
When testing applications with a complex object structure, for example complex web applications, you may
encounter performance issues, or issues related to the reliability of your scripts. This topic describes how
you can improve the performance of your scripts by using different locators than the ones that Silk Test
Classic has automatically generated during recording.

Note: In general, we do not recommend using complex locators. Using complex locators might lead to
a loss of reliability for your tests. Small changes in the structure of the tested application can break

Designing and Recording Test Cases with the Open Agent | 135

such a complex locator. Nevertheless, when the performance of your scripts is not satisfying, using
more specific locators might result in tests with better performance.

The following is a sample element tree for the application MyApplication:

Root
 Node id=1
 Leaf id=2
 Leaf id=3
 Leaf id=4
 Leaf id=5
 Node id=6
 Node id=7
 Leaf id=8
 Leaf id=9
 Node id=9
 Leaf id=10

You can use one or more of the following optimizations to improve the performance of your scripts:

• If you want to locate an element in a complex object structure , search for the element in a specific part
of the object structure, not in the entire object structure. For example, to find the element with the
identifier 4 in the sample tree, if you have a query like Root.Find("//Leaf[@id='4']"), replace it
with a query like Root.Find("/Node[@id='1']/Leaf[@id='4']"). The first query searches the
entire element tree of the application for leafs with the identifier 4. The first leaf found is then returned.
The second query searches only the first level nodes, which are the node with the identifier 1 and the
node with the identifier 6, for the node with the identifier 1, and then searches in the subtree of the node
with the identifier 1 for all leafs with the identifier 4.

• When you want to locate multiple items in the same hierarchy, first locate the hierarchy, and then locate
the items in a loop. If you have a query like Root.FindAll("/Node[@id='1']/Leaf"), replace it
with a loop like the following:

testcase Test() appstate none
 WINDOW node
 INTEGER i

 node = Root.Find("/Node[@id='1']")
 for i = 1 to 4 step 1
 node.Find("/Leaf[@id='{i}']")

Highlighting Objects During Recording
During recording, the active object in the AUT is highlighted by a green rectangle. As soon as a new object
becomes active this new object is highlighted. If the same object remains active for more than 0.5 seconds
a tool-tip will be displayed that displays the class name of the active object and also the current position of
the mouse relative to the active object. This tool-tip will no longer be displayed when a new object becomes
active, the user presses the mouse, or automatically after 2 seconds.

Overview of the Locator Keyword
Traditional Silk Test Classic scripts that use the Classic Agent use hierarchical object recognition. When
you record a script that uses hierarchical object recognition, Silk Test Classic creates an include (.inc) file
that contains window declarations and tags for the GUI objects that you are testing. Essentially, the INC file
serves as a central global, repository of information about the application under test. It contains all the data
structures that support your test cases and test scripts.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. The locator is the actual
name of the object, as opposed to the identifier, which is the logical name. Silk Test Classic uses the

136 | Designing and Recording Test Cases with the Open Agent

locator to identify objects in the application when executing test cases. Test cases never use the locator to
refer to an object; they always use the identifier.

You can also manually create test cases that use dynamic object recognition without locator keywords.
Dynamic object recognition uses a Find or FindAll function and an XPath query to locate the objects
that you want to test. No include file, window declaration, or tags are required.

The advantages of using locators with an INC file include:

• You combine the advantages of INC files with the advantages of dynamic object recognition. For
example, scripts can use window names in the same manner as traditional, Silk Test Classic tag-based
scripts and leverage the power of XPath queries.

• Enhancing legacy INC files with locators facilitates a smooth transition from using hierarchical object
recognition to new scripts that use dynamic object recognition. You use dynamic object recognition but
your scripts look and feel like traditional, Silk Test Classic tag-based scripts that use hierarchical object
recognition.

• You can use AutoComplete to assist in script creation. AutoComplete requires an INC file.

Syntax

The syntax for the locator keyword is:

[gui-specifier] locator locator-string

where locator-string is an XPath string. The XPath string is the same locator string that is used for the
Find or FindAll functions.

Example

The following example shows a window declaration that uses locators:

window MainWin TestApplication
 locator "//MainWin[@caption='Test Application']"

 // The working directory of the application when it is invoked
 const sDir = "{SYS_GetEnv("SEGUE_HOME")}"

 // The command line used to invoke the application
 const sCmdLine = """{SYS_GetEnv("SEGUE_HOME")}testapp.exe"""

 Menu Control
 locator "//Menu[@caption='Control']"
 MenuItem CheckBox
 locator "//MenuItem[@caption='Check box']"
 MenuItem ComboBox
 locator "//MenuItem[@caption='Combo box']"
 MenuItem ListBox
 locator "//MenuItem[@caption='List box']"
 MenuItem PopupList
 locator "//MenuItem[@caption='Popup list']"
 MenuItem PushButton
 locator "//MenuItem[@caption='Push button']"
 MenuItem RadioButton
 locator "//MenuItem[@caption='Radio button']"
 MenuItem ListView
 locator "//MenuItem[@caption='List view']"
 MenuItem PageList
 locator "//MenuItem[@caption='Page list']"
 MenuItem UpDown
 locator "//MenuItem[@caption='Up-Down']"
 MenuItem TreeView
 locator "//MenuItem[@caption='Tree view']"
 MenuItem Textfield
 locator "//MenuItem[@caption='Textfield']"

Designing and Recording Test Cases with the Open Agent | 137

 MenuItem StaticText
 locator "//MenuItem[@caption='Static text']"
 MenuItem TracKBar
 locator "//MenuItem[@caption='Track bar']"
 MenuItem ToolBar
 locator "//MenuItem[@caption='Tool bar']"
 MenuItem Scrollbar
 locator "//MenuItem[@caption='Scrollbar']"

 DialogBox CheckBox
 locator "//DialogBox[@caption='Check Box']"
 CheckBox TheCheckBox
 locator "//CheckBox[@caption='The check box']"
 PushButton Exit
 locator "//PushButton[@caption='Exit']"

For example, if the script uses a menu item like this:

TestApplication.Control.TreeView.Pick()

Then the menu item is resolved by using dynamic object recognition Find calls using
XPath locator strings.

The above statement is equivalent to:

Desktop.Find(“//MainWin[@caption='Test Application']
 //Menu[@caption='Control']//MenuItem[@caption='Tree
view']”).Pick()

Locator String Syntax

For convenience, you can use shortened forms for the XPath locator strings. Silk Test Classic automatically
expands the syntax to use full XPath strings when you run a script. You can omit:

• The hierarchy separator, “.//”. Silk Test Classic defaults to using “//”.
• The class name. Silk Test Classic defaults to the class name of the window that contains the locator.
• The surrounding square brackets of the attributes,"[]".
• The “@caption=’” if the xPath string refers to the caption.

The following locators are equivalent:

Menu Control
 //locator "//Menu[@caption='Control']"
 //locator "Menu[@caption='Control']"
 //locator "[@caption='Control']"
 //locator "@caption='Control'"
 locator "Control"

You can use shortened forms for the XPath locator strings only when you use an INC file. For scripts that
use dynamic object recognition without an INC file, you must use full XPath strings.

Window Hierarchies

You can create window hierarchies without locator strings. In the following example, the “Menu Control”
acts only as a logical hierarchy, used to provide the INC file with more structure. “Menu Control” does not
contribute to finding the elements further down the hierarchy.

window MainWin TestApplication
 locator "//MainWin[@caption='Test Application']"
 Menu Control
 MenuItem TreeView
 locator "//MenuItem[@caption='Tree view']"

138 | Designing and Recording Test Cases with the Open Agent

In this case, the statement:

TestApplication.Control.TreeView.Pick()

is equivalent to:

Desktop.Find(“.//MainWin[@caption='Test Application']
 //MenuItem[@caption='Tree view']”).Pick()

Window Declarations

A window declaration in Silk Test Classic cannot be executed for both agent types, Classic Agent and Open
Agent, during the execution of a test. The window declaration will only be executed for one of the agent
types.

Expressions

You can use expressions in locators. For example, you can specify:

STRING getSWTVersion()
 return SYS_GETENV("SWT_VERSION")
window Shell SwtTestApplication
 locator "SWT {getSWTVersion()} Test Application"

Comparing the Locator Keyword to the Tag Keyword

The syntax of locators is identical to the syntax of the tag keyword.

The overall rules for locators are the same as for tags. There can be only one locator per window, except
for different gui-specifiers, in this case there can be only one locator per gui-specifier.

You can use expressions in locators and tags.

The locator keyword requires a script that uses the Open Agent while the tag keyword requires a script that
uses the Classic Agent.

Setting Recording and Replay Options
This section describes how you can set options to optimize recording and replay.

Setting Recording Preferences for the Open Agent
Set the shortcut key combination to pause recording and specify whether absolute values and mouse move
actions are recorded.

All the following settings are optional. Change these settings if they will improve the quality of your test
methods.

1. Click Options > Recorder. The Recording Options dialog box opens.

2. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the
OPT_ALTERNATE_RECORD_BREAK check box.

By default, Ctrl+Alt is the shortcut key combination.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination.

3. To record absolute values for scroll events, check the OPT_RECORD_SCROLLBAR_ABSOLUT check
box.

4. To record mouse move actions for Web applications, Win32 applications, and Windows Forms
applications, check the OPT_RECORD_MOUSEMOVES check box. You cannot record mouse move
actions for child technology domains of the xBrowser technology domain, for example Apache Flex and
Swing.

Designing and Recording Test Cases with the Open Agent | 139

5. If you record mouse move actions, in the OPT_RECORD_MOUSEMOVE_DELAY text box, specify how
many milliseconds the mouse has to be motionless before a MouseMove is recorded.

By default this value is set to 200.

6. Click OK.

Setting Recording Options for xBrowser
This functionality is supported only if you are using the Open Agent.

There are several options that can be used to optimize the recording of Web applications.

1. Click Options > Recorder.

2. Check the Record mouse move actions box if you are testing a Web page that uses mouse move
events. You cannot record mouse move events for child technology domains of the xBrowser technology
domain, for example Apache Flex and Swing.

Silk Test Classic will only record mouse move events that cause changes to the hovered element or its
parent in order to keep scripts short.

3. You can change the mouse move delay if required.

Mouse move actions will only be recorded if the mouse stands still for this time. A shorter delay will
result in more unexpected mouse move actions.

4. Click the Browser tab.

5. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.

For example, if you do not want to record attributes named height, add the height attribute name to the
grid. Separate attribute names with a comma.

6. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to the grid.
Separate attribute values with a comma.

7. To record native user input instead of DOM functions, check the
OPT_XBROWSER_RECORD_LOWLEVEL check box.

For example, to record Click instead of DomClick and TypeKeys instead of SetText, check this
check box.

If your application uses a plug-in or AJAX, use native user input. If your application does not use a plug-
in or AJAX, we recommend using high-level DOM functions, which do not require the browser to be
focused or active during playback. As a result, tests that use DOM functions are faster and more
reliable.

8. Click the Custom Attributes tab.

9. Select xBrowser in the Select a tech domain list box and add the DOM attributes that you want to use
for locators to the text box.

Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added. If custom attributes are available, the locator generator uses these attributes
before any other attribute. The order of the list also represents the priority in which the attributes are
used by the locator generator. If the attributes that you specify are not available for the objects that you
select, Silk Test Classic uses the default attributes for xBrowser.

10.Click OK.

You can now record or manually create a test that uses ignores browser attributes and uses the type of
page input that you specified.

140 | Designing and Recording Test Cases with the Open Agent

Defining which Custom Locator Attributes to Use for
Recognition
The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unique at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results and
stable recognition of the controls in your application. You can use any property that is available in the
respective technology as a custom attribute, given that the property is either a number, like an integer or a
double, a string, an item identifier, or an enumeration value.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

In xBrowser, WPF, Java SWT, and Swing applications, you can also retrieve arbitrary properties, such as a
WPFButton that defines myCustomProperty, and then use those properties as custom attributes. To
achieve optimal results, the application developers can add a custom automation ID to the controls that you
want to interact with in your test. In Web applications, the application developers can add an attribute to
controls that you want to interact with, such as <div myAutomationId=”my unique element
name” />. This approach can eliminate the maintenance associated with locator changes. Or, in Java
SWT, the UI developer can define a custom attribute, for example testAutomationId, for a widget that
uniquely identifies the widget in the application. You can then add that attribute to the list of custom
attributes, in this case testAutomationId, and you can then identify controls by that unique ID. This
approach can eliminate the maintenance associated with locator changes.

If more than one objects have the same custom attribute value assigned, all the objects with that value will
be returned when you call the custom attribute. For example, if you assign the unique ID loginName to
two different text boxes, both text boxes will be returned when you call the loginName attribute.

To define which custom attributes of a locator should be used for the recognition of the controls in your
AUT:

1. Click Options > Recorder and then click the Custom Attributes tab.

2. From the Select a tech domain list box, select the technology domain for the application that you are
testing.

Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.

3. Add the attributes that you want to use to the list.

If custom attributes are available, the locator generator uses these attributes before any other attribute.
The order of the list also represents the priority in which the attributes are used by the locator generator.
If the attributes that you specify are not available for the objects that you select, Silk Test Classic uses
the default attributes for the application that you are testing. Separate attribute names with a comma.

4. Click OK. You can now record or manually create a test case.

Setting Classes to Ignore
To specify the names of any classes that you want to ignore during recording and replay:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. In the Transparent classes grid, type the name of the class that you want to ignore during recording
and replay.

Separate class names with a comma.

Designing and Recording Test Cases with the Open Agent | 141

4. Click OK.

Setting WPF Classes to Expose During Recording and
Playback
Silk Test Classic filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.

Separate class names with a comma.

4. Click OK.

Setting Pre-Fill During Recording and Replaying
You can define whether items in a WPFItemsControl, like WPFComboBox or WPFListBox, are pre-filled
during recording and playback. WPF itself lazily loads items for certain controls, so these items are not
available for Silk Test Classic if they are not scrolled into view. Turn pre-filling on, which is the default
setting, to additionally access items that are not accessible without scrolling them into view. However, some
applications have problems when the items are pre-filled by Silk Test Classic in the background, and these
applications can therefore crash. In this case turn pre-filling off.

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the WPF tab.

3. In the Prefill items area, check the OPT_WPF_PREFILL_ITEMS check box.

4. Click OK.

Setting Replay Options for the Open Agent
There are several options that can be used to optimize replaying applications.

1. Click Options > Agent.

2. Click the Replay tab.

3. From the Replay mode list box, select one of the following options:

• Default: Use this mode for the most reliable results. By default, each control uses either the mouse
and keyboard (low level) or API (high level) modes. With the default mode, each control uses the
best method for the control type.

• High level: Use this mode to replay each control using the API.
• Low level: Use this mode to replay each control using the mouse and keyboard.

142 | Designing and Recording Test Cases with the Open Agent

4. To ensure that the window is active before a call is executed, check the Ensure window is active check
box.

5. Click OK.

Test Cases
This section describes how you can use automated tests to address single objectives of a test plan.

Overview of Test Cases
A test case is an automated test that addresses one objective of a test plan. A test case:

• Drives the application from the initial state to the state you want to test.
• Verifies that the actual state matches the expected (correct) state. Your QA department might use the

term baseline to refer to this expected state. This stage is the heart of the test case.
• Cleans up the application, in preparation for the next test case, by undoing the steps performed in the

first stage.

In order for a test case to function properly, the application must be in a stable state when the test case
begins to execute. This stable state is called the base state. The recovery system is responsible for
maintaining the base state in the event the application fails or crashes, either during the execution of a test
cases or between test cases.

Each test case is independent and should perform its own setup, driving the application to the state that
you want to test, executing the test case, and then returning the application to the base state. The test case
should not rely on the successful or unsuccessful completion of another test case, and the order in which
the test case is executed should have no bearing on its outcome. If a test case relies on a prior test case to
perform some setup actions, and an error causes the setup to fail or, worse yet, the application to crash, all
subsequent test cases will fail because they cannot achieve the state where the test is designed to begin.

A test case has a single purpose: a single test case should verify a single aspect of the application. When
a test case designed in this manner passes or fails, it is easy to determine specifically what aspect of the
target application is either working or not working.

If a test case contains more than one objective, many outcomes are possible. Therefore, an exception may
not point specifically to a single failure in the software under test but rather to several related function
points. This makes debugging more difficult and time-consuming and leads to confusion in interpreting and
quantifying results. The result is an overall lack of confidence in any statistics that might be generated. But
there are techniques you can use to perform more than one verification in a test case.

Types of test cases

Silk Test Classic supports two types of test cases, depending on the type of application that you are
testing. You can create test cases that use:

Hierarchical object
recognition

This is a fast, easy method for creating scripts. This type of testing is supported
for all application types.

Dynamic object
recognition

This is a more robust and easy to maintain method for creating scripts. However,
dynamic object recognition is only supported for applications that use the Open
Agent.

If you are using the Open Agent, you can create tests for both dynamic and hierarchical object recognition
in your test environment. Use the method best suited to meet your test requirements. You can use both
recognition methods within a single test case if necessary.

Designing and Recording Test Cases with the Open Agent | 143

Anatomy of a Basic Test Case
A test case is comprised of testcase keywords and object-oriented commands. You place a group of test
cases for an application into a file called a script.

Each automated test for an application begins with the testcase keyword, followed by the name of the test
case. The test case name should indicate the type of testing being performed.

The core of the test case is object-oriented 4Test commands that drive, verify, and clean up your
application. For example, consider this command:

TextEditor.File.New.Pick

The first part of the command, TextEditor.File.New, is the name of a GUI object. The last part of the
command, Pick, is the operation to perform on the GUI object. The dot operator (.) delimits each piece of
the command. When this command is executed at runtime, it picks the New menu item from the File menu
of the Text Editor application.

Types of Test Cases
There are two basic types of test cases:

• Level 1 tests, often called smoke tests or object tests, verify that an application’s GUI objects function
properly. For example, they verify that text boxes can accept keystrokes and check boxes can display a
check mark.

• Level 2 tests verify an application feature. For example, they verify that an application’s searching
capability can correctly find different types of search patterns.

You typically run Level 1 tests when you receive a new build of your application, and do not run Level 2
tests until your Level 1 tests achieve a specific pass/fail ratio. The reason for this is that unless your
application’s graphical user interface works, you cannot actually test the application itself.

Test Case Design
When defining test requirements, the goal is to vigorously test each application feature. To do so, you need
to decide which set of inputs to a feature will provide the most meaningful test results.

As you design your test cases, you may want to associate data with individual objects, which can then be
referenced inside test cases. You may find this preferable to declaring global variables or passing
parameters to your test cases.

The type of data you decide to define within a window declaration will vary, depending on the type of
testing you are doing. Some examples include:

• The default value that you expect the object to have when it displays.
• The tab sequence for each of a dialog box’s child objects.

The following declaration for the Find dialog contains a list that specifies the tab sequence of the dialog
box children.

window DialogBox Find
 tag "Find"
 parent TextEditor
 LIST OF WINDOW lwTabOrder = {...}
 FindWhat
 CaseSensitive
 Direction
 Cancel

For more information about the syntax to use for lists, see LIST data type.

144 | Designing and Recording Test Cases with the Open Agent

Before you begin to design and record test cases, make sure that the built-in recovery system can close
representative dialogs from your application window.

Constructing a Test Case
This section explains the methodology you use when you design and record a test case.

A test case has three stages

Each test case that you record should have the following stages:

Stage 1 The test case drives the application from the initial state to the state you want to test.

Stage 2 The test case verifies that the actual state matches the expected (correct) state. Your QA
department might use the term baseline to refer to this expected state. This stage is the heart of
the test case.

Stage 3 The test case cleans up the application, in preparation for the next test case, by undoing the
steps performed in stage 1.

Each test case is independent

Each test case you record should perform its own setup in stage 1, and should undo this setup in stage 3,
so that the test case can be executed independently of every other test case. In other words, the test case
should not rely on the successful or unsuccessful completion of another test case, and the order in which it
is executed should have no bearing on its outcome.

If a test case relies on a prior test case to perform some setup actions, and an error causes the setup to fail
or, worse yet, the application to crash, all subsequent test cases will fail because they cannot achieve the
state where the test is designed to begin.

A test case has a single purpose

Each test case you record should verify a single aspect of the application in stage 2. When a test case
designed in this manner passes or fails, it’s easy to determine specifically what aspect of the target
application is either working or not working.

If a test case contains more than one objective, many outcomes are possible. Therefore, an exception may
not point specifically to a single failure in the software under test but rather to several related function
points. This makes debugging more difficult and time-consuming and leads to confusion in interpreting and
quantifying results. The net result is an overall lack of confidence in any statistics that might be generated.

There are techniques you can use to do more than one verification in a test case.

A test case starts from a base state

In order for a test case to be able to function properly, the application must be in a stable state when the
test case begins to execute. This stable state is called the base state. The recovery system is responsible
for maintaining the base state in the event the application fails or crashes, either during a test case’s
execution or between test cases.

DefaultBaseState

To restore the application to the base state, the recovery system contains a routine called
DefaultBaseState that makes sure that:

• The application is running and is not minimized.
• All other windows, for example dialog boxes, are closed.
• The main window of the application is active.

If these conditions are not sufficient for your application, you can customize the recovery system.

Designing and Recording Test Cases with the Open Agent | 145

Defining test requirements

When defining test requirements, the goal is to rigorously test each application feature. To do so, you need
to decide which set of inputs to a feature will provide the most meaningful test results.

Data in Test Cases

What data does the feature expect

A user can enter three pieces of information in the Find dialog box:

• The search can be case sensitive or insensitive, depending on whether the Case Sensitive check box
is checked or unchecked.

• The search can be forward or backward, depending on whether the Down or Up option button is
selected.

• The search can be for any combination of characters, depending on the value entered in the Find What
text box.

Create meaningful data combinations

To organize this information, it is helpful to construct a table that lists the possible combinations of inputs.
From this list, you can then decide which combinations are meaningful and should be tested. A partial table
for the Find dialog box is shown below:

Case
Sensitive

Direction Search String

Yes Down Character

Yes Down Partial word (start)

Yes Down Partial word (end)

Yes Down Word

Yes Down Group of words

Yes Up Character

Yes Up Partial word (start)

Yes Up Partial word (end)

Yes Up Word

Yes Up Group of words

Saving Test Cases
When saving a test case, Silk Test Classic does the following:

• Saves a source file, giving it the .t extension; the source file is an ASCII text file, which you can edit.
• Saves an object file, giving it the .to extension; the object file is a binary file that is executable, but not

readable by you.

For example, if you name a test case (script file) mytests and save it, you will end up with two files: the
source file mytests.t, in the location you specify, and the object file mytests.to.

To save a new version of a script’s object file when the script file is in view-only mode, click File > Save
Object File.

146 | Designing and Recording Test Cases with the Open Agent

Recording Without Window Declarations
If you record a test case against a GUI object for which there is no declaration or if you want to write a test
case from scratch against such an object, Silk Test Classic requires a special syntax to uniquely identify
the GUI object because there is no identifier.

This special syntax is called a dynamic instantiation and is composed of the class and tag of the object.
The general syntax of this kind of identifier is:

class("tag").class("tag"). ...

Example

If there is not a declaration for the Find dialog box of the Notepad application, the
syntax required to identify the object with the Classic Agent looks like the following:

MainWin("Untitled - Notepad|$C:\Windows
\SysWOW64\notepad.exe").DialogBox("Find")

To create the dynamic tag, the recorder uses the multiple-tag settings that are stored in
the Record Window Declarations dialog box. In the example shown above, the tag for
the Notepad contains its caption as well as its window ID.

For the Open Agent, the syntax for the same example looks like the following:

FindMainWin("/MainWin[@caption='Untitled -
Notepad']").FindDialogBox("Find")

Overview of Application States
When testing an application, typically, you have a number of test cases that have identical setup steps.
Rather than record the same steps over and over again, you can record the steps as an application state
and then associate the application state with the relevant test cases.

An application state is the state you want your application to be in after the base state is restored but
before you run one or more test cases. By creating an application state, you are creating reusable code
that saves space and time. Furthermore, if you need to modify the Setup stage, you can change it once, in
the application state routine.

At most, a test case can have one application state associated with it. However, that application state may
itself be based on another previously defined application state. For example, assume that:

• The test case Find is associated with the application state Setup.
• The application state Setup is based on the application state OpenFile.
• The application state OpenFile is based on the built-in application state, DefaultBaseState.
• Silk Test Classic would execute the programs in this order:

1. DefaultBaseState application state.
2. OpenFile application state.
3. Setup application state.
4. Find test case.

If a test case is based on a single application state, that application state must itself be based on
DefaultBaseState in order for the test case to use the recovery system. Similarly, if a test case is based on
a chain of application states, the final link in the chain must be DefaultBaseState. In this way, the built-in
recovery system of Silk Test Classic is still able to restore the application to its base state when necessary.

Designing and Recording Test Cases with the Open Agent | 147

Behavior of an Application State Based on NONE
If an application state is based on the keyword NONE, Silk Test Classic executes the application state
twice: when the test case with which it is associated is entered and when the test case is exited.

On the other hand, if an application state is based on DefaultBaseState, Silk Test Classic executes the
application state only when the associated test case is entered.

The following example code defines the application state InvokeFind as based on the NONE keyword and
associates that application state with the test case TestFind.

Appstate InvokeFind () basedon none
 xFind.Invoke ()
 print ("hello")

testcase TestFind () appstate InvokeFind
 print ("In TestFind")
 xFind.Exit.Click ()

When you run the test case in Silk Test Classic, in addition to opening the Find dialog box, closing it, and
reopening it, the test case also prints:

hello
In TestFind
hello

The test case prints hello twice because Silk Test Classic executes the application state both as the test
case is entered and as it is exited.

Example: A Feature of a Word Processor
For purposes of illustration, this topic develops test requirements for the searching feature of the sample
Text Editor application using the Find dialog box. This topic contains the following:

• Determining what data the feature expects.
• Creating meaningful data combinations.
• Overview of recording the stages of a test case.

When a user enters the criteria for the search and clicks Find Next, the search feature attempts to locate
the string. If the string is found, it is selected (highlighted). Otherwise, an informational message is
displayed.

Determining what data the feature expects

A user can enter three pieces of information in the Find dialog box:

• The search can be case sensitive or insensitive, depending on whether the Case Sensitive check box
is checked or unchecked.

• The search can be forward or backward, depending on whether the Down or Up option button is
clicked.

• The search can be for any combination of characters, depending on the value entered in the Find What
text box.

Creating meaningful data combinations

To organize this information, it is helpful to construct a table that lists the possible combinations of inputs.
From this list, you can then decide which combinations are meaningful and should be tested. A partial table
for the Find dialog box is shown below:

148 | Designing and Recording Test Cases with the Open Agent

Case Sensitive Direction Search String

Yes Down Character

Yes Down Partial word (start)

Yes Down Partial word (end)

Yes Down Word

Yes Down Group of words

Yes Up Character

Yes Up Partial word (start)

Yes Up Partial word (end)

Yes Up Word

Yes Up Group of words

Overview of recording the stages of a test case

A test case performs the included actions in three stages. The following table illustrates these stages,
describing in high-level terms the steps for each stage of a sample test case that tests whether the Find
facility is working.

Setup 1. Open a new document.
2. Type text into the document.
3. Position the text cursor either before or after the text, depending on the direction of the

search.
4. Select Find from the Search menu.
5. In the Find dialog box:

• Enter the text to search for in the Find What text box.
• Select a direction for the search.
• Make the search case sensitive or not.
• Click Find Next to do the search.

6. Click Cancel to close the Find dialog box.

Verify Record a 4Test verification statement that checks that the actual search string found, if any, is
the expected search string.

Cleanup 1. Close the document.
2. Click No when prompted to save the file.

After learning the basics of recording, you can record from within a test plan, which makes recording easier
by automatically generating the links that connect the test plan to the test case.

Creating Test Cases with the Open Agent
This section describes how you can use the Open Agent to create test cases.

Application Configuration
An application configuration defines how Silk Test Classic connects to the application that you want to test.
Silk Test Classic automatically creates an application configuration when you create the base state.
However, at times, you might need to modify, remove, or add an additional application configuration. For

Designing and Recording Test Cases with the Open Agent | 149

example, if you are testing an application that modifies a database and you use a database viewer tool to
verify the database contents, you must add an additional application configuration for the database viewer
tool.

• For a Windows application, an application configuration includes the following:

• Executable pattern

All processes that match this pattern are enabled for testing. For example, the executable pattern for
Internet Explorer is *\IEXPLORE.EXE. All processes whose executable is named IEXPLORE.EXE
and that are located in any arbitrary directory are enabled.

• Command line pattern

The command line pattern is an additional pattern that is used to constrain the process that is
enabled for testing by matching parts of the command line arguments (the part after the executable
name). An application configuration that contains a command line pattern enables only processes for
testing that match both the executable pattern and the command line pattern. If no command-line
pattern is defined, all processes with the specified executable pattern are enabled. Using the
command line is especially useful for Java applications because most Java programs run by using
javaw.exe. This means that when you create an application configuration for a typical Java
application, the executable pattern, *\javaw.exe is used, which matches any Java process. Use
the command line pattern in such cases to ensure that only the application that you want is enabled
for testing. For example, if the command line of the application ends with
com.example.MyMainClass you might want to use *com.example.MyMainClass as the command
line pattern.

• For a Web application in a desktop browser, an application configuration includes only the browser type.
• For a Web application in a mobile browser, an application configuration includes the following:

• Browser type.
• Mobile Device Name.

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

Recording Test Cases for Standard and Web
Applications
This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Record Testcase dialog box opens.

2. Type the name of your test case in the Testcase name text box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you chose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

150 | Designing and Recording Test Cases with the Open Agent

4. If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.

Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

5. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Testcase dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Select Application dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Recording window.
• Waits for you to take further action.

6. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

7. To stop recording, click Stop in the Recording window. Silk Test Classic displays the Record Testcase
dialog box, which contains the code that has been recorded for you.

8. To resume recording your interactions, click Resume Recording.

9. To add the recorded interactions to a script, click Paste to Editor in the Record Testcase window. If
you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens.

10.Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Recording Test Cases for Mobile Web Applications
This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Record Testcase dialog box opens.

2. Type the name of your test case in the Testcase name text box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you chose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

4. If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.

Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

Designing and Recording Test Cases with the Open Agent | 151

5. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Testcase dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Configure Test dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Mobile Recording window.
• Waits for you to take further action.

6. Interact with your application, driving it to the state that you want to test.

7. In the Mobile Recording window, perform the actions that you want to record.

a) Click on the object with which you want to interact. The Choose Action dialog box opens.
b) From the list, select the action that you want to perform against the object.
c) Optional: If the action has parameters, type the parameters into the parameter fields. Silk Test

Classic automatically validates the parameters.
d) Click OK. Silk Test Classic adds the action to the recorded actions and replays it on the mobile

device or emulator.

For information about how to record an interaction with a mobile device, see Interacting with a Mobile
Device.

8. To verify an image or a property of a control during recording, click Ctrl+Alt.

For additional information, see Adding a Verification to a Script while Recording.

9. Optional: To interact with an object that is currently not visible in the Mobile Recording window, use the
Hierarchy View:

a) Click Toggle Hierarchy View. The Hierarchy View opens.
b) In the object tree, right-click on the object on which you want to perform an action.
c) Click Add New Action. The Choose Action dialog box opens.
d) Proceed as with any other action.

For example, to open the main menu of the device or emulator, right-click on the MobileDevice object in
the object tree and select the action PressMenu().

10.To pause the recording of interactions with the application, for example to move the application into a
different state, click Pause Recording.

11.To resume recording interactions, click Start Recording.

12.To add the recorded interactions to a script, click Stop Recording. If you have interacted with objects in
your application that have not been identified in your include files, the Update Files dialog box opens.

13.Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Recording Window Declarations that Include Locator
Keywords
A window declaration specifies a cross-platform, logical name for a GUI object, called the identifier, and
maps the identifier to the object’s actual name, called the tag or locator. You can use locator keywords,
rather than tags, to create scripts that use dynamic object recognition and window declarations. Or, you
can include locators and tags in the same window declaration.

To record window declarations that include locator keywords, you must use the Open Agent.

To record window declarations using the Locator Spy:

152 | Designing and Recording Test Cases with the Open Agent

1. Configure the application to set up the technology domain and base state that your application requires.

2. Click Record > Window Locators. The Locator Spy opens.

3. Position the mouse over the object that you want to record and perform one of the following steps:

• Press Ctrl+Alt to capture the object hierarchy with the default Record Break key sequence.
• Press Ctrl+Shift to capture the object hierarchy if you specified the alternative Record Break key

sequence on the General Recording Options page of the Recording Options dialog box.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination. To
change the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

• If you use Picking mode, click the object that you want to record and press the Record Break keys.

4. Click Stop Recording Locator.

The Locator text box displays the XPath query string for the object on which the mouse rests. The
Locator Details section lists the hierarchy of objects for the locator that displays in the text box. The
hierarchy listed in the Locator Details section is what will be included in the INC file.

5. To refine the locator, in the Locator Details table, click Show additional locator attributes, right-click
an object and then choose Expand subtree. The objects display and any related attributes display in
the Locator Attribute table.

6. To replace the hierarchy that you recorded, select the locator that you want to use as the parent in the
Locator Details table. The new locator displays in the Locator text box.

7. Perform one of the following steps:

• To add the window declarations to the INC file for the project, position your cursor where you want to
add the window declarations in the INC file, and then click Paste Hierarchy to Editor.

• To copy the window declarations to the Clipboard, click Copy Hierarchy to Clipboard and then
paste the window declarations into a different editing window or into the current window at the
location of your choice.

8. Click Close.

Recording Locators Using the Locator Spy
This functionality is supported only if you are using the Open Agent.

Capture a locator using the Locator Spy and copy the locator to the test case or to the Clipboard.

1. Configure the application to set up the technology domain and base state that your application requires.

2. Click File > New. The New File dialog box opens.

3. Select 4Test script and then click OK. A new 4Test Script window opens.

4. Click Record > Window Locators.

Note: If you have not configured the application yet, the Configure Test dialog box opens and you
can select the application that you want to test.

The Locator Spy opens.

5. Position the mouse over the object that you want to record. The related locator XPath query string
shows in the Selected Locator text box. The Locator Details section lists the hierarchy of objects for
the locator that displays in the text box.

6. Perform one of the following steps:

• Press Ctrl+Alt to capture the object with the default Record Break key sequence.
• Press Ctrl+Shift to capture the object if you specified the alternative Record Break key sequence on

the General Recording Options page of the Recording Options dialog box.

Designing and Recording Test Cases with the Open Agent | 153

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination to use to
pause recording. To change the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

• Click Stop Recording Locator.
• If you use Picking mode, click the object that you want to record and press the Record Break keys.

Note: Silk Test Classic does not verify whether the locator string is unique. We recommend that
you ensure that the string is unique. Otherwise additional objects might be found when you run the
test. Furthermore, you might want to exclude some of the attributes that Silk Test Classic identifies
because the string will work without them.

7. To refine the locator, in the Locator Details table, click Show additional locator attributes, right-click
an object and then choose Expand subtree. The objects display and any related attributes display in
the Locator Attribute table.

8. Optional: You can replace a recorded locator attribute with another locator attribute from the Locator
Details table.

For example, your recorded locator might look like the following:

/Window[@caption='MyApp']//Control[@id='table1']

If you have a caption Files listed in the Locator Details table, you can manually change the locator to
the following:

/Window[@caption='MyApp']//Control[@caption='Files']

The new locator displays in the Selected Locator text box.

9. Copy the locator to the test case or to the Clipboard.

10.Click Close.

Recording Additional Actions Into an Existing Test
This functionality is supported only if you are using the Open Agent.

Once a test is created, you can open the test and record additional actions to any point in the test. This
allows you to update an existing test with additional actions.

1. Open an existing test script.

2. Select the location in the test script into which you want to record additional actions.

Note: Recorded actions are inserted after the selected location. The application under test (AUT)
does not return to the base state. Instead, the AUT opens to the scope in which the preceding
actions in the test script were recorded.

3. Click Record > Actions.

Silk Test Classic minimizes and the Recording window opens.

4. Record the additional actions that you want to perform against the AUT.

For information about the actions available during recording, see Actions Available During Recording.

5. To stop recording, click Stop in the Recording window or Stop Recording in the Mobile Recording
window.

6. In the Record Actions dialog box, click Paste to Editor to insert the recorded actions into your script.

7. Click Close to close the Record Actions dialog box.

Specifying Whether to Use Locators or Tags to Resolve
Window Declarations

Note: You can include locators and tags in the same window declaration.

154 | Designing and Recording Test Cases with the Open Agent

1. Click Options > General. The General Options dialog box opens.

2. Specify if you want to use locators or tags to resolve window declarations.

• To use locators to resolve window declarations, check the Prefer Locator check box.
• To use tags to resolve window declarations, uncheck the Prefer Locator check box.

3. Click OK.

Saving a Script File
To save a script file, click File > Save. If it is a new file, Silk Test Classic prompts you for the file name and
location.

If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes if
you want to add the file to the open project, or No if you do not want to add this file to the project.

To save a new version of a script’s object file when the script file is in view-only mode, choose File > Save
Object File.

If you are working within a project, you can add the file to your project. If you add object files (.to, .ino)
to your project, the files will display under the Data node on the Files tab. You cannot modify object files
within the Silk Test Classic editor because object files are binary. To modify an object file, open the source
file (.t or .inc), edit it, and then recompile.

Testing an Application State
Before you run a test case that is associated with an application state, make sure the application state
compiles and runs without error.

1. Make the window active that contains the application state and choose Run > Application State.

2. On the Run Application State dialog box, select the application state you want to run and click Run.
If there are compilation errors, Silk Test Classic displays an error window. Fix the errors and rerun the
application state.

Configuring Applications
When you configure an application, Silk Test Classic automatically creates a base state for the application.
An application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended execution.

Silk Test Classic has slightly different procedures depending on which type of application you are
configuring:

• A standard application, which is an application that does not use a Web browser, for example a
Windows application or a Java SWT application.

• A Web application, which is an application that uses a Web browser, for example a Web page, a Web
application on a mobile device, or an Apache Flex application.

Modifying an Application Configuration
An application configuration defines how Silk Test Classic connects to the application that you want to test.
Silk Test Classic automatically creates an application configuration when you create the base state.
However, at times, you might need to modify, remove, or add an additional application configuration. For
example, if you are testing an application that modifies a database and you use a database viewer tool to
verify the database contents, you must add an additional application configuration for the database viewer
tool.

1. Click Options > Application Configurations. The Edit Application Configurations dialog box opens
and lists the existing application configurations.

Designing and Recording Test Cases with the Open Agent | 155

2. To add an additional application configuration, click Add application configuration.

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

The Select Application dialog box opens. Select the tab and then the application that you want to test
and click OK.

3. To remove an application configuration, click Remove next to the appropriate application configuration.

4. To edit an application configuration, click Edit.

5. Click OK.

Reasons for Failure of Creating an Application
Configuration
When the program cannot attach to an application, the following error message box opens:
Failed to attach to application <Application Name>. For additional information, refer to the Help.

In this case, one or more of the issues listed in the following table may have caused the failure:

Issue Reason Solution

Time out • The system is not fast enough.
• The size of the memory of the

system is to small.

Use a faster system or try to reduce the
memory usage on your current system.

User Account Control (UAC) fails The application under test is executed
with administrator rights.

Manually start the recorder and the
clients with administrator rights.

64-bit application The application uses a 64-bit
technology that is not yet supported.

Use the corresponding 32-bit
application.

Command-line pattern The command-line pattern is to specific.
This issue occurs especially for Java.
The replay may not work as intended.

Remove ambiguous commands from
the pattern.

Actions Available During Recording
This functionality is supported only if you are using the Open Agent.

During recording, you can perform the following actions in the Recording window:

Action Steps

Pause recording. Click Pause to bring the AUT into a specific state without recording the actions,
and then click Record to resume recording.

Change the sequence of the
recorded actions.

To change the sequence of the recorded actions in the Recording window,
select the actions that you want to move and drag them to the new location. To
select multiple actions press Ctrl and click on the actions.

Remove a recorded action. To remove a falsely recorded action from the Recording window, hover the
mouse cursor over the action and click Delete this entry.

Verify an image or a property of a
control.

Move the mouse cursor over the object that you want to verify and press Ctrl
+Alt. For additional information, see Adding a Verification to a Script while
Recording.

156 | Designing and Recording Test Cases with the Open Agent

Verification
This section describes how you can verify one or more characteristics, or properties, of an object.

Verifying Object Properties
You will perform most of your verifications using properties. When you verify the properties of an object, a
VerifyProperties method statement is added to your script. The VerifyProperties method verifies
the selected properties of an object and its children.

Each object has many characteristics, or properties. For example, dialog boxes can have the following
verification properties:

• Caption

• Children

• DefaultButton

• Enabled

• Focus

• Rect

• State

Caption is the text that displays in the title bar of the dialog box. Children is a list of all the objects
contained in the dialog box, DefaultButton is the button that is invoked when you press Enter, and so
on. In your test cases, you can verify the state of any of these properties.

You can also, in the same test case, verify properties of children of the selected object. For example, the
child objects in the Find dialog box, such as the text box FindWhat and the check box CaseSensitive,will
also be selected for verification.

By recording verification statements for the values of one or more of an object’s properties, you can
determine whether the state of the application is correct or in error when you run your test cases.

Verifying Object Properties (Open Agent)
This functionality is supported only if you are using the Open Agent.

Record verification statements to verify the properties of an object.

1. Record a test case.

For information on recording a test case, see Recording Test Cases With the Open Agent.

2. While recording, hover the cursor over the object, for which you want to verify a property, and click Ctrl
+Alt. The Verify Properties dialog box opens.

3. Select the properties that you want to verify, by checking the check boxes next to the property names.

To verify all or most properties, click Select All and then uncheck individual check boxes.

4. Click OK to close the Verify Properties dialog box.

When you finish recording the test case and paste the recorded test to the editor, all verifications are also
pasted to the test script.

Adding a Verification to a Script while Recording
This functionality is supported only if you are using the Open Agent.

Do the following to add a verification to a script during recording:

1. Begin recording.

Designing and Recording Test Cases with the Open Agent | 157

2. Move the mouse cursor over the object that you want to verify and press Ctrl+Alt.

When you are recording a mobile Web application, you can also click on the object and click Add
Verification.

Note: For any application that uses Ctrl+Shift as the shortcut key combination, press Ctrl
+Shift.

This option temporarily suspends recording and displays the Verify Properties dialog box.

3. To select the property that you want to verify, check the corresponding check box.

4. Click OK. Silk Test Classic adds the verification to the recorded script and you can continue recording.

Overview of Verifying Bitmaps
A bitmap is a picture of some portion of your application. Verifying a bitmap is usually only useful when the
actual appearance of an object needs to be verified to validate application correctness. For example, if you
are testing a drawing or CAD/CAM package, a test case might produce an illustration in a drawing region
that you want to compare to a baseline. Other possibilities include the verification of fonts, color charts, and
certain custom objects.

When comparing bitmaps, keep the following in mind:

• Bitmaps are not portable between GUIs. The format of a bitmap on a PC platform is .bmp.
• A bitmap comparison will fail if the image being verified does not have the same screen resolution,

color, window frame width, and window position when the test case is run on a different machine than
the one on which the baseline image was captured.

• Make sure that your test case sets the size of the application window to the same size it was when the
baseline bitmap was captured.

• Capture the smallest possible region of the image so that your test is comparing only what is relevant.
• If practical, do not include the window’s frame (border), since this may have different colors and/or fonts

in different environments.

Verifying Appearance Using a Bitmap
When you are using the Classic Agent, use this procedure to compare the actual appearance of an image
against a baseline image. Or, use it to verify fonts, color charts, or custom objects.

Note: To verify a bitmap when you are using the Open Agent, you can add the VerifyBitmap
method to your script. The VerifyBitmap method is supported for both agents.

1. Complete the steps in Verifying a Test Case.

2. On the Verify Window dialog box, click the Bitmap tab and then select the region to update: Entire
Window, Client Area of Window (that is, without scroll bar or title bar), or Portion of Window.

3. In the Bitmap File Name text box, type the full path of the bitmap file that will be created.

The default path is based on the current directory. The default file name for the first bitmap is
bitmap.bmp. Click Browse if you need help choosing a new path or name.

4. Click OK. If you selected Entire Window or Client Area of Window, Silk Test Classic captures the
bitmap and returns you to your test application. If you selected Portion of Window, position the cursor
at the desired location to begin capturing a bitmap. While you press and hold the mouse button, drag
the mouse to the screen location where you want to end the capture. Release the mouse button.

A bitmap comparison will fail if the image being verified does not have the same screen resolution,
color, window frame width, and window position as the baseline image.

Capture the smallest possible region of the image so that your test is comparing only what is relevant.

5. If you are writing a complete test case, record the cleanup stage and paste the test case into the script.
If you have added a verification statement to an existing test case, paste it into your script and close the
Record Actions dialog box.

158 | Designing and Recording Test Cases with the Open Agent

Overview of Verifying an Objects State
Each class has a set of methods associated with it, including built-in verification methods. You can verify an
object’s state using one of these built-in verification methods or by using other methods in combination with
the built-in Verify function.

A class’s verification methods always begin with Verify. For example, a TextField has the following
verification methods; VerifyPosition, VerifySelRange, VerifySelText, and VerifyValue.

You can use the built-in Verify function to verify that two values are equal and generate an exception if
they are not. Typically, you use the Verify function to test something that does not map directly to a built-
in property or method. Verify has the following syntax:

Verify (aActual, aExpected [, sDesc])

aActual The value to verify. ANYTYPE.

aExpected The expected value. ANYTYPE.

sDesc Optional: A message describing the comparison. STRING.

Usually, the value to verify is obtained by calling a method for the object being verified; you can use any
method that returns a value.

Example: Verify an object

This example describes how you can verify the number of option buttons in the
Direction RadioList in the Replace dialog box of the Text Editor. There is no property
or method you can directly use to verify this. But there is a method for RadioList,
GetItemCount, which returns the number of option buttons. You can use the method
to provide the actual value, then specify the expected value in the script.

When doing the verification, position the mouse pointer over the RadioList and press
Ctrl+Alt. Click the Method tab in the Verify Window dialog box, and select the
GetItemCount method.

Click OK to close the Verify Window dialog box, and complete your test case. Paste it
into a script. You now have the following script:

testcase VerifyFuncTest ()
TextEditor.Search.Replace.Pick ()
Replace.Direction.GetItemCount ()
Replace.Cancel.Click ()

Now use the Verify function to complete the verification statement. Change the line:

Replace.Direction.GetItemCount ()

to

Verify (Replace.Direction.GetItemCount (), 2)

That is, the call to GetItemCount (which returns the number of option buttons)
becomes the first argument to Verify. The expected value, in this case, 2, becomes
the second argument.

Your completed script is:

testcase VerifyFuncTest ()
TextEditor.Search.Replace.Pick ()
Verify (Replace.Direction.GetItemCount (), 2)
Replace.Cancel.Click ()

Designing and Recording Test Cases with the Open Agent | 159

Fuzzy Verification
There are situations when Silk Test Classic cannot see the full contents of a control, such as a text box,
because of the way that the application paints the control on the screen. For example, consider a text box
whose contents are wider than the display area. In some situations the application clips the text to fit the
display area before drawing it, meaning that Silk Test Classic only sees the contents that are visible; not the
entire contents.

Consequently, when you later do a VerifyProperties against this text box, it may fail inappropriately.
For example, the true contents of the text box might be 29 Pagoda Street, but only 29 Pagoda
displays. Depending on how exactly the test is created and run, the expected value might be 29 Pagoda
whereas the value seen at runtime might be 29 Pagoda Street, or vice versa. So the test would fail,
even though it should pass.

To work around this problem, you can use fuzzy verification, where the rules for when two strings match
are loosened. Using fuzzy verification, the expected and actual values do not have to exactly match. The
two values are considered to match when one of them is the same as the first or last part of the other one.
Specifically, VerifyProperties with fuzzy verification will pass whenever any of the following functions
would return TRUE, where actual is the actual value and expected is the expected value:

• MatchStr (actual + "*", expected)

• MatchStr ("*" + actual, expected)

• MatchStr (actual, expected + "*")

• MatchStr (actual, "*" + expected)

In string comparisons, * stands for any zero or more characters.

For example, all the following would pass if fuzzy verification is enabled:

Actual Value Expected Value

29 Pagoda 29 Pagoda Street

oda Street 29 Pagoda Street

29 Pagoda
Street

29 Pagoda

29 Pagoda
Street

oda Street

Enabling fuzzy verification

You enable fuzzy verification by using an optional second argument to VerifyProperties, which has
this prototype:

VerifyProperties (WINPROPTREE WinPropTree [,FUZZYVERIFY FuzzyVerifyWhich])

where the FUZZYVERIFY data type is defined as:

type FUZZYVERIFY is BOOLEAN, DATACLASS, LIST OF DATACLASS

So, for the optional FuzzyVerifyWhich argument you can either specify TRUE or FALSE, one class
name, or a list of class names.

FuzzyVerifyWhich value

FALSE
(default)

Fuzzy verification is disabled.

One class Fuzzy verification is enabled for all objects of that class.

160 | Designing and Recording Test Cases with the Open Agent

Example window.VerifyProperties ({…},Table) enables fuzzy verification for all
tables in window (but no other object).

List of
classes

Fuzzy verification is enabled for all objects of each listed class.

Example window.VerifyProperties ({…}, {Table, TextField}) enables fuzzy
verification for all tables and text boxes in window (but no other object).

TRUE Fuzzy verification is enabled only for those objects whose FuzzyVerifyProperties
member is TRUE.

To set the FuzzyVerifyProperties member for an object, add the following line within
the object's declaration:

FUZZYVERIFY FuzzyVerifyProperties = TRUE

Example: If in the application's include file, the DeptDetails table has its
FuzzyVerifyProperties member set to TRUE:

window ChildWin EmpData
. . .
 Table DeptDetails
 FUZZYVERIFY FuzzyVerifyProperties = TRUE

And the test has this line:

EmpData.VerifyProperties ({...}, TRUE)

Then fuzzy verification is enabled for the DeptDetails table (and other objects in
EmpData that have FuzzyVerifyProperties set to TRUE), but no other object.

Fuzzy verification takes more time than standard verification, so only use it when necessary.

For more information, see the VerifyProperties method.

Defining your own verification properties

You can also define your own verification properties.

Verifying that a Window or Control is No Longer
Displayed
1. Click Record > Testcase to begin recording a test case and drive your application to the state you want

to verify. To record a verification statement in an existing test case, click Record > Actions.

2. When you are ready to record a verification statement, position the mouse cursor over the object you
want to verify, and press Ctrl+Alt. Silk Test Classic displays the Verify Window dialog box over your
application window.

3. Click the Property tab. Silk Test Classic lists the properties for the selected window or control on the
right.

4. Make sure that only the Exists property is selected for the window or control.

If additional properties are selected, the verification will fail because the actual list of properties will
differ from the expected list.

5. Change the value in the Property Value field from TRUE to FALSE.

6. Click OK to accept the Exists property for the selected window or control. Silk Test Classic closes the
Verify Window dialog box and displays the Record Status window. The test case will verify that the
window or control has the property value of FALSE, verifying that the object is no longer displayed. If
not, Silk Test Classic writes an error to the results file.

Designing and Recording Test Cases with the Open Agent | 161

Data-Driven Test Cases
Data-driven test cases enable you to invoke the same test case multiple times, once for each data
combination stored in a data source. The data is passed to the test case as a parameter. You can think of a
data-driven test case as a template for a class of test cases. Data-driven test cases offer the following
benefits:

• They reduce redundancy in a test plan.
• Writing a single test case for a group of similar test cases makes it easier to maintain scripts.
• They are reusable; adding new tests only requires adding new data.

Regardless of the technique you use, the basic process for creating a data-driven test case is:

1. Create a standard test case. It will be very helpful to have a good idea of what you are going to test and
how to perform the verification.

2. Identify the data in the test case and the 4Test data types needed to store this data.
3. Modify the test case to use variables instead of hard data.
4. Modify the test case to specify input arguments to be used to pass in the data. Replace the hard coded

data in the test case with variables.
5. Call the test case and pass in the data, using one of four different techniques:

• Use a database and the Data Driven Workflow to run the test case, the preferred method.
• Click Run > Testcase and type the data in the Run Testcase dialog box.
• In a QA Organizer test plan, insert the data as an attribute to a test description.
• If the data exists in an external file, write a function to read the file and use a main() function to run

the test case.

Data-Driven Workflow
You can use the Data Driven Workflow to create data-driven test cases that use data stored in databases.
The Data Driven Workflow generates much of the necessary code and guides you through the process of
creating a data-driven test case.

Before you can create and run data-driven test cases, you need to perform the following actions:

1. Record a standard test case.
2. Set up or identify the existing data source with the information you want to use to run the test.
3. Configure your Data Source Name (DSN), if you are not using the default, which is Silk DDA Excel.

Note: When you use the Data Driven Workflow, Silk Test Classic uses a well-defined record format.
To run data-driven test cases that were not created through the Data Driven Workflow, you need to
convert your recordings to the new record format. To run data-driven test cases that do not follow the
record format, run the tests outside of the Data Driven Workflow.

To enable or disable the Data Driven Workflow, click Workflows > Data Driven.

To create and execute a data-driven test case, sequentially click each icon in the workflow bar to perform
the corresponding procedure.

162 | Designing and Recording Test Cases with the Open Agent

Action Description

Data Drive
Testcase

Select a test case to data drive. Silk Test Classic copies the selected test case and creates a
new data-driven test case by adding a "DD_" prefix to the original name of the test case. Silk
Test Classic also writes other data-driven information to the new or existing data driven script file
(.g.t file).

Find/Replace
Values

Find and replace values in the new test case with links to the data source.

Run Testcase Run the data-driven test case, optionally selecting the rows and tables in the data source that
you want to use.

Explore Results View test results.

Working with Data-Driven Test Cases
Consider the following when you are working with data-driven test cases:

• The 4Test Editor contains additional menu selections and toolbars for you to use.
• Silk Test Classic can data drive only one test case at a time.
• You cannot duplicate test case names. Data-driven test cases in the same script must have unique

names.
• The Classic 4Test editor is not available with data-driven test cases in .g.t files.
• You cannot create data-driven test cases from test cases in .inc files; you can only create data-driven

test cases from test cases in .t or .g.t files. However, you can open a project, add the *.inc, select
the test case from the test case folder of the project, and then select data drive.

• When you data drive a [use '<script>.t'] is added to the data-driven test case. This is the link to
the .t file where the test case originated. If you add a test case from another script file then another
use line pointing to that file is added. If the script file is in the same directory as the <script.g.t>,
then no path is given, otherwise, the absolute path is added to the use line. If this path changes, it is up
to you to correct the path; Silk Test Classic will not automatically update the path.

• When you open a .g.t file using File > Open, Silk Test Classic automatically loads the data source
information for that file. If you are in a .g.t file and that file’s data source is edited, click Edit > Data
Driven > Reload Database to refresh the information from the data source.

• If you add a new data-driven test case to an existing .g.t file that is fully collapsed, Silk Test Classic
expands the previous test case, but does not edit it.

Code Automatically Generated by Silk Test Classic
When you create a data-driven test case, Silk Test Classic verifies that the DSN configuration is correct by
connecting to the database, generates the 4Test code describing the DSN, and writes that information into
the data-driven script.

Do not delete or change the information created by Silk Test Classic. If you do, you may not be able to run
your data-driven test case.

When you click OK on the Specify Data Driven Testcase dialog box, Silk Test Classic automatically writes
the following information to the top of your data driven script file.

The information is delivered "rolled up" (collapsed); in order to see the details you need to click on the plus
sign to expand the code:

[+] // *** DATA DRIVEN ASSISTANT Section (!! DO NOT REMOVE !!) ***

The .inc files used by the original test cases, and the .t file indicating where the test case just came from, in
this case from Usability.t:

[] use "datadrivetc.inc"
[] use "Usability.t"

Designing and Recording Test Cases with the Open Agent | 163

A reference to the DSN, specifying the connect string, including username and password, for example:

[] // *** DSN ***
[] STRING gsDSNConnect = "DSN=SILK DDA Excel;DBQ=C:\ddatesting
\TestExcel.xls;UID=;PWD=;"

Each data-driven test case takes as a single argument a record consisting of a record for each table that is
used in the test case. The record definition is automatically generated as shown here:

[+] // testcase VerifyProductDetails (REC_DATALIST_VerifyProductDetails rdVpd)
[] // Name: REC_<Testcase name>. Fields Types: Table record types. Field
Names: Table record
type with 'REC_' replaced by 'rec'
[-] type REC_DATALIST_VerifyProductDetails is record
 [] REC_Products recProducts
 [] REC_Customers recCustomers
 [] REC_CreditCards recCreditCards

Each table record contains the column names in the same order as in the database. Spaces in table and
column names are removed. Special characters such as $ are replaced by underscores.

[] // *** Global record for each Table ***
[]
[-] type REC_Products_ is record
 [] STRING Item //Item,
 [] REAL Index //Index,
 [] STRING Name //Name,
 [] REAL ItemNum //ItemNum,
 [] STRING Price //Price,
 [] STRING Desc //Desc,
 [] STRING Blurb //Blurb,
 [] REAL NumInStock //NumInStock,
 [] INTEGER QtyToOrder //QtyToOrder,
 [] INTEGER OnSale //OnSale,

Silk Test Classic writes a sample record for each table. This is the data used if you opt to use sample data
on the Run Testcase dialog box. A value from the original test case is inserted into the sample record,
even if there are syntax errors when that column is first used to replace a value.

[] // *** Global record containing sample data for each table ***
[] // *** Used when running a testcase with 'Use Sample Data from Script'
checked ***
[]
[-] REC_Products_ grTest_Products_ = {...}
 [] NULL // Item
 [] NULL // Index
 [] NULL // Name
 [] NULL // ItemNum
 [] NULL // Price
 [] NULL // Desc
 [] NULL // Blurb
 [] NULL // NumInStock
 [] 2 // QtyToOrder
 [] NULL // OnSale
[]
[] // *** End of DATA DRIVEN ASSISTANT Section ***

Tips And Tricks for Data-Driven Test Cases
There are several things to know about working with data sources while you are creating data-driven test
cases.

• You must have an existing data source with tables and columns defined before you data drive a test
case. However, the data source does not need to contain rows of data. You cannot use the Data Driven
Workflow to create data sources or databases.

164 | Designing and Recording Test Cases with the Open Agent

• If you have a table in your data source that has a long name (greater than 25 characters), all of the
name may not be visible in the Find and Replace menu bar in the 4Test Editor. You may find it helpful
to change the size of the menu bar to display more of your table name.

• You cannot change to a different data source once you have started to find and replace values in a
script. If you do, you will have problems with prior replacements. If you want to change your data source,
you should create a new data-driven script file.

• If you are working with a data source that requires a user name and password, you can add the
username and password to the connect string in the .g.t file. The first example below shows how SQL
Server requires a userid and password. [] STRING gsDSNConnect =
"DSN=USER.SQL.DSN;UID=SA;PWD=sesame;" where UID=<your user ID> ("SA" in the example
above) and where PWD=<your password> ("sesame" in the example above). On the other hand, the
example below shows how the Connect string for a MS Excel DSN does not require user IDs or
passwords: [] STRING gsDSNConnect = "DSN=Silk DDA Excel;DBQ=C:
\TestExcel.xls;UID=;PWD="

• You can choose to run with a sample record if the table is empty; however, this record is not inserted
into the database. The sample record is created by Silk Test Classic when it replaces values from the
test case by the table and columns in your database.

• Real numbers should be stored as valid 4Test Real numbers with format: [-]ddd.ddd[e[-]ddd],
even though databases such as MS Excel allow a wider range of formats – for example, currencies and
fractions.

• There are no restrictions on how you name your tables and columns within your data source. Silk Test
Classic automatically removes spaces, and converts dollar signs and other special characters to
underscores when it creates the sample record and writes other code to your data-driven test case. Silk
Test Classic handles MS Excel and MS Access table names without putting quotation marks around
them. This means that your table and column names will look familiar when you go to find and replace
values.

• If you encounter the error "ODBC Excel Driver numeric field overflow" while running a test case, check
the Excel workbook that you are using as your data source. You may have some columns that are
defined as STRING columns but contain numeric values in some of the rows. If you have a column that
you want to treat as numeric strings rather than as numbers, either format the column as 'Text' or begin
the number strings with a single-quote character. For example: '1003 instead of: 1003

• If modifying data sources in an existing Excel data sheet, use the remove column option to delete any
data to be removed, as simply deleting from the cell, using clear contents, or copy/pasting content will
not register correctly with the DDS file in Silk Test Classic and may lead to a data source mismatch
error: *** Error: Incompatible types -- Number of list elements exceeds number
of fields.

Formatting MS Excel worksheets for use as a data source

Use the 'General' format for the columns of your worksheets. Here are specific suggestions for column
formats based on the intended data type of the column:

Intended Data
Type of
Column

Excel Column Format

STRING If the column contains only text, no numbers, dates or booleans, then apply the 'General' format. If
the column contains text and numbers, then you can still apply the 'General' format if you begin the
number strings with a single-quote character. For example: '1003 instead of: 1003. Otherwise,
apply the 'Text' format.

INTEGER or
REAL

‘General' or 'Number' format.

BOOLEAN ‘General' format. Use only the values TRUE and FALSE.

Designing and Recording Test Cases with the Open Agent | 165

Intended Data
Type of
Column

Excel Column Format

DATETIME ‘Custom' format: yyyy-mm-dd hh:mm:ss. That agrees with the ISO format used by Silk Test Classic
DATETIME values.

Testing an Application with Invalid Data
This topic assumes that you are familiar with data driving test cases.

To thoroughly test an application feature, you need to test the feature with invalid as well as valid data.

For example, the sample Text Editor application displays a message box if a user specifies a search string
in the Find dialog box that doesn’t exist in the document. To account for this, you can create a data-driven
test case, like the following, that verifies that the message box displays and has the correct message:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for
 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search
 STRING sExpected // The expected match
 STRING sMessage // The expected message in message box

testcase FindInvalidData (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()

 MessageBox.Message.VerifyValue (Data.sMessage)
 MessageBox.OK.Click ()

 Find.Cancel.Click ()
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

The VerifyValue method call in this test case verifies that the message box contains the correct string.
For example, the message should be Cannot find Ca if the user enters Ca into the Find dialog box and
the document editing area does not contain this string.

Enabling and Disabling Workflow Bars
Only one workflow bar can be enabled at a time.

To enable or disable a workflow bar, click Workflows and then select the workflow bar that you want to turn
on or off. For example, click Workflows > Basic.

You can select one of the following workflows:

Workflow Description

Basic workflow Guides you through the process of creating a test case.

Data Driven workflow Guides you through the process of creating a data-driven test case.

166 | Designing and Recording Test Cases with the Open Agent

Data Source for Data-Driven Test Cases
When you install Silk Test Classic, the SILK DDA EXCEL DSN is copied to your installation computer. This
is the default DSN that Silk Test Classic uses. This DSN uses a MS Excel 8.0 driver and does not have a
particular workbook (.xls file) associated with it.

The Select Data Source dialog box allows you to choose the data source:

• For new data-driven test cases, choose Silk DDA Excel.
• For backward compatibility, choose Segue DDA Excel. This allows existing .g.t files that reference

Segue DDA Excel to continue to run.

You do not have to use the default DSN. For additional information when using a different DSN, see
Configuring Your DSN.

You may use any of the following types of data sources:

• Text files and comma separated value files (*.txt and *.csv files)
• Microsoft Excel
• Microsoft SQL Server
• Microsoft Access
• Oracle
• Sybase SQL Anywhere

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Configuring Your DSN
The default DSN for data-driven test cases, Silk DDA Excel, is created during the installation of Silk Test
Classic. To use the default DSN you do not need to configure your DSN.

The Select Data Source dialog box allows you to choose the data source:

• For new data-driven test cases, choose Silk DDA Excel.
• For backward compatibility, choose Segue DDA Excel. This allows existing .g.t files that reference

Segue DDA Excel to continue to run.

The following instructions show how to configure a machine to use a different DSN than the Silk DDA Excel
default.

1. Click Start > Control Panel > System and Security > Administrative Tools > Data Sources (ODBC).

2. On the ODBC Data Source Administrator, click either the System DSN tab or the User DSN tab,
depending on whether you want to configure this DSN for one user or for every user on this machine.

3. Click Add.

4. On the Create New Data Source dialog box, select the driver for the data source and click Finish.

To restore the default DSN for Silk Test Classic, select the driver for Microsoft Excel Driver (*.xls).

5. On the setup dialog box of the data source, enter a name for the data source.

To restore the default for Silk Test Classic, enter Silk DDA Excel. For additional information about
the dialog box, refer to the database documentation or contact your database administrator.

6. Click OK.

Setting Up a Data Source
Before you can run a data-driven test case you must set up a file that contains the tables, which are called
worksheets in Microsoft Excel (Excel), and the columns that you want to use. The tables do not have to be
populated with data, but it might help to have at least one complete record filled out.

Designing and Recording Test Cases with the Open Agent | 167

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

1. Open one of the data sources for data-driven test cases, for example Excel.
2. Name at least one table, or worksheet if you are using Excel, and create column names for the table.
3. Save the data source.

Example

The Excel file TestExcel.xls can be used as a data source for a data-driven test
case and includes the three worksheets Products, Customers, and CreditCards. The
Customers worksheet includes the columns Customer, Name, Address, and so on.

Using an Oracle DSN to Data Drive a Test Case
To use an Oracle DSN to data drive a test case, select the test case to data drive, let Silk Test Classic
generate code into the new test case file, and then make the following manual modifications to the DSN:

1. Find out which columns are included in the table of your schema.
Different schemas may contain tables with the same name. The table lists for the Find/Replace Values
dialog box, the re-sizable menu bar, and the Specify Rows dialog box will list the same table name
once for each schema without indicating the schema. For each of those list items the column list will
contain the names of the columns in all of the tables with that name.

2. After finding and replacing values, split each table record into separate records according to the
schema. Do that for the sample record as well.
The record names should have the form: <Record prefix><schema>_<table>. For example, if the
schema is STUser and the table is Customers, the name of the table record type will be
REC_STUser_Customers and the declaration for the field in the test case record for the table will be
REC_STUser_Customers recSTUser_Customers // Customers.

3. Run the test case from a test plan, unless you are running all rows for all tables. Use the Specify Rows
dialog box to build the ddatestdata value, then modify that value to include the schema name in the
query.

Note: Specify a query for every table, even if you want to run all rows for a table. To run all rows,
leave the where clause blank.

Creating the Data-Driven Test Case
This section describes how you can create a data-driven test case.

168 | Designing and Recording Test Cases with the Open Agent

Selecting a Test Case to Data Drive
For information on the steps that you need to complete before you can select a test case to data drive, see
Data-Driven Workflow.

While you are in a script, choose one of the following to select a test case for data driving:

• Click Tools > Data Drive Testcase.
• Right-click into the script and select Data Drive Testcase.

When you select a test case, Silk Test Classic copies the selected test case and creates a new data-driven
test case by adding a DD_ prefix to the original name of the test case. Silk Test Classic also writes other
data-driven information to the new or existing data-driven script file script.g.t.

Finding and Replacing Values
For information on the steps that you need to complete before you can find and replace values in a test
case, see Data-Driven Workflow.

Values are text strings, numbers, and booleans (true/false) that exist in your original test cases. One of the
steps in creating a data-driven test case is to find these values and replace them with references to
columns in your data source.

Silk Test Classic checks to make sure that each value you select is appropriate for replacement by the
column in your test case. You can turn off this validation by clicking Edit > Data Driven > Validate
Replacements while you are in a .g.t file. This means that the Find aspect of Find and Replace works
as usual, but that the values that you replace are not validated. By turning off this checking, you suppress
the error messages that Silk Test Classic would have otherwise displayed. Any 4Test identifier or fragment
of a string is considered an invalid value for replacement unless Validate Replacements is turned off.

If you are new to creating data-driven test cases, we recommend that you keep this validation turned on.

Find and replace values in a test case using either the Find/Replace Values dialog box or the Find and
Replace re-sizable menu bar in the 4Test Editor. You can access the Find/Replace Values dialog box in
one of the following ways:

• Right-click into a test case in a .g.t file and select Data Drive Testcase. Specify the data source, the
data-driven script, and the data-driven test case. When you complete the Specify Data Driven
Testcase dialog box and the data-driven script opens in the 4Test Editor, the Find/Replace Values
dialog box opens automatically.

• After you have highlighted a value in a .g.t file, choose Edit > Data Driven > Find > Replace Values,
or right-click the value and select Find > Replace Values.

When you are using Find and Replace, sometimes a method requires a data type that does not match the
column that you want to replace. For example, SetText requires a string, but you may want to set a
number instead, or perhaps the database does not store data in the 4Test type that you would like to use.
Silk Test Classic can handle these kinds of conversions, with a few exceptions.

Running a Data-Driven Test Case
Once you have selected a test case to data drive, and found and replaced values, choose one of the
following ways to run the test case:

• Click Run > Run while in a .g.t file. This command runs main(), or if there is no main(), the
command runs all test cases. For each test case, this command runs all rows for all tables used by the
test case.

• Click Run > Testcase and select the data-driven test case from the list of test cases on the Run
Testcase dialog box, for all tables used by the test case.

• Click Run > Testcase > Run to run the test case for all rows for all tables used by the test case.

Designing and Recording Test Cases with the Open Agent | 169

Running a Test Case Using a Sample Record for Each Table Used by
the Data-Driven Test Case
This is useful if you want to do a quick test or are not connected to your data source. The sample record is
created as you replace values in the test case. When you first use a column to replace a test case value,
that value is inserted into the table record in the field for that column.

1. On the Run Testcase dialog box, click Use Sample Data from Script.

By default, Silk Test Classic runs every combination of rows in your tables. The number of test cases
that runs is:

of rows selected for Table 1 X the # of rows selected for
Table 2 X the number of rows for Table 3
... and so on

For example, if your test case uses 3 tables with 5 rows each, Silk Test Classic will run 125 test cases.

2. To select the rows you want to run on a table-by-table basis, click Specify Rows on the Run Testcase
dialog box to use the Specify Rows dialog box to create a query.

3. Specify arguments, if necessary, in the Arguments text box. Remember to separate multiple arguments
with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the Silk TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

Passing Data to a Test Case
Once you have defined your data-driven test case, you pass data to it, as follows:

• If you are not using the test plan editor, you pass data from a script's main function.
• If you are using the test plan editor, you embed the data in the test plan and the test plan editor passes

the data when you run the test plan.

Example Setup for Forward Case-Sensitive Search
Here is a sample application state that performs the setup for all forward case-sensitive searches in the
Find dialog box:

appstate Setup () basedon DefaultBaseState
TextEditor.File.New.Pick ()

170 | Designing and Recording Test Cases with the Open Agent

DocumentWindow.Document.TypeKeys ("Test Case<Home>")
TextEditor.Search.Find.Pick ()
Find.CaseSensitive.Check ()
Find.Direction.Select ("Down")

Building Queries
Before you define a query to access certain data in a data-driven test case, there are several steps you
need to complete. for additional information, see Using the Data Driven Workflow for more information.

Respond to the prompts on the Specify Rows dialog box to create a query for a table. The following are
examples of simple queries:

• To find and run the records of customers whose customer ID number is 1001: (CUSTID = 1001)
• To find and run the records of customers whose names begin with the letters "F" or "G": (CUST_NAME

LIKE ‘F%’) OR (CUSTNAME LIKE ‘G%’).

See the description of the enter values area in the Specify Rows dialog box to see examples of more
complex queries.

Adding a Data-Driven Test Case to a Test Plan
You can run a data-driven test case from a test plan as either a data-driven test case or as a regular test
case. To distinguish between the two cases, there are two keywords for you to use:

• ddatestcase specifies the name of a test case that runs as a data-driven test case.
• ddatestdata specifies the list of rows that will be run with the data-driven test case.

If the test case is specified with the keyword ddatestcase, it is run as a data-driven test case. Use this
keyword only with data-driven test cases.

To specify a data-driven test case in a test plan

• Add keyword ddatestcase in front of the test case name.
• Add the keyword ddatestdata as a list of queries that specify the particular rows you want the test case

to run with. The list of queries is represented as a single LIST OF STRING parameter.

Rules for using data-driven keywords

• The ddatestdata keyword requires simple select queries. To specify the row you want to run a test case
with, use the ddatestdata keyword with the format: select * from <table> where

• The keyword ddatestcase cannot be a level above the script file and still work. The script file has to be
at the same level or above it.

• A test plan needs to specify a test case using either the keyword testcase or the keyword ddatestcase.
Using both causes a compiler error.

• If the ddatestdata keyword is present, then the ddatestcase is run using the ddatestdata value as the
rows to run.

• The default is to run all rows for all tables. The value for ddatestdata for this is
ALL_ROWS_FOR_ALL_TABLES.

• Using the keyword testdata in a test item with keyword ddatestcase will cause a compiler error.
• If the test case is specified with the keyword testcase, then the test case is run as a regular test case

and the testdata keyword or symbols must be present to specify the value that will be passed as the
regular argument. This value must be a record of the type defined for the ddatestcase, in other words of
type REC_DATALIST_<Testcase name>.

You can add a data-driven test case to a test plan by using the Testplan Detail dialog box or by editing the
test plan directly. However, if you edit the test plan directly, then the keywords are not automatically
validated and it is your responsibility to make sure that the keywords, which are testcase versus
ddatestcase and testdata versus ddatestdata, are appropriate for the intended execution of the test case.

Designing and Recording Test Cases with the Open Agent | 171

Whenever you use the Test Detail dialog box, be sure to click the Testcases button and select the test
case from the list. That will ensure that the proper keywords are inserted into the test plan.

Using sample records data within test plans

To run a test case with the sample record within a test plan, you must manually input the test data, in the
format ddatestdata: {"USE_SAMPLE_RECORD_<tablename>"}

For example:

script: example.t
ddatestcase: sampletc
ddatestdata: {"USE_SAMPLE_RECORD_SpaceTable$"}

You must put the USE_SAMPLE_RECORD_ prefix in front of each table name that you want to run against. If
you are using two tables, you need to input the prefix twice, as shown below with two tables named
"Table1" and "Table2":

ddatestdata: {"USE_SAMPLE_RECORD_Table1","USE_SAMPLE_RECORD_Table2"}

Using a main Function in the Script
Although most of the script files you create contain only test cases, in some instances you need to add a
function named main to your script. You can use the main function to pass data to test cases as well as
control the order in which the test cases in the script are executed.

When you run a script file by clicking Run > Run:

• If the script file contains a main function, the main function is executed, then execution stops. Only test
cases and functions called by main will be executed, in the order in which they are specified in main.

• If the script does not contain a main function, the test cases are executed from top to bottom.

Example

The following template shows the structure of a script that contains a main function that passes data to a
data-driven test case:

main ()
// 1. Declare a variable to hold current record
// 2. Store all data for test case in a list of records
// 3. Call the test case once for each record in the list

Using this structure, the following example shows how to create a script that defines data records and then
calls the sample test case once for each record in the list:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for
 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search
 STRING sExpected // The expected match

main ()
 SEARCHINFO Data
 list of SEARCHINFO lsData = {...}
 {"Test Case", "<END>", "C", TRUE, "Up", "C"}
 {"Test Case", "<END>", "Ca", TRUE, "Up", "Ca"}
 // additional data records can be added here
 for each Data in lsData
 FindTest (Data)

testcase FindTest (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()

172 | Designing and Recording Test Cases with the Open Agent

 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()
 Find.Cancel.Click ()
 DocumentWindow.Document.VerifySelText ({Data.sExpected})
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

When you click Run > Run, the main function is called and the FindTest test case will be executed once
for every instance of Data in lsData (the list of SEARCHINFO records). In the script shown above, the test
case will be run twice. Here is the results file that is produced:

Script findtest.t - Passed
Passed: 2 tests (100%)
Failed: 0 tests (0%)
Totals: 2 tests, 0 errors, 0 warnings

Testcase FindTest ({"Test Case", "<END>", "C", TRUE, "Up", "C"}) - Passed
Testcase FindTest ({"Test Case", "<END>", "Ca", TRUE, "Up", "Ca"}) - Passed

Note: With data-driven test cases, Silk Test Classic records the parameters that are passed in, in the
results file.

In this sample data-driven test case, the test case data is stored in a list within the script itself. It is also
possible to store the data externally and read records into a list using the FileReadValue function.

Using do...except to Handle an Exception
The VerifyValue method, like all 4Test verification methods, raises an exception if the actual value does
not match the expected (baseline) value. When this happens, Silk Test Classic halts the execution of the
test case and transfers control to the recovery system. The recovery system then returns the application to
the base state.

However, suppose you don’t want Silk Test Classic to transfer control to the recovery system, but instead
want to trap the exception and handle it yourself. For example, you might want to log the error and continue
executing the test case. To do this, you can use the 4Test do...except statement and related
statements, which allow you to handle the exception yourself.

Characters Excluded from Recording and Replaying
The following characters are ignored by Silk Test during recording and replay:

Characters Control

... MenuItem

tab MenuItem

& All controls. The ampersand (&) is used as an accelerator
and therefore not recorded.

Designing and Recording Test Cases with the Open Agent | 173

Testing in Your Environment with the Open
Agent

This section describes how you can test applications in your environment with the Open Agent.

Distributed Testing with the Open Agent
This section describes how you can run tests on multiple machines.

Configuring Your Test Environment
This topic contains information about configuration tasks that you can perform on your test environment to
test on multiple machines.

When you are
working with ...

Configure the following ...

PC-Class
Platforms

Explicitly assign a unique network name to remote agents so that Silk Test Classic can
identify the agent when your test case connects to that machine.

TCP/IP On PCs. Windows machines generally come with TCP/IP. Silk Test Classic on
Microsoft Windows can use any TCP/IP software package that supports the Windows
Sockets Interface Standard, Version 1.1, (WINSOCK), and supplies WINSOCK.DLL.

LAN Manager
or Windows for
Workgroups

• This functionality is supported only if you are using the Classic Agent.
• Increase the SESSIONS value, the default is 6, to a higher value. This variable is

defined in the protocol.ini file, which is typically located in your Windows
directory.

• Increase the NCBS value in protocol.ini to twice the SESSIONS value.
• The LAN Manager network environment and Windows for Workgroups have the

ability to use more than one protocol driver at a time. NetBEUI is the protocol driver
frequently used by LAN Manager. In order for Silk Test Classic and the agent to run,
the NetBEUI protocol must be the first protocol loaded. The LANABASE option
under the [NETBEUI_XIF] section of protocol.ini must be set to 0 (zero). If
additional protocols are loaded, they must have a sequentially higher LANABASE
setting. For example, if you are running both NetBEUI and TCP/IP, the LANABASE
setting for NetBEUI is (as always) 0 (zero), and the value for TCP/IP is1 (one).

NetBIOS on
PCs

• This functionality is supported only if you are using the Classic Agent.
• Under Windows, install NetBEUI with NetBIOS.
• In the Network control panel, set NetBEUI as the default protocol.
• On Windows, NetBIOS is started automatically.
• Explicitly assign a unique network name to remote agents so that Silk Test Classic

can identify the agent when your test case issues a Connect function for that
machine. This step is not necessary for agents using TCP/IP because Silk Test
Classic automatically uses the workstation’s TCP/IP name. The name must be from
1 to 16 alphanumeric characters long and must not be the standard name you use
for your machine itself or the name of any other distributed agent. On some
systems, using the same name can cause a system crash. A safe alternative is to

174 | Testing in Your Environment with the Open Agent

When you are
working with ...

Configure the following ...

derive the agent name from the machine name. For example, if a machine is called
Rome, call the Agent Rome_QAP.

• Your NetBIOS adapter may be configured as any host adapter number, including
adapter 0. Check with your network administrator if you are not sure how to do this
or need to change your configuration.

Client/Server Testing Configurations
The processes that participate in a client/server testing scenario are logically associated with three
different computers:

1. System A runs Silk Test Classic, which processes test scripts and sends application commands to the
agent.

2. System B runs the client application and the agent, which submits the application commands to the
client application.

3. System C runs the server software, which reacts to requests submitted by the client application.

The following sections describe different hardware/software configurations that can support Silk Test
Classic testing.

Configuration 1

Machine 1 shows the software configuration you would have when testing a stand-alone application.
Machine 2 shows Silk Test Classic and a client/server application with all of your software running on one
machine. This configuration allows you to do all types of functional testing other than testing the behavior of
the connection between a client and a remote server.

During your initial test development phase, you can reduce your hardware needs by making two (and
possibly all) of these systems the same. If you write tests for an application running on the same system as

Testing in Your Environment with the Open Agent | 175

Silk Test Classic, you can implement the tests without consideration of any of the issues of remote testing.
You can then expand your testing program incrementally to take your testing into each new phase.

Configuration 2

A testing configuration in which the client application runs on the same machine as Silk Test Classic and
the server application runs on a separate machine.

Note: In this configuration, as with Machine 2 in Configuration 1, there is no communication between
Silk Test Classic and the server. This means that you must manage the work of starting and initializing
the server database manually. For some kinds of testing this is appropriate.

This configuration lets you test the remote client-to-server connection and is appropriate for many stress
tests. It allows you to do volume load testing from the point of view of the client application, but not the
server.

Configuration 3

Multiple copies of the client application running on separate machines, with Silk Test Classic driving the
client application by means of the agent process on each client machine, and the client application driving
the server application. This is just the multi-client version of the previous configuration. You could run a
fourth instance of the client application on the Silk Test Classic machine. The actual number of client
machines used is your choice.

176 | Testing in Your Environment with the Open Agent

This configuration is appropriate for load testing and configuration testing if you have no need to
automatically manipulate the server. You must have at least two clients to test concurrency and mutual-
exclusion functionality.

Configuration 4

Once you are running Silk Test Classic, it makes sense to have your script initialize your server
automatically. Configuration 4 uses the same hardware configuration as Configuration 3, but Silk Test
Classic is also driving the server directly. This figure shows Silk Test Classic using an agent on the server
machine to drive the server’s GUI (the lower connecting arrow); this approach can be used to start the
server’s database and sometimes can be used to initialize it to a base state. The upper arrow shows Silk
Test Classic using SQL commands to directly manipulate the server database; use this approach when
using the agent is not sufficient. After starting the database with the agent, use SQL commands to initialize
it to a base state. The SQL commands are submitted by means of Silk Test Classic’s database functions,
which do not require the services of the agent.

Testing in Your Environment with the Open Agent | 177

Configuration 4 is the most complete testing configuration. It requires the database tester. You can use it
for all types of Silk Test Classic testing, including volume load testing of the server, peak load testing, and
performance testing.

The special features that allow Silk Test Classic to provide rigorous testing for client/ server applications
are the following:

• Automatic control of multiple applications.
• Multithreading for automatic control of concurrent applications.
• Reporting results by thread ID.
• Testing across networks using a variety of protocols.

The added value that the database tester provides for the client/server environment is direct database
access from the test script.

Networking Protocols Used by the Open Agent
The Open Agent uses exclusively the TCP/IP protocol.

Single Local Applications
In a single-application test environment, if the application is local, you do not have to determine an agent
name or issue a connection command. When you start an agent on the local machine, Silk Test Classic
automatically connects to it and directs all agent commands to it.

Remote Applications
When you have one or more remote agents in your testing network, you enable networking by specifying
the network type.

For projects or scripts that use the Classic Agent, if you are not using TCP/IP, you have to assign to each
agent the unique name that your scripts use to direct test operations to the associated application. For
additional information, see Enabling Networking and Assigning the Classic Agent Name and Port.

You can use Silk Test Classic to test two applications on the same target from one host machine.

178 | Testing in Your Environment with the Open Agent

Single Remote Applications

In a single-application test environment, if the application is remote, specify the agent name in the
Runtime Options dialog box. This causes Silk Test Classic to automatically connect to that machine and
to direct all agent commands to that machine. This contrasts with the multi-application case, in which you
explicitly connect to the target machines and explicitly specify which machines are to receive which
sections of code.

Multiple Remote Applications

When you enable networking by selecting the networking type in the Runtime Options dialog box on the
host, do not set the Agent Name text box to an agent name if you have multiple remote agents. This field
only accepts a single agent name and using it prevents you from handling all your client machines the
same way.

If you specify one agent name from your set of agents, then you cannot issue a Connect call to that agent
and thus do not receive the machine handle that the Connect function returns. Since you have to issue
some Connect calls, be consistent and avoid writing exception code to handle a machine that is
automatically connected.

For projects or scripts that use the Classic Agent, you can specify multiple agents from within your script
file by adding the following command line to the agent:

agent –p portNumber

Configuring a Network of Computers
To configure a network of computers so that they can run Silk Test Classic and the Silk Test Classic agents,
perform the following steps:

1. Install, or have already running, networking protocols supported by Silk Test Classic.

2. Install Silk Test Classic on the host machine and the agent software on all target machines.

3. Establish connectability between host and agents.

This may be automatic or may require some setup, depending on the circumstances.

4. Enable networking on any target machines.

Use the Agent window, as described in Enabling Networking and Assigning the Classic Agent Name
and Port.

5. Enable networking on the host machine.

Use the Runtime Options dialog box. Details may vary, depending on your configuration.

6. Gather the information that your test scripts need when making explicit connections.

For example, you can edit the agent names into a list definition and have your test plan pass the list
variable name as an argument for test cases controlled by that plan. The test cases then pass each
agent name to a Connect or SetUpMachine function and that function makes the explicit host-to-
agent connection.

Configuration details are specific to the different protocols and operating systems you are using. In general,
set up your Agents and make all adjustments to the partner.ini file or environment variables before
enabling networking on the host machine.

Enabling Networking on a Remote Host
Once the protocol has been picked for any PC agents and the port settings are consistent, you can enable
networking on the host.

Do this by choosing Options > Runtime and setting the port number and/or agent name. You can skip this
step if you do not have to change the default port number and you are not specifying an agent name for a
single-remote-application configuration.

Testing in Your Environment with the Open Agent | 179

Configuring Open Agent Port Numbers
Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the agent. Then,
the information service forwards communication to the port that the agent uses. However, if you have a port
number conflict or an issue with a firewall, you must configure the port number for that machine or for the
information service.

The default port of the information service is 22901. When you can use the default port, you can type
hostname without the port number for ease of use. If you do specify a port number, ensure that it matches
the value for the default port of the information service or one of the additional information service ports.
Otherwise, communication will fail.

After changing the port number, restart the Open Agent, Silk Test Classic, Silk Test Recorder, and the
application that you want to test.

Running Test Cases in Parallel
A concurrent, or multithreaded, script is one in which multiple statements can execute in parallel.
Concurrency allows you to more effectively test distributed systems, by permitting multiple client
applications to submit requests to a server simultaneously.

The 4Test language fully supports the development of concurrent scripts which enables a script to:

• Create and coordinate multiple concurrent threads.
• Protect access to variables, which are global to all threads.
• Synchronize threads with semaphores.
• Protect critical sections of code for atomic operations.
• Recover from errors in the event of script deadlock.

Concurrency
For Silk Test Classic, concurrent processing means that Agents on a specified set of machines drive the
associated applications simultaneously. To accomplish this, the host machine interleaves execution of the
sets of code assigned to each machine. This means that when you are executing identical tests on several
machines, each machine can be in the process of executing the same operation. For example, select the
Edit.FindChange menu item.

At the end of a set of concurrent operations, you will frequently want to synchronize the machines so that
you know that all are ready and waiting before you submit the next operation. You can do this easily with
4Test.

There are several reasons for executing test cases concurrently:

• You want to save testing time by running your functional tests for all the different platforms at the same
time and by logging the results centrally, on the host machine.

• You are testing cross-network operations.
• You need to place a multi-user load on the server.
• You are testing the application’s handling of concurrent access to the same database record on the

server.

To accomplish testing concurrent database accesses, you simply set all the machines to be ready to make
the access and then you synchronize. When all the machines are ready, you execute the operation that
commits the access operation—for example, clicking OK. Consider the following example:

// [A] Execute 6 operations on all machines concurrently
for each sMachine in lsMachine
 spawn
 SixOpsFunction (sMachine)
rendezvous // Synchronize

180 | Testing in Your Environment with the Open Agent

// [B] Do one operation on each machine
for each sMachine in lsMachine
 spawn
 [sMachine]MessageBox.OK.Click () // One operation
rendezvous // Synchronize

In code fragment [A], the six operations defined by the function SixOpsFunction are executed
simultaneously on all machines in a previously defined list of Agent names. After the parallel operation, the
script waits for all the machines to complete; on completion, they will present a message box, unless the
application fails. In code fragment [B], the message box is dismissed. By putting the message dismissal
operation into its own parallel statement block instead of adding it to the SixOpsFunction, you are able
to synchronize and all machines click at almost the same instant.

In order to specify that a set of machines should execute concurrently, you use a 4Test command that
starts concurrent threads. In the fragments above, the spawn statement starts a thread for each machine.

Global Variables
Suppose the code for each machine is counting instances of some event. You want a single count for the
whole test and so each machine adds its count to a global variable. When you are executing the code for
all your machines in parallel, two instances of the statement iGlobal = iGlobal + iCount could be executing
in parallel. Since the instructions that implement this statement would then be interleaved, you could get
erroneous results. To prevent this problem, you can declare a variable shareable. When you do so, you can
use the access statement to gain exclusive access to the shared variable for the duration of the block of
code following the access statement. Make variables shareable whenever the potential for conflict exists.

Recovering Multiple Tests
There are three major categories of operations that an Agent executes on a target machine:

• Setup operations that bring the application to the state from which the next test will start.
• Testing operations that exercise a portion of the application and verify that it executed correctly.
• Cleanup operations that handle the normal completion of a test plus the case where the test failed and

the application is left in an indeterminate state. In either case, the cleanup operations return the
application to a known base state.

When there are multiple machines being tested and more than one application, the Agent on each machine
must execute the correct operations to establish the appropriate state, regardless of the current state of the
application.

Remote Recording
Once you establish a connection to a target machine, any action you initiate on the host machine, which is
the machine running Silk Test Classic, is executed on the target machine.

With the Classic Agent, one Agent process can run locally on the host machine, but in a networked
environment, the host machine can connect to any number of remote Agents simultaneously or
sequentially. You can record and replay tests remotely using the Classic Agent. If you initiate a Record/
Testcase command on the host machine, you record the interactions of the user manipulating the
application under test on the target machine. In order to use the Record menu’s remote recording
operations, you must place the target machine’s name into the Runtime Options dialog box. Choose
Options > Runtime.

With the Open Agent, one Agent process can run locally on the host machine. In a networked environment,
any number of Agents can replay tests on remote machines. However, you can record only on a local
machine.

Testing in Your Environment with the Open Agent | 181

Threads and Concurrent Programming
Silk Test Classic can run test cases in parallel on more than one machine. To run test cases in parallel, you
can use parallel threads within main() or in a function called by main(). If you attempt to run test cases in
parallel on the same machine, you will generate a runtime error.

A more elegant alternative to parallel threads is to use a multitestcase function, which provides a robust
multi-machine recovery system. For additional information on multitestcase code templates, see Using the
Client/Server Template and Using the Parallel Template.

In the 4Test environment, a thread is a mechanism for interleaving the execution of blocks of client code
assigned to different Agents so that one script can drive multiple client applications simultaneously. A
thread is part of the script that starts it, not a separate script. Each thread has its own call stack and data
stack. However, all the threads that a script spawns share access to the same global variables, function
arguments, and data types. A file that one thread opens is accessible to any thread in that script.

While the creation of a thread carries no requirement that you use it to submit operations to a client
application, the typical reason for creating a multithread script is so that each thread can drive test
functions for one client, which allows multiple client application operations to execute in parallel.

When a script connects to a machine, any thread in that script is also connected to the machine. Therefore,
you must direct the testing operations in a thread to a particular Agent machine. Threads interleave at the
machine instruction level; therefore, no single 4Test statement is atomic with respect to a statement in
another thread.

Driving Multiple Machines
When you want to run tests on multiple machines simultaneously, you connect to all the machines and then
you direct specific test operations to particular machines. This enables you to drive different applications
concurrently. For example, you can test the intercommunication capabilities of two different applications or
you can drive both a client application and its server.

To do this, at the beginning of a test script you issue for each machine an explicit connection command.
This can be either Connect(agent_name) or SetMachine(agent_name). This connection lasts for the
duration of the script unless you issue a Disconnect(agent_name) command. In the body of the script
you can specify that a particular portion of code is to be executed on a particular machine. The
SetMachine(agent_name) command specifies that the following statements are directed to that Agent.
You can specify that just one statement is directed to a particular Agent by using the bracket form of the
machine handle operator. For example ["Client_A"]SYS_SetDir ("c:\mydir").

Since 4Test allows you to pass variables to these functions, you can write a block of code that sends the
same operations to a particular set of target machines and you can pass the SetMachine function in that
block of code a variable initialized from a list that specifies the machines in that set. Thus, specifying which
machines receive which operations is very simple.

Protecting Access to Global Variables
When a new thread is spawned, 4Test creates a new copy of all local variables and function arguments for
it to use. However, all threads have equal access to global variables. To avoid a situation in which multiple
threads modify a variable simultaneously, you must declare the variable as shareable. A shareable variable
is available to only one thread at a time.

Instances where threads modify variables simultaneously generate unpredictable results. Errors of this kind
are difficult to detect. Make variables shareable wherever the potential for conflict exists.

A declaration for a shareable variable has the following form:

[scope] share data-type name [= expr] {, name [= expr]}

• scope can be either public or private. If omitted, the default is public.

182 | Testing in Your Environment with the Open Agent

• data-type is a standard or user-defined data type.
• name is the identifier that refers to the shareable variable.
• expr is an expression that evaluates to the initial value you want to give the variable. The value must

have the same type you gave the variable. If you try to use a variable before its value is set, 4Test raises
an exception.

At any point in the execution of a script, a shared variable can only be accessed from within the block of
code that has explicitly been granted access to it. You request access to shareable variables by using the
access statement.

An access statement has the following form:

access name1, name2, ...
 statement

where name1, name2, ... is a list of identifiers of optional length, each of which refers to a shareable
variable and statement is the statement to be executed when access to the variables can be granted.

If no other thread currently has access to any of the shareable variables listed, 4Test executes the specified
statement. Otherwise, 4Test blocks the thread where the access statement occurs until access can be
granted to all the shareable variables listed. At that point, 4Test blocks competing threads and executes the
blocked thread.

Example
share INTEGER iTestNum = 0
public share STRING asWeekDay [7]
share ANYTYPE aWhoKnows

void IncrementTestNum ()
 access iTestNum
 iTestNum = iTestNum + 1

Synchronizing Threads with Semaphores
Use semaphores to mutually exclude competing threads or control access to a resource. A semaphore is a
built-in 4Test data type that can only be assigned a value once. The value must be an integer greater than
zero. Once it is set, your code can get the semaphore's value, but cannot set it.

Example

The following code example shows legal and illegal manipulations of a variable of type
SEMAPHORE:

SEMAPHORE semA = 10 // Legal
semA = 20 // Illegal -
existing semaphore
 // cannot be
reinitialized
if (semA == [SEMAPHORE]2)... // Legal - note the
typecast
Print ("SemA has {semA} resources left.") // Legal
SEMAPHORE semB = 0 // Illegal - must be
greater than 0

To compare an integer to a semaphore variable, you must typecast from integer to semaphore using
[SEMAPHORE].

Note: You cannot cast a semaphore to an integer.

To use a semaphore, you first declare and initialize a variable of type SEMAPHORE. Thereafter, 4Test
controls the value of the semaphore variable. You can acquire the semaphore if it has a value greater than

Testing in Your Environment with the Open Agent | 183

zero. When you have completed your semaphore-protected work, you release the semaphore. The
Acquire function decrements the value of the semaphore by one and the Release function increments it
by one. Thus, if you initialize the semaphore to 5, five threads can simultaneously execute semaphore-
protected operations while a sixth thread has to wait until one of the five invokes the Release function for
that semaphore.

The Acquire function either blocks the calling thread because the specified semaphore is zero, or
"acquires" the semaphore by decrementing its value by one. Release checks for any threads blocked by
the specified semaphore and unblocks the first blocked thread in the list. If no thread is blocked, Release
"releases" the semaphore by incrementing its value by one so that the next invocation of Acquire
succeeds, which means it does not block.

A call to Acquire has the following form:

void Acquire(SEMAPHORE semA)

Where semA s the semaphore variable to acquire.

A call to Release has the following form:

void Release(SEMAPHORE semA)

Where semA s the semaphore variable to release.

If more than one thread was suspended by a call to Acquire, the threads are released in the order in
which they were suspended.

A semaphore that is assigned an initial value of 1 is called a binary semaphore, because it can only take
on the values 0 or 1. A semaphore that is assigned an initial value of greater than one is called a counting
semaphore because it is used to count a number of protected resources.

Example: Application only supports three simultaneous users

Suppose you are running a distributed test on eight machines using eight 4Test threads.
Assume that the application you are testing accesses a database, but can support only
three simultaneous users. The following code uses a semaphore to handle this
situation:

SEMAPHORE DBUsers = 3
...
Acquire (DBUsers)
 access database
Release (DBUsers)

The declaration of the semaphore is global; each thread contains the code to acquire
and release the semaphore. The initial value of three ensures that no more than three
threads will ever be executing the database access code simultaneously.

Testing In Parallel but Not Synchronously
This topic illustrates a method for running test functions in parallel on multiple clients, but with different
tests running on each client. This provides a realistic multi-user load as opposed to a load in which all
clients perform the same operations at roughly the same time.

Example

This example suggests a method by which each client, operating in a separate thread,
executes a test that is assigned by a random number. The RandSeed function is called
first so that the random number sequence is the same for each iteration of this multi-
user test scenario. This enables you to subsequently repeat the test with the same
conditions.

184 | Testing in Your Environment with the Open Agent

The example reads a list of client machines from a file, clients.txt, and receives the
test count as in input argument. These external variables make the example scalable as
to the number of machines being tested and the number of tests to be run on each. The
number of different testcases is twelve in this example, but could be changed by
modifying the SelectTest function and adding further test functions. For each
machine in the client machine list, the example spawns a thread in which the specified
client executes a randomly selected test, repeating for the specified number of tests.

Note: You can execute this test as it is written because it sets
its own application states. However, when you use multi-
application support, this is automatic. And if you want to use
this approach to drive different applications or to initialize a
server before starting the testing, you must add multi-
application support.

testcase ParallelRandomLoadTest (INTEGER iTestCount)
 LIST OF STRING lsClients
 RandSeed (3)

 // list of client names
 ListRead (lsClients, "clients.txt")

 STRING sClientName

 for each sClientName in lsClients
 spawn
 // Connect to client, which becomes current machine
 Connect (sClientName)
 SetAppState ("MyAppState") // Initialize
application
 TestClient (iTestCount)
 Disconnect (sClientName)
 rendezvous

 TestClient (INTEGER iTestCount)
 for i = 1 to iTestCount
 SelectTest ()

 SelectTest ()
 INTEGER i = RandInt (1, 12)

 // This syntax invokes Test1 to Test12, based on i
 @("Test{i}") ()

 // Define the actual test functions
 Test1 ()
 // Do the test . . .

 Test2 ()
 // Do the test . . .
 . . .
 Test12 ()
 // Do the test . . .

Statement Types
This section describes the statement types that are available for managing distributed tests.

Parallel Processing Statements

You create and manage multiple threads using combinations of the 4Test statements parallel, spawn,
rendezvous, and critical.

Testing in Your Environment with the Open Agent | 185

In 4Test, all running threads, which are those not blocked, have the same priority with respect to one
another. 4Test executes one instruction for a thread, then passes control to the next thread. The first thread
called is the first run, and so on.

All threads run to completion unless they are deadlocked. 4Test detects script deadlock and raises an
exception.

Note: The 4Test exit statement terminates all threads immediately when it is executed by one thread.

Using Parallel Statements

A parallel statement spawns a statement for each machine specified and blocks the calling thread until the
threads it spawns have all completed. It condenses the actions of spawn and rendezvous and can make
code more readable.

The parallel statement executes a single statement for each thread. Thus if you want to run complete tests
in parallel threads, use the invocation of a test function, which may execute many statements, with the
parallel statement, or use a block of statements with spawn and rendezvous.

To use the parallel statement, you must specify the machines for which threads are to be started. You can
follow the parallel keyword with a list of statements, each of which specifies a different Agent name. For
example:

parallel
 DoSomething ("Client1")
 DoSomething ("Client2")

The DoSomething function then typically issues a SetMachine(sMachine) call to direct its machine
operations to the proper Agent.

Using a Spawn Statement

A spawn statement begins execution of the specified statement or block of statements in a new thread.
Since the purpose of spawn is to initiate concurrent test operations on multiple machines, the structure of a
block of spawned code is typically:

• A SetMachine command, which directs subsequent machine operations to the specified agent.
• A set of machine operations to drive the application.
• A verification of the results of the machine operations.

You can use spawn to start a single thread for one machine, and then use successive spawn statements to
start threads for other machines being tested. Silk Test Classic scans for all spawn statements preceding a
rendezvous statement and starts all the threads at the same time. However, the typical use of spawn is in a
loop, like the following:

for each sMachine in lsMachine
 spawn // start thread for each sMachine
 SetMachine (sMachine)
 DoSomething ()
 rendezvous

The preceding example achieves the same result when written as follows:

for each sMachine in lsMachine
 spawn
 [sMachine]DoSomething ()
 rendezvous

To use a spawn statement in tests that use TrueLog, use the OPT_PAUSE_TRUELOG option to disable
TrueLog. Otherwise, issuing a spawn statement when TrueLog is enabled causes Silk Test Classic to hang
or crash.

186 | Testing in Your Environment with the Open Agent

Using Templates
This section describes how you can use templates for distributed testing.

Using the Parallel Template

This template is stored as parallel.t in the Examples subdirectory of the Silk Test Classic installation
directory. The code tests a single application that runs on an externally defined set of machines.

This multi-test-case template accepts a list of machine names. The application whose main window is
MyMainWin is invoked on each machine. The same operations are then performed on each machine in
parallel. If any test case fails, the multi-test-case will be marked as having failed; however, a failed test case
within a thread does not abort the thread.

You can use this template by doing three edits:

• Include the file that contains your window declarations.
• Substitute the MainWin name of your application, which is defined in your MainWin window declaration,

with the Mainwin name of the template, MyMainWin.
• Insert the calls to one or more tests, or to the main function, where indicated.

Use myframe.inc.

use "myframe.inc"
multitestcase MyParallelTest (LIST of STRING lsMachines)

 STRING sMachine

 // Connect to all machines in parallel:
 for each sMachine in lsMachines
 spawn
 SetUpMachine (sMachine, MyMainWin)
 rendezvous

 // Set app state of each machine, invoking if necessary:
 SetMultiAppStates()

 // Run testcases in parallel
 for each sMachine in lsMachines
 spawn
 SetMachine (sMachine)
 // Call testcase(s) or call main()
 rendezvous

Client/Server Template

This template is stored as multi_cs.t in the Examples subdirectory of the Silk Test Classic installation
directory. This test case invokes the server application and any number of client applications, based on the
list of machines passed to it, and runs the same function on all clients concurrently, after which the server
will perform end-of-session processing.

You can use this template by doing the following edits:

• Include the files that contain your window declarations for both the client application and the server
application.

• Substitute the MainWin name of your server application, which is defined in your MainWin window
declaration, with the MainWin name of the template, MyServerApp.

• Substitute the MainWin name of your client application, which is defined in your MainWin window
declaration, with the Mainwin name of the template, MyClientApp.

• Replace the call to PerformClientActivity with a function that you have written to perform client
operations and tests.

Testing in Your Environment with the Open Agent | 187

• Replace the call to DoServerAdministration with a function that you have written to perform server
administrative processing and/or cleanup.

use "myframe.inc"
multitestcase MyClientServerTest (STRING sServer, LIST of STRING lsClients)
 STRING sClient

 // Connect to server machine:
 SetUpMachine (sServer, MyServerApp)

 // Connect to all client machines in parallel:
 for each sClient in lsClients
 spawn
 SetUpMachine (sClient, MyClientApp)
 rendezvous

 // Set app state of each machine, invoking if necessary:
 SetMultiAppStates()

 // Run functions in parallel on each client:
 for each sClient in lsClients
 spawn
 // Make client do some work:
 [sClient] PerformClientActivity()
 rendezvous

 // Perform end-of-session processing on server application:
 [sServer] DoServerAdministration()

Testing Multiple Machines
This section describes strategies for testing multiple machines.

Running Tests on One Remote Target
Use one of the following methods to specify that you want a script, suite, or test plan to run on a remote
target instead of the host:

• Enter the name of the target Agent in the Runtime Options dialog box of the host. You also need to
select a network protocol in the dialog box. If you have been testing a script by running Silk Test Classic
and the Agent on the same system, you can then test the script on a remote system without editing your
script by using this method.

• Specify the target Agent’s name by enclosing it within brackets before the script or suite name. For
example [Ohio]myscript.t.

• You can select (none) in the Runtime Options dialog box of the host and then specify the name of the
target Agent in a call to the Connect function in your script. For example, to connect to a machine
named Ontario:

testcase MyTestcase ()
 Connect ("Ontario")
 // Call first testcase
 DoTest1 ()
 // Call second testcase
 DoTest2 ()
 Disconnect ("Ontario"

When you are driving only one remote target, there is no need to specify the current machine; all test case
code is automatically directed to the only connected machine.

When you use the multi-application support functions, you do not have to make explicit calls to Connect;
the support functions issue these calls for you.

188 | Testing in Your Environment with the Open Agent

Running Tests Serially on Multiple Targets
To run your scripts or suites serially on multiple target machines, specify the name of the target Agent
within the suite file. For example, the following code runs a suite of three scripts serially on two target
machines named Ohio and Montana:

[Ohio] script1.t
[Ohio] script2.t
[Ohio] script3.t
[Montana] script1.t
[Montana] script2.t
[Montana] script3.t

Any spaces between the name of the target Agent and the script name are not significant.

Alternatively, to run test cases serially on multiple target machines, switch among the target machines from
within the script, by using the Connect and Disconnect functions of 4Test. For example, the following
script contains a function named DoSomeTesting that is called once for each machine in a list of target
machines, with the name of the target Agent as an argument:

testcase TestSerially ()
 STRING sMachine
 // Define list of agent names
 LIST OF STRING lsMachines = {...}
 "Ohio"
 "Montana"

 // Invoke test function for each name in list
 for each sMachine in lsMachines
 DoSomeTesting (sMachine)

 // Define the test function
 DoSomeTesting (STRING sMachine)
 Connect (sMachine)
 Print ("Target machine: {sMachine}")
 // do some testing...
 Disconnect (sMachine)

You will rarely need to run one test serially on multiple machines. Consider this example a step on the way
to understanding parallel testing.

Specifying the Target Machine Driven By a Thread
While the typical purpose for a thread is to direct test operations to a particular test machine, you have total
flexibility as to which machine is being driven by a particular thread at any point in time. For example, in the
code below, the spawn statement starts a thread for each machine in a predefined list of test machines.
The SetMachine command directs the code in that thread to the Agent on the specified machine. But the
["server"] machine handle operator directs the code in the doThis function to the machine named
server. The code following the doThis invocation continues to be sent to the sMachine specified in the
SetMachine command.

for each smachine in lsMachine
 spawn // start thread for each sMachine
 SetMachine (sMachine)
 // ... code executed on sMachine
 ["server"]doThis() // code executed on "server"
 // ...continue with code for sMachine
rendezvous

While the machine handle operator takes only a machine handle, 4Test implicitly casts the string form of
the Agent machine’s name as a machine handle and so in the preceding example the machine name is
effectively the same as a machine handle.

Testing in Your Environment with the Open Agent | 189

Specifying the Target Machine For a Single Command
To specify the target machine for a single command, use the machine handle operator on the command.
For example, to execute the SYS_SetDir function on the target machine specified by the sMachine1
variable, type sMachine1->SYS_SetDir (sDir).

To allow you to conveniently perform system related functions (SYS_) on the host, you can preface the
function call with the machine handle operator, specifying the globally defined constant hHost as the
argument to the operator. For example, to set the working directory on the host machine to c:\mydir,
type hHost->SYS_SetDir ("c:\mydir").

You can use this syntax with a method call, for example sMachine->
TextEditor.Search.Find.Pick, but when invoking a method, this form of the machine handle must
be the first token in the statement.

If you need to use this kind of statement, use the alternative form of the machine handle operator
described below.

You can use the SetMachine function to change target machines for an entire block of code.

The hHost constant cannot be used in simple handle compares like hMyMachineHandle== hHost. This will
never be TRUE. A better method is to use GetMachineName(hHost) and compare names. If hHost is used
as an argument, it will refer to the "(local)" host not the target host.

Example

The following example shows valid and invalid syntax:

// Valid machine handle operator use
for each sMachine in lsMachine
 sMachine-> TextEditor.Search.Find.Pick

// Invalid machine handle operator use with method
if (sMachine->ProjX.DuplicateAlert.Exists())
 Print ("Duplicate warning on {sMachine} recipient.")

If you need to use this kind of statement, use the alternative form of the machine handle operator
described below.

You can use the SetMachine function to change target machines for an entire block of code.

The hHost constant cannot be used in simple handle compares, like hMyMachineHandle== hHost. This
will never be TRUE. A better method is to use GetMachineName(hHost) and compare names. If hHost is
used as an argument, it will refer to the local host, not the target host.

Reporting Distributed Results
You can view test results in each of several formats, depending on the kind of information you need from
the report. Each format sorts the results data differently, as follows:

Elapsed
time

Sorts results for all threads and all machines in event order. This enables you to see the
complete set of results for a time period and may give you a sense of the load on the
server during that time period or may indicate a performance problem.

Machine Sorts results for all threads running on one machine and presents the results in time-sorted
order for that machine before reporting on the next machine.

Thread Sorts results for all tests run under one thread and presents the results in time-sorted order
for that thread before reporting on the next thread.

190 | Testing in Your Environment with the Open Agent

Alternative Machine Handle Operator
An alternative syntax for the machine handle operator is the bracket form, like the following example shows.

[hMachine] Any4TestFunctionCall ()

Example

To execute the SYS_SetDir function on the target machine specified by the string
sMachineA, you do this:

[sMachineA] SYS_SetDir (sDir)

The correct form of the invalid syntax shown above is:

// Invalid machine handle operator use
if ([sMachine]ProjX.DuplicateAlert.Exists())
 Print ("Duplicate warning on {sMachine} recipient.")

To execute the SYS_SetDir function on the host machine, you can do the following:

[hHost] SYS_SetDir (sDir)

You can also use this form of the machine handle operator with a function that is not being used to return a
value or with a method.

Example

for each sMachine in lsMachine
 [sMachine] FormatTest7 ()

Example

for each sMachine in lsMachine
 [sMachine] TextEditor.Search.Find.Pick

Testing Clients Concurrently
In concurrent testing, Silk Test Classic executes one function on two or more clients at the same time. This
topic demonstrates one way to perform the same tests concurrently on multiple clients.

For example, suppose you want to initiate two concurrent database transactions on the same record, and
then test how well the server performs. To accomplish this, you need to change the script presented in
Testing Clients Plus Server Serially to look like this:

testcase TestConcurrently ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")
 DoSomeSetup ("server") // initialize server first
 Disconnect ("server") // testcase is thru with server

 spawn // start thread for client1
 UpdateDatabase ("client1")
 spawn // start thread for client2
 UpdateDatabase ("client2")

 rendezvous // synchronize
 Disconnect ("client1")
 Disconnect ("client2")

 DoSomeSetup (STRING sMachine) // define server setup

Testing in Your Environment with the Open Agent | 191

 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

 UpdateDatabase (STRING sMachine) // define update test
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

An alternative but equivalent approach is to use the parallel statement in place of the spawn and
rendezvous:

testcase TestConcurrently2 ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")

 DoSomeSetup ("server")
 Disconnect ("server")

 parallel // automatic synchronization
 UpdateDatabase ("client1") // thread for client1
 UpdateDatabase ("client2") // thread for client2

 Disconnect ("client1")
 Disconnect ("client2")

 DoSomeSetup (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

 UpdateDatabase (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

If you use variables to specify different database records for each client’s database transactions, you can
use the above techniques to guarantee parallel execution without concurrent database accesses.

Testing Clients Plus Server Serially
In a client/server application, the server and its clients typically run on different target machines. This topic
explains how to build tests that test the server and its clients in a serial fashion. In this scenario, the

192 | Testing in Your Environment with the Open Agent

SetMachine function switches among the target machines on which the server and its clients are running.
The following script fragment tests a client/server database application in the following steps:

1. Connect to three target machines, which are server, client1, and client2.

2. Call the DoSomeSetup function, which calls SetMachine to make "server" the current target machine,
and then perform some setup.

3. Call the UpdateDatabase function once for each client machine. The function sets the target machine
to the specified client, then does a database update. It creates a timer to time the operation on this
client.

4. Disconnect from all target machines.

Example

This example shows how you direct sets of test case statements to particular machines.
If you were doing functional testing of one application, you might want to drive the
server first and then the application. However, this example is not realistic because it
does not show the support necessary to bring the different machines to their different
application states and to recover from a failure on any machine.

testcase TestClient_Server ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")
 DoSomeSetup ("server")
 UpdateDatabase ("client1")
 UpdateDatabase ("client2")
 DisconnectAll ()

DoSomeSetup (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

UpdateDatabase (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

Testing Databases
You may be testing a distributed application that accesses a database or you may be directly testing
database software. In either of these cases, you might want to manipulate the database directly from Silk
Test Classic for several purposes:

• To exercise certain database functions that are present in a GUI that runs directly on the server
machine and is not a client application. For example, administrative functions used for setting up the
database.

• To set the server database to a known state.
• To verify an application’s database results without using the application.

Testing in Your Environment with the Open Agent | 193

• To read information from the database to use as input to a test case.

Silk Test Classic can drive a server application’s GUI by means of the Silk Test Classic Agent exactly as it
drives a client application. In addition, the database tester provides direct access, using SQL, from a test
script to any database supported by ODBC drivers. These database functions enable you to read and write
database records without using the client application. Thus, you can verify client test results without
assuming the ability of the client to do that verification.

In addition to using the SQL functions in your tests, you can also use these functions to help manage your
testing process as follows:

• Maintain a bug database, updating it with the results of your testing.
• Manage your test data in a database instead of in a text file.

The database functions, among other things, allow you to connect to a database, submit an SQL
statement, read data from the selected record(s) if the SQL statement was SELECT, and subsequently
disconnect from the database. About a dozen of these functions allow you to access your database’s
catalog tables.

The functions that support these operations begin with the letters "DB_".

Testing Multiple Applications
This section describes testing multiple applications.

Overview of Multi-Application Testing
Silk Test Classic can easily drive multiple different applications simultaneously. Thus you can bring a
server’s database to a known state at the same time you are bringing multiple instances of the client
application to their base state window. Likewise, you can drive a server database with several different
client applications at the same time.

The essential difference between single-application and multi-application testing is clearly the difference
between "one" and "many." When the following entities in a test case are greater than one, they need
special consideration and support functions found in Silk Test Classic:

• Agent names.
• Application main window names.
• Sets of application states associated with each main window name.

Multi-machine testing requires that you map both the name of an application and all application states for
that application to the machine on which it will be tested. This makes it possible for you to direct test
operations to the right machines, and it enables Silk Test Classic to automatically set the machines to the
proper application state before a test is run, and to clean up after a test has failed.

Test Case Structure in a Multi-Application Environment
This topic describes Silk Test Classic components that enable concurrent testing of more than one
application. For example, there are functions that make it possible to drive both the client application and
the client’s server from Silk Test Classic, to set each to its base state, and to recover each if it fails.
Compare with the test case structure of a single-application environment.

The multi-application environment uses the same defaults.inc file as does the single-application
environment. However, when you define a function as a multitestcase, 4Test uses functions defined in the
cs.inc file to invoke functions in defaults.inc. Thus, it can pass the appropriate application states or
base states to these functions, depending on the requirements of a particular test machine.

Instead of preceding the test case function declaration with the keyword testcase, you must use the
keyword multitestcase to give your test case the multi-application recovery system.

194 | Testing in Your Environment with the Open Agent

cs.inc is an automatically included file that contains functions used only in the multi-application
environment. For additional information about this file and the functions that it contains, see cs.inc. You
may need to include other files also.

Invoking a Test Case in a Multi-Application Environment
The keyword for a test case declaration is different when you are performing distributed testing. In the
single-application environment, you invoke a test case with no arguments or you may specify an application
state function. However, in a multi-application environment, instead of preceding the test case function
declaration with the keyword testcase, you must use the keyword multitestcase to give your test case the
multi-application recovery system.

Declaring a function as a multitestcase gives that function the ability to invoke functions declared with the
keyword testcase. A multitestcase thus can be viewed as a wrapper for stand-alone test cases; it provides
a means of assigning tests to particular machines and lets you invoke previously written test cases from
the multi-test case file by simply adding a use statement to the file to include the test case definitions.

When you are using multi-application environment support, you can pass the test case the names of the
machines to be tested during that execution of the test case, but not the application state function. In a
multi-application environment, one test case can use multiple application states; you specify these in the
required code at the beginning of the test case.

Test Case Structure in a Single-Application Environment
The code that implements a test case for a single application is similar to that of a test case for applications
on multiple separate machines in a client/server environment.

This topic summarizes the structure of the single-application version and some Silk Test Classic
components used to implement it. You can compare the structure with the support code needed for running
multiple applications.

The include file defaults.inc implements the recovery system for a single application test. For
information about the DefaulBaseState function and the functions that are contained within
defaults.inc, see defaults.inc.

Your test case needs certain definitions that other test cases in your testing program will also need. These
include:

• Window declarations
• Application states
• Utility functions

Placing these general purpose definitions in an include file, or several smaller files, saves repetitive coding.
When you use Silk Test Classic to record window declarations and application states, Silk Test Classic
names the generated file frame.inc.

Window Declarations for Multi-Application Testing
In the client/server environment, unlike the stand-alone environment, you can test two or more different
applications at the same time. For example, you could run the functional tests for application "A" on
multiple machines at the same time that you are running the functional tests for application "B" on the same
machines. The include files that you must generate may therefore have to take into consideration different
platforms and/or different applications.

When you are driving two or more applications from Silk Test Classic, you need separate window
declarations for each different application. You must be certain that your main window declaration for each
separate application is unique. If the same application is running on different platforms concurrently, you
may need to use GUI specifiers to specialize the window declarations. 4Test will identify a window
declaration statement, that is preceded by a GUI specifier, as being true only on the specified GUI.

Testing in Your Environment with the Open Agent | 195

In addition, you may find that the operations needed to establish a particular application state are slightly
different between platforms. In this case, you just record application states for each platform and give them
names that identify the state and the GUI for your convenience.

Recording window declarations on a client machine that is not the host machine, requires that you operate
both Silk Test Classic on the host machine and the application on its machine at the same time. You record
window declarations and application states in much the same way for a remote machine as for an
application running in the Silk Test Classic host machine. The primary difference is that you start the
recording operation by selecting Test Frame in Silk Test Classic on the host system and you do the actual
recording of application operations on the remote system.

If you have two or more applications being tested in parallel, you need to have two or more sets of window
declarations. You must have window declarations, and application states, if needed, for each different
application. When recording window declarations and application states on a remote machine, you will find
it convenient to have the machine physically near to your host system.

Remote Recording

This functionality is supported only if you are using the Classic Agent.

Concurrency Test Example Code
The concurrency test example is designed to allow any number of test machines to attempt to access a
server database at the same time. This tests for problems with concurrency, such as deadlock or out-of-
sequence writes.

This example uses only one application. However, it is coded in the style required by the multi-application
environment because you will probably want to use an Agent to start and initialize the server during this
type of test. There is no requirement in the client/server environment that you use the single-application
style of test case just because you are driving only one application. For consistency of coding style, you will
probably find it convenient to always use the multi-application files and functions.

For detailed information on the code example, see Concurrency Test Explained.

const ACCEPT_TIMEOUT = 15
multitestcase MyTest (LIST OF STRING lsMachine)
 STRING sMachine
 INTEGER iSucceed
 STRING sError

 for each sMachine in lsMachine
 SetUpMachine (sMachine, Personnel)
 SetMultiAppStates ()

 /*** HAVE EACH MACHINE EDIT THE SAME EMPLOYEE ***/
 for each sMachine in lsMachine
 spawn

 /*** SET THE CURRENT MACHINE FOR THIS THREAD ***/
 SetMachine (sMachine)

 /*** EDIT THE EMPLOYEE RECORD "John Doe" ***/
 Personnel.EmployeeList.Select ("John Doe")
 Personnel.Employee.Edit.Pick ()

 /*** CHANGE THE SALARY TO A RANDOM NUMBER BETWEEN
 50000 AND 70000 ***/
 Employee.Salary.SetText ([STRING] RandInt (50000, 70000))
 rendezvous

 /*** ATTEMPT TO HAVE EACH MACHINE SAVE THE EMPLOYEE RECORD ***/
 for each sMachine in lsMachine
 spawn

196 | Testing in Your Environment with the Open Agent

 /*** SET THE CURRENT MACHINE FOR THIS THREAD ***/
 SetMachine (sMachine)

 /*** SELECT THE OK BUTTON ***/
 Employee.OK.Click ()

 /*** CHECK IF THERE IS A MESSAGE BOX ***/
 if (MessageBox.Exists (ACCEPT_TIMEOUT))
 SetMachineData (NULL, "sMessage",
 MessageBox.Message.GetText ())
 MessageBox.OK.Click ()
 Employee.Cancel.Click ()
 else if (Employee.Exists ())
 AppError ("Employee dialog not
 dismissed after {ACCEPT_TIMEOUT} seconds")
 rendezvous

 /*** VERIFY THE OF NUMBER OF MACHINES WHICH SUCCEEDED ***/
 iSucceed = 0
 for each sMachine in lsMachine
 sError = GetMachineData (sMachine, "sMessage")
 if (sMessage == NULL)
 iSucceed += 1
 else
 Print ("Machine {sMachine} got message '{sMessage}'")

 Verify (iSucceed, 1, "number of machines that succeeded")

Concurrency Test Explained
Before you record and/or code your concurrency test, you record window declarations that describe the
elements of the application’s GUI. These are placed in a file named frame.inc, which is automatically
included with your test case when you compile. Use Silk Test Classic to generate this file because Silk Test
Classic does most of the work.

The following code sample gives just those window declarations that are used in the Concurrency Test
Example:

window MainWin Personnel
 tag "Personnel"
 PopupList EmployeeList
 Menu Employee
 tag "Employee"
 MenuItem Edit
 tag "Edit"
 // ...

window DialogBox Employee
 tag "Employee"
 parent Personnel
 TextField Salary
 tag "Salary"
 PushButton OK
 tag "OK"
 // ...

The following explanation of the Concurrency Test Example gives the testing paradigm for a simple
concurrency test and provides explanations of many of the code constructs. This should enable you to read
the example without referring to the Help. There you will find more detailed explanations of these language
constructs, plus explanations of the constructs not explained here. The explanation of each piece of code
follows that code.

const ACCEPT_TIMEOUT = 15

Testing in Your Environment with the Open Agent | 197

The first line of the testcase file defines the timeout value (in seconds) to be used while waiting for a
window to display.

multitestcase MyTest (LIST OF STRING lsMachine)

The test case function declaration starts with the multitestcase keyword. It specifies a LIST OF STRING
argument that contains the machine names for the set of client machines to be tested. You can implement
and maintain this list in your test plan, by using the test plan editor. The machine names you use in this list
are the names of the Agents of your target machines.

for each sMachine in lsMachine
 SetUpMachine (sMachine, Personnel)

To prepare your client machines for testing, you must connect Silk Test Classic to each Agent and, by
means of the Agent, bring up the application on each machine. In this example, all Agents are running the
same software and so all have the same MainWin declaration and therefore just one test frame file. This
means you can initialize all your machines the same way; for each machine being tested, you pass to
SetUpMachine the main window name you specified in your test frame file. The SetUpMachine function
issues a Connect call for each machine. It associates the main window name you specified (Personnel)
with each machine so that the DefaultBaseState function can subsequently retrieve it.

SetMultiAppStates ()

The SetMultiAppStates function reads the information associated with each machine to determine whether
the machine needs to be set to an application state. In this case no application state was specified (it would
have been a third argument for SetUpMachine). Therefore, SetMultiAppStates calls the DefaultBaseState
function for each machine. In this example, DefaultBaseState drives the Agent for each machine to open
the main window of the Personnel application. This application is then active on the client machine and
4Test can send test case statements to the Agent to drive application operations.

 for each sMachine in lsMachine
 spawn
 // The code to be executed in parallel by
 // all machines... (described below)
rendezvous

Because this is a concurrency test, you want all client applications to execute the test at exactly the same
time. The spawn statement starts an execution thread in which each statement in the indented code block
runs in parallel with all currently running threads. In this example, a thread is started for each machine in
the list of machines being tested. 4Test sends the statements in the indented code block to the Agents on
each machine and then waits at the rendezvous statement until all Agents report that all the code
statements have been executed.

The following is the code defined for the spawn statement:

// The code to be executed in parallel by
// all machines:
SetMachine (sMachine)
Personnel.EmployeeList.Select ("John Doe")
Personnel.Employee.Edit.Pick ()
Employee.Salary.SetText
[STRING] RandInt (50000, 70000))

Each thread executes operations that prepare for an attempt to perform concurrent writes to the same
database record. The SetMachine function establishes the Agent that is to execute the code in this thread.
The next two statements drive the application’s user interface to select John Doe’s record from the
employee list box and then to pick the Edit option from the Employee menu. This opens the Employee
dialog box and displays John Doe’s employee record. The last thread operation sets the salary field in this
dialog box to a random number. At this point the client is prepared to attempt a write to John Doe’s
employee record. When this point has been reached by all clients, the rendezvous statement is satisfied,
and 4Test can continue with the next script statement.

for each sMachine in lsMachine
 spawn

198 | Testing in Your Environment with the Open Agent

 SetMachine (sMachine)
 Employee.OK.Click ()
 if (MessageBox.Exists (ACCEPT_TIMEOUT))
 SetMachineData (NULL, "sMessage",
 MessageBox.Message.GetText ())
 MessageBox.OK.Click ()
 Employee.Cancel.Click ()
 else if (Employee.Exists ())
 AppError ("Employee dialog not dismissed
 after {ACCEPT_TIMEOUT} seconds")
rendezvous

Now that all the clients are ready to write to the database, the script creates a thread for each client, in
which each attempts to save the same employee record at the same time. There is only one operation for
each Agent to execute: Employee.OK.Click, which clicks the OK button to commit the edit performed in
the previous thread.

The test expects the application to report the concurrency conflict with message boxes for all but one client
and for that client to close its dialog box within 15 seconds. The if-else construct saves the text of the
message in the error message box by means of the SetMachineData function. It then closes the message
box and the Employee window so that the recovery system will not report that it had to close windows.
This is good practice because it means fewer messages to interpret in the results file.

The "else if" section of the if-else checks to see whether the Employee window remains open, presumably
because it is held by a deadlock condition; this is a test case failure. In this case, the AppError function
places the string "***ERROR:" in front of the descriptive error message and raises an exception; all Agents
terminate their threads and the test case exits.

iSucceed = 0
for each sMachine in lsMachine
 sMessage = GetMachineData (sMachine, "sMessage")
 if (sMessage == NULL)
 iSucceed += 1
 else
 Print ("Machine {sMachine} got message '{sMessage}'")
Verify (iSucceed, 1, "number of machines that succeeded")

The last section of code evaluates the results of the concurrency test in the event that all threads
completed. If more than one client successfully wrote to the database, the test actually failed.

GetMachineData retrieves the message box message (if any) associated with each machine. If there was
no message, iSucceed is incremented; it holds the count of "successes." The Print function writes the text
of the message box to the results file for each machine that had a message box. You can read the results
file to verify that the correct message was reported. Alternatively, you could modify the test to automatically
verify the message text.

The Verify function verifies that one and only one machine succeeded. If the comparison in the Verify
function fails, Verify raises an exception. All exceptions are listed in the results file.

Code for template.t
This fragment of an example test case shows the required code with which you start a multi-application test
case. It connects Silk Test Classic to all the machines being tested and brings each to its first screen. This
is just a template; you must tailor your code to fit your actual needs. For information on the significance of
each line of code, see Template.t Explained.

multitestcase MyTest (STRING sMach1, STRING sMach2)
 SetUpMachine (sMach1, MyFirstApp, "MyFirstAppState")
 SetUpMachine (sMach2, MySecondApp, "MySecondAppState")
 SetMultiAppStates ()
 spawn
 SetMachine (sMach1)
 // Here is placed code that drives test operations

Testing in Your Environment with the Open Agent | 199

 spawn
 SetMachine (sMach2)
 // Here is placed code that drives test operations

 rendezvous
 // "..."

template.t Explained
The following line of code in Code for template.t is the first required line in a multi-application test case file.
It is the test case declaration.

Note: The code does not pass an application state as in the stand-alone environment.

multitestcase MyTest (STRING sMach1, STRING sMach2)

In the multi-application environment the arguments to your test case are names of the machines to be
tested; you specify application states inside the test case. You can code the machine names arguments as
you like. For example, you can pass a file name as the only argument, and then, in the test case, read the
names of the machines from that file. Or you can define a LIST OF HMACHINE data structure in your test
plan, if you are using the test plan editor, to specify the required machines and pass the name of the list,
when you invoke the test case from the test plan. This template assumes that you are using a test plan and
that it passes the Agent names when it invokes the test case. For this example, the test plan might specify
the following:

Mytest ("Client1", "Client2")

The next two code lines are the first required lines in the test case:

SetUpMachine (sMach1, MyFirstApp, "MyFirstAppState")
SetUpMachine (sMach2, My2ndApp, "My2ndAppState")

You must execute the SetUpMachine function for every client machine that will be tested. For each
SetUpMachine call, you specify the application to be tested, by passing the name of the main window,
and the state to which you want the application to be set, by passing the name of the application state if
you have defined one.

The SetUpMachine function issues a Connect call for a machine you want to test and then configures
either the base state or a specified application state.

It does this as follows:

• It associates the client application’s main window name with the specified machine so that the
DefaultBaseState function can subsequently retrieve it to set the base state.

• It associates the name of the application’s base state, if one is specified, with the specified machine so
that the SetMultiAppStates function can subsequently retrieve it and set the application to that state
at the start of the test case.

The first argument for SetUpMachine is the machine name of one of your client machines. The second
argument is the name you supply in your main window declaration in your test frame file, frame.inc. For
this example, the frame.inc file specifies the following:

window MainWin MyFirstApp

Because this template specifies two different applications, it requires two different test frame files.

The third argument is the name you provide for your application state function in your appstate declaration
for this test. For this example, the appstate declaration is the following:

appstate MyFirstAppState () based on MyFirstBaseState

The appstate declaration could also be of the form:

appstate MyFirstBaseState ()

200 | Testing in Your Environment with the Open Agent

Although the DefaultBaseState function is designed to handle most types of GUI-based applications,
you may find that you need to define your own base state. It would be the application state that all your
tests for this application use. In this case, you would still pass this application state to SetUpMachine so
that your application would always be brought to this state at the start of each test case.

This template specifies two application states for generality. You would not use an application state if you
wanted to start from the main window each time. If you have a number of tests that require you to bring the
application to the same state, it saves test-case code to record the application state once, and pass its
name to SetUpMachine. You will probably place your application state declarations in your test frame file.

SetMultiAppStates ()

The SetMultiAppStates function must always be called, even if the test case specifies no application
state, because SetMultiAppStates calls the DefaultBaseState function in the absence of an
appstate declaration. SetMultiAppStates uses the information that SetUpMachine associated with
each connected machine to set potentially different application states or base states for each machine.

 spawn
 SetMachine (sMach1)
 // Here is placed code that drives test operations

The spawn statement starts an execution thread, in which each statement in the indented code block below
it runs in parallel with all currently running threads. There is no requirement that your test case should drive
all your test machines at the same time, however, this is usually the case. The SetMachine function
directs 4Test to execute this thread’s code by means of the Agent on the specified machine. This thread
can then go on to drive a portion, or all, of the test operations for this machine.

 spawn
 SetMachine (sMach2)
 // Here is placed code that drives test operations
rendezvous
// "..."

The second spawn statement starts the thread for the second machine in this template. The rendezvous
statement blocks the execution of the calling thread until all threads spawned have completed. You can use
the rendezvous statement to synchronize machines as necessary before continuing with the test case.

defaults.inc
The defaults.inc file is provided by Silk Test Classic and implements the recovery system for a single
application test. That is, it contains the DefaultBaseState function that performs any cleanup needed
after an operation under test fails and returns the application to its base state.

You can define a base state function to replace the DefaultBaseState function by defining an
application state without using the basedon keyword. This creates an application state that 4Test executes
instead of the DefaultBaseState function.

The defaults.inc file contains six other functions that 4Test automatically executes unless you define
functions that replace them:

DefaultScriptEnter A null function, allows you to define a ScriptEnter function, as discussed
below.

DefaultScriptExit
(BOOLEAN bException)

Logs an exception to the results file when a script exits because of an
exception.

DefaultTestcaseEnter Executes the SetAppState function. If you have specified an application
state for this test case, the SetAppState function brings your test
application to that state. If you have no application state defined,
SetAppState brings the application to the base state (if necessary).

Testing in Your Environment with the Open Agent | 201

DefaultTestcaseExit
(BOOLEAN bException)

Logs an exception to the results file when a test case exits because of an
exception. The function then executes the SetBaseState function, which
calls a base state function that you have defined or the
DefaultBaseState function.

DefaultTestPlanEnter A null function, allows you to define TestPlanEnter, as discussed below,
to allow logging of results.

DefaultTestPlanExit
(BOOLEAN bException)

A null function, allows you to define TestPlanExit, as discussed below,
to allow logging of results.

The word "Default" in each of the above function names signifies that you can define alternative functions
to replace these. If, for example, you define a function called TestcaseEnter, 4Test will invoke your function
before executing any of the code in your test case and will not invoke DefaultTestcaseEnter.

TestPlanEnter() is not called until the first test case in the plan is run. Or the first marked test case, if
you are only running marked test cases. Similarly, TestPlanExit() is called at the completion of the last
marked test case. TestPlanExit() is only called if the last marked test description contains an executable
test case, which means not a manual test case or a commented out test case specifier.

cs.inc
cs.inc is an automatically included file that contains functions used only in the multi-application
environment. The following functions provide a recovery system for managing automated testing of client/
server applications:

SetMultiAppStates Sets an application state for each connected machine, if the "AppState"
machine data lists one; if not, it calls the DefaultBaseState function,
which sets the application to its main window.

SetMultiBaseStates Sets the application to the lowest state in the application state hierarchy for
each connected machine, if the "AppState" machine data lists an
application state. The lowest application state is one in which the appstate
declaration did not use the basedon keyword. If there is no "AppState"
information associated with this machine, SetMultiBaseStates calls the
DefaultBaseState function, which sets the application to its main
window, invoking it beforehand if necessary.

SetUpMachine Connects Silk Test Classic to an agent on the specified machine. It provides
a way to associate a main window declaration and an application state
function with a machine name. These parameters are stored as data
accessible by means of the GetMachineData function. Both of these
names (the second and third arguments to the function) are optional;
however, if you omit both arguments, you will have no recovery system.

DefaultMultiTestCaseEnter Executes at the beginning of a multi-test case. It invokes a
DisconnectAll function. The invocation of the SetAppState function is
performed by the SetMultiAppStates function because the
DefaultTestCaseEnter function is not executed for a multi-test case.

DefaultMultiTestCaseExit Executes just before a multi-test case terminates. It logs any pending
exception, then invokes SetMultiBaseStates and DisconnectAll.

Include File Size
The maximum size of an include file is approximately 65536 lines. If your include file is very large, split it
into two files and continue with your testing.

202 | Testing in Your Environment with the Open Agent

Troubleshooting Distributed Testing
This section provides troubleshooting information for testing on multiple machines.

Handling Limited Licenses
By default, Silk Test Classic starts up an unplanned Agent on the local workstation. If you do not want to
use the local workstation as a test machine, set the Agent Name field in the Runtime Options dialog box
to (none) instead of (local). This will free up one license for a remote Agent.

Testing Apache Flex Applications
Silk Test provides built-in support for testing Apache Flex applications. Silk Test also provides several
sample Apache Flex applications. You can access the sample applications at http://demo.borland.com/flex/
SilkTest16.0/index.html.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Before you can test your own Apache Flex application, your Apache Flex developers must perform the
following steps:

• Enabling your Apache Flex application for testing
• Creating testable Apache Flex applications
• Coding Apache Flex containers
• Implementing automation support for custom controls

To test your own Apache Flex application, follow these steps:

• Configuring security settings for your local Flash Player
• Recording a test
• Playing back a test
• Customizing Apache Flex scripts
• Testing a custom Apache Flex control

Note: Loading an Apache Flex application and initializing the Flex automation framework may take
some time depending on the machine on which you are testing and the complexity of your Apache
Flex application. Set the Window timeout value to a higher value to enable your application to fully
load.

Overview of Apache Flex Support
Silk Test Classic provides built-in support for testing Apache Flex (Flex) applications using Internet
Explorer, Mozilla Firefox, or the Standalone Flash Player, and Adobe AIR applications built with Flex 4 or
later.

Silk Test Classic also supports multiple application domains in Flex 3.x and 4.x applications, which enables
you to test sub-applications. Silk Test Classic recognizes each sub-application in the locator hierarchy tree
as an application tree with the relevant application domain context. At the root level in the locator attribute
table, Flex 4.x sub-applications use the SparkApplication class. Flex 3.x sub-applications use the
FlexApplication class.

For information on the supported versions and potential known issues, refer to the Release Notes.

Testing in Your Environment with the Open Agent | 203

http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Sample Applications

To access the Silk Test Classic sample Flex applications, go to http://demo.borland.com/flex/SilkTest16.0/
index.html.

Object Recognition

Flex applications support hierarchical object recognition and dynamic object recognition. You can create
tests for both dynamic and hierarchical object recognition in your test environment. You can use both
recognition methods within a single test case if necessary. Use the method best suited to meet your test
requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing Flex test cases that use hierarchical object recognition or dynamic object recognition without
locator keywords in an INC file are supported. You can replay these tests, but you cannot record new tests
with hierarchical object recognition or dynamic object recognition without locator keywords in an INC file.
However, you can manually create tests as needed. Then, replay the tests at your convenience. For
instance, any test cases that you recorded with Silk Test 2008 use hierarchical object recognition. You can
replay these tests in Silk Test Classic.

Supported Controls

For a complete list of the record and replay controls available for Flex testing, refer to the Flex Class
Reference in the 4Test Language section of the Help.

The Silk Test Classic Flex Automation SDK is based on the Automation API for Flex. The Silk Test Classic
Automation SDK supports the same components in the same manner that the Automation API for Flex
supports them. For instance, the typekey statement in the Flex Automation API does not support all keys.
You can use the input text statement to resolve this issue. For more information about using the Flex
Automation API, refer to the Apache Flex Release Notes.

Agent Support

When you create a Silk Test Classic Flex project, the Open Agent is assigned as the default Agent.

Configuring Security Settings for Your Local Flash
Player
Before you launch an Apache Flex application, that runs as a local application, for the first time, you must
configure security settings for your local Flash Player. You must modify the Adobe specific security settings
to enable the local application access to the file system.

To configure the security settings for your local Flash player:

1. Open the Flex Security Settings Page by clicking Flash Player Security Manager on http://
demo.borland.com/flex/SilkTest16.0/index.html.

2. Click Always allow.

3. In the Edit Locations menu, click Add Location.

4. Click Browse for folder and navigate to the folder where your local application is installed.

5. Click Confirm and then close the browser.

Configuring Flex Applications to Run in Adobe Flash
Player
To run an Apache Flex application in Flash Player, one or both of the following must be true:

204 | Testing in Your Environment with the Open Agent

http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html

• The developer who creates the Flex application must compile the application as an EXE file. When a
user launches the application, it will open in Flash Player. Install Windows Flash Player from http://
www.adobe.com/support/flashplayer/downloads.html.

• The user must have Windows Flash Player Projector installed. When a user opens a Flex .SWF file, he
can configure it to open in Flash Player. Windows Flash Projector is not installed when Flash Player is
installed unless you install the Apache Flex developer suite. Install Windows Flash Projector from http://
www.adobe.com/support/flashplayer/downloads.html.

1. For Microsoft Windows 7 and Microsoft Windows Server 2008 R2, configure Flash Player to run as
administrator. Perform the following steps:

a) Right-click the Adobe Flash Player program shortcut or the FlashPlayer.exe file, then click
Properties.

b) In the Properties dialog box, click the Compatibility tab.
c) Check the Run this program as an administrator check box and then click OK.

2. Start the .SWF file in Flash Player from the command prompt (cmd.exe) by typing:
"<Application_Install_Directory>\ApplicationName.swf"

By default, the <SilkTest_Install_Directory> is located at Program Files\Silk\Silk Test.

Configuring Flex Applications for Adobe Flash Player
Security Restrictions
The security model in Adobe Flash Player 10 has changed from earlier versions. When you record tests
that use Flash Player, recording works as expected. However, when you play back tests, unexpected
results occur when high-level clicks are used in certain situations. For instance, a File Reference dialog
box cannot be opened programmatically and when you attempt to play back this scenario, the test fails
because of security restrictions.

To work around the security restrictions, you can perform a low-level click on the button that opens the
dialog box. To create a low-level click, add a parameter to the Click method.

For example, instead of using SparkButton::Click(), use
SparkButton::Click(MouseButton.Left). A Click() without parameters is a high-level click and
a click with parameters (such as the button) is replayed as a low-level click.

1. Record the steps that use Flash Player.

2. Navigate to the Click method and add a parameter.
For example, to open the Open File dialog box, specify:

SparkButton("@caption='Open File Dialog…'").Click(MouseButton.Left)

When you play back the test, it works as expected.

Customizing Apache Flex Scripts
You can manually customize your Flex scripts. You can insert verifications using the Verification wizard.
Or, you can insert verifications manually using the Verify function on Flex object properties.

To customize Adobe Flex scripts:

1. Record a testcase for your Flex application.

2. Open the script file that you want to customize.

3. Manually type the code that you want to add.

For example, the following code adds a verification call to your script:

Desktop.Find("//BrowserApplication").Find("//BrowserWindow")
.Find("//FlexApplication[@caption='explorer']").Find("//

Testing in Your Environment with the Open Agent | 205

http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html

FlexButton[@caption='OK']")
.VerifyProperties({...})

Each Flex object has a list of properties that you can verify. For a list of the properties available for
verification, review the Flex.inc file. To access the file, navigate to the <SilkTest directory>
\extend\Flex directory. By default, this file is located in C:\Program Files\Silk\SilkTest
\extend\Flex\Flex.inc.

Styles in Apache Flex Applications
For applications developed in Apache Flex 3.x, Silk Test Classic does not distinguish between styles and
properties. As a result, styles are exposed as properties. However, with Apache Flex 4.x, all new Flex
controls, which are prefixed with Spark, such as SparkButton, do not expose styles as properties. As a
result, the GetProperty() and GetPropertyList() methods for Flex 4.x controls do not return styles,
such as color or fontSize, but only properties, such as text and name.

The GetStyle(string styleName) method returns values of styles as a string. To find out which styles
exist, refer to the Adobe Help located at http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/package-detail.html.

If the style is not set, a StyleNotSetException occurs during playback.

For the Flex 3.x controls, such as FlexTree, you can use GetProperty() to retrieve styles. Or, you can
use GetStyle(). Both the GetProperty() and GetStyle() methods work with Flex 3.x controls.

Calculating the Color Style

In Flex, the color is represented as a number. It can be calculated using the following formula:

red*65536 + green*256 + blue

Example

In this example, the GetProperty() and GetStyle() methods are used to retrieve
styles:

Window myTree = Application.Find("//
FlexTree[@caption='myTree']")
COLOR c = {170, 179, 179}
Verify(myTree.DisabledColor, c)
Verify(myTree.GetProperty("disabledColor"), {170, 179, 179})
Verify(myTree.GetStyle("disabledColor"), "11187123")

The number 11187123 for the color calculates as 170*65536 + 179*256 + 179.

Locator Attributes for Apache Flex Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for Apache Flex (Flex) controls:

automationName The name of the application.

caption Similar to automationName.

automationClassName For example FlexButton.

className The fully qualified name of the implementation class, for example
mx.controls.Button.

206 | Testing in Your Environment with the Open Agent

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html

automationIndex The index of the control in the view of the FlexAutomation, for example
index:1.

index Similar to automationIndex but without the prefix, for example 1.

id The identifier of the control.

windowId Similar to id.

label The label of the control.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Apache Flex Methods
You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList() method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList() method.

Note: Most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods that the Flex API defines.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

All built-in Silk Test Classic
types

Silk Test Classic types includes primitive types, such as boolean, int,
and string, lists, and other types, such as Point.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.

Example

A custom calculator control has a Reset method and an Add method, which performs
an addition of two numbers. You can use the following code to call the methods directly
from your tests:

customControl.Invoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

Testing in Your Environment with the Open Agent | 207

Testing Multiple Flex Applications on the Same Web
Page
When multiple Flex applications exist on the same Web page, Silk Test Classic uses the Flex application ID
or the application size property to determine which application to test. If multiple applications exist on the
same page, but they are different sizes, Silk Test Classic uses the size property to determine on which
application to perform any actions. Silk Test Classic uses JavaScript to find the Flex application ID to
determine on which application to perform any actions if:

• multiple Flex applications exist on a single Web page.
• those applications are the same size.

In this situation, if JavaScript is not enabled on the browser machine, an error occurs when a script runs.

To test multiple Flex applications that are different sizes on a single Web page , follow the steps in Testing
Apache Flex Applications.

To test multiple Flex applications that are the same size on a single Web page, perform the following steps:

1. Enable JavaScript.

• In Internet Explorer:

1. Click Tools > Internet Options.
2. Click the Security tab.
3. Click Custom level.
4. In the Scripting section, under Active Scripting, click Enable and click OK.

• In Mozilla Firefox:

1. Choose Tools > Options.
2. Click Content and then check the Enable JavaScript check box.
3. Click OK.

2. Follow the steps in Testing Apache Flex Applications.

Note: If a frame exists on the web page and the applications are the same size, this method will not
work.

Silk Test Classic provides sample applications that demonstrate multiple applications on a single Web
page. You can access the sample applications at http://demo.borland.com/flex/SilkTest16.0/index.html.

Adobe AIR Support
Silk Test Classic supports testing with Adobe AIR for applications that are compiled with the Flex 4
compiler. For details about supported versions, check the Release Notes for the latest information.

Silk Test provides a sample Adobe AIR application. You can access the sample application at http://
demo.borland.com/flex/SilkTest16.0/index.html and then click the Adobe AIR application that you want to
use. You can select the application with or without automation. In order to execute the AIR application, you
must install the Adobe AIR Runtime.

Apache Flex Exception Values
Exception values are generated under given error conditions. Flex support defines the following set of
exception values:

E_FLEX_REPLAY A generic exception, which is thrown when no other
known exception occurs in Flex.

208 | Testing in Your Environment with the Open Agent

http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html

E_FLEX_REPLAY_EVENT An error occurred when replaying the Flex event.

E_FLEX_REPLAY_METHOD An error occurred when replaying the Flex method.

E_FLEX_REPLAY_READ_PROPERTY An error occurred when reading a property.

E_FLEX_REPLAY_WRITE_PROPERTY An error occurred when writing a property.

E_FLEX_REPLAY_STYLE_NOT_SET The style is not set to a Flex object.

E_FLEX_REPLAY_SUPPORTS_TABLUAR The property used is meant for use with tabular
data. However, the specified class does not support
tabular data.

E_FLEX_REPLAY_INVALID_FLEX_SDK_VERSION If you replay a Flex 3.x event, method, or property in
a Flex 2.0 environment, this error occurs.

E_VO_PROPERTY_NOT_FOUND When reading or writing a property, if the property is
not defined for the object, this exception occurs.

The E_VO_PROPERTY_NOT_FOUND exception can also be thrown when you test Flex, but it is not limited to
the Flex environment.

Overview of the Flex Select Method Using Name or
Index
You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test Classic records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexAdvancedDataGrid

• FlexOLAPDataGrid

• FlexComboBox

The default setting is ItemBasedSelection (Select event), which uses the name control. To use the index,
you must adapt the AutomationEnvironment to use the IndexBasedSelection (SelectIndex event). To
change the behavior for one of these classes, you must modify the FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml file using the following code. Those XML files are located in
the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_< version>\config
\automationEnvironment folder. Make the following adaptations in the corresponding xml file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.
Setting the EnableIndexBasedSelection= to false in the code or removing the Boolean returns
recording to using the name (FlexList::Select events).

Testing in Your Environment with the Open Agent | 209

Note: You must re-start your application, which automatically re-starts the Silk Test Agent, in order for
these changes to become active.

Selecting an Item in the FlexDataGrid Control
You can select an item in the FlexDataGrid control using the following procedures.

If you know the index value of the FlexDataGrid item, use the SelectIndex method.

For example, type FlexDataGrid.SelectIndex(1)

1. If you know the content value of the FlexDataGrid item, use the Select method.

2. Identify the row that you want to select with the required formatted string. Items must be separated by a
pipe (“ | ”). At least one Item must be enclosed by two stars (“*”). This identifies the item where the click
will be performed.

The syntax is: FlexDataGrid.Select(“*Item1* | Item2 | Item3”)

The following example selects an item using the Select method (randomly).

[] LIST OF LIST OF STRING allVisibleItems
[] window dataGrid =
AdobeFlashPlayer9.FlexApplication0.Index0.Index1.SwfLoader.ControlsSimpleDataG
ridSwf.DataGridControlExample.Dg
[]
[] // lets get all currently visible items
[] allVisibleItems = dataGrid.GetValues(dataGrid.firstVisibleRow,
dataGrid.lastVisibleRow)
[]
[] // pick a random element that we want to select
[] integer randomRow = RandInt(dataGrid.firstVisibleRow,
dataGrid.lastVisibleRow)
[] LIST OF STRING randomRowItems = allVisibleItems[randomRow]
[] print("This is the row we want to select: {randomRow}")
[]
[] // now lets construct the string we need for the select method
[] STRING selectString
[] STRING itemText
[] INTEGER col = 0
[-] for each itemText in randomRowItems
[-] if col == 0
[] selectString = "*{itemText}*"
[-] else
[] selectString = selectString + " | {itemText}"
[] col++
[]
[] // now lets select the item
[] print("We will select {selectString}")
[] dataGrid.Select(selectString)

Enabling Your Flex Application for Testing
To enable your Flex application for testing, your Apache Flex developers must include the following
components in the Flex application:

• Apache Flex Automation Package
• Silk Test Automation Package

210 | Testing in Your Environment with the Open Agent

Apache Flex Automation Package

The Flex automation package provides developers with the ability to create Flex applications that use the
Automation API. You can download the Flex automation package from Adobe's website, http://
www.adobe.com. The package includes:

• Automation libraries – the automation.swc and automation_agent.swc libraries are the implementations
of the delegates for the Flex framework components. The automation_agent.swc file and its associated
resource bundle are the generic agent mechanism. An agent, such as the Silk Test Agent, builds on top
of these libraries.

• Samples

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, the typekey statement in the Flex Automation API does not
support all keys. You can use the input text statement to resolve this issue. For more information
about using the Flex Automation API, see the Apache Flex Release Notes.

Silk Test Automation Package

Silk Test's Open Agent uses the Apache Flex automation agent libraries. The FlexTechDomain.swc file
contains the Silk Test specific implementation.

You can enable your application for testing using either of the following methods:

• Linking automation packages to your Flex application
• Run-time loading

Linking Automation Packages to Your Flex Application
You must precompile Flex applications that you plan to test. The functional testing classes are embedded
in the application at compile time, and the application has no external dependencies for automated testing
at run time.

When you embed functional testing classes in your application SWF file at compile time, the size of the
SWF file increases. If the size of the SWF file is not important, use the same SWF file for functional testing
and deployment. If the size of the SWF file is important, generate two SWF files, one with functional testing
classes embedded and one without. Use the SWF file that does not include the embedded testing classes
for deployment.

When you precompile the Flex application for testing, in the include-libraries compiler option, reference the
following files:

• automation.swc
• automation_agent.swc
• FlexTechDomain.swc
• automation_charts.swc (include only if your application uses charts and Flex 2.0)
• automation_dmv.swc (include if your application uses charts and Flex > 3.x)
• automation_flasflexkit.swc (include if your application uses embedded flash content)
• automation_spark.swc (include if your application uses the new Flex 4.x controls)
• automation_air.swc (include if your application is an AIR application)
• automation_airspark.swc (include if your application is an AIR application and uses new Flex 4.x

controls)

When you create the final release version of your Flex application, you recompile the application without
the references to these SWC files. For more information about using the automation SWC files, see the
Apache Flex Release Notes.

If you do not deploy your application to a server, but instead request it by using the file protocol or run it
from within Apache Flex Builder, you must include each SWF file in the local-trusted sandbox. This requires

Testing in Your Environment with the Open Agent | 211

http://www.adobe.com
http://www.adobe.com

additional configuration information. Add the additional configuration information by modifying the
compiler's configuration file or using a command-line option.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache FlexRelease Notes.

Precompiling the Flex Application for Testing
You can enable your application for testing by precompiling your application for testing or by using run-time
loading.

1. Include the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries in the compiler’s
configuration file by adding the following code to the configuration file:

<include-libraries>

...

<library>/libs/automation.swc</library>

<library>/libs/automation_agent.swc</library>

<library>pathinfo/FlexTechDomain.swc</library>

</include-libraries>

Note: If your application uses charts, you must also add the automation_charts.swc file.

2. Specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the include-libraries compiler option with the command-line compiler.

The configuration files are located at:

Apache Flex 2 SDK – <flex_installation_directory>/frameworks/flex-config.xml

Apache Flex Data Services – <flex_installation_directory>/flex/WEB-INF/flex/flex-config.xml

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: Explicitly setting the include-libraries option on the command line overwrites, rather than
appends, the existing libraries. If you add the automation.swc and automation_agent.swc files
using the include-libraries option on the command line, ensure that you use the += operator. This
appends rather than overwrites the existing libraries that are included.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround
is to not compile the application SWF files that Explorer loads with automation libraries. For
example, compile only the Explorer main application with automation libraries. Another alternative

212 | Testing in Your Environment with the Open Agent

is to use the module loader instead of swfloader. For more information about using the Flex
Automation API, see the Apache FlexRelease Notes.

Run-Time Loading

1. Copy the content of the Silk\Silk Test\ng\AutomationSDK\Flex\<version>
\FlexAutomationLauncher directory into the directory of the Flex application that you are testing.

2. Open FlexAutomationLauncher.html in Windows Explorer and add the following parameter as a
suffix to the file path:

?automationurl=YourApplication.swf

where YourApplication.swf is the name of the SWF file for your Flex application.

3. Add file:/// as a prefix to the file path.
For example, if your file URL includes a parameter, such as: ?automationurl=explorer.swf,
type: .

file:///C:/Program%20Files/Silk/Silk Test/ng/sampleapplications/Flex/3.2/
FlexControlExplorer32/FlexAutomationLauncher.html?automationurl=explorer.swf

Run-Time Loading

You can load Flex automation support at run time using the Silk Test Flex Automation Launcher. This
application is compiled with the automation libraries and loads your application with the SWFLoader class.
This automatically enables your application for testing without compiling automation libraries into your SWF
file. The Silk Test Flex Automation Launcher is available in HTML and SWF file formats.

Limitations

• The Flex Automation Launcher Application automatically becomes the root application. If your
application must be the root application, you cannot load automation support with the Silk Test Flex
Automation Launcher.

• Testing applications that load external libraries – Applications that load other SWF file libraries require a
special setting for automated testing. A library that is loaded at run time (including run-time shared
libraries (RSLs) must be loaded into the ApplicationDomain of the loading application. If the SWF file
used in the application is loaded in a different application domain, automated testing record and
playback will not function properly. The following example shows a library that is loaded into the same
ApplicationDomain:

import flash.display.*;

import flash.net.URLRequest;

import flash.system.ApplicationDomain;

import flash.system.LoaderContext;

var ldr:Loader = new Loader();

var urlReq:URLRequest = new URLRequest("RuntimeClasses.swf");

var context:LoaderContext = new LoaderContext();

context.applicationDomain = ApplicationDomain.currentDomain;

loader.load(request, context);

Testing in Your Environment with the Open Agent | 213

Using the Command Line to Add Configuration Information
To specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the command-line compiler, use the include-libraries compiler option.

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: If your application uses charts, you must also add the automation_charts.swc file to the
include-libraries compiler option.

Explicitly setting the include-libraries option on the command line overwrites, rather than appends, the
existing libraries. If you add the automation.swc and automation_agent.swc files using the include-
libraries option on the command line, ensure that you use the += operator. This appends rather than
overwrites the existing libraries that are included.

To add automated testing support to a Flex Builder project, you must also add the automation.swc and
automation_agent.swc files to the include-libraries compiler option.

Passing Parameters into a Flex Application
You can pass parameters into a Flex application using the following procedures.

Passing Parameters into a Flex Application Before Runtime

You can pass parameters into a Flex application before runtime using automation libraries.

1. Compile your application with the appropriate automation libraries.

2. Use the standard Flex mechanism for the parameter as you typically would.

Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

Before you begin this task, prepare your application for run-time loading.

1. Open the FlexAutomationLauncher.html file or create a file using
FlexAutomationLauncher.html as an example.

2. Navigate to the following section:

<script language="JavaScript" type="text/javascript">

 AC_FL_RunContent(eef

 "src", "FlexAutomationLauncher",

 "width", "100%",

 "height", "100%",

 "align", "middle",

 "id", "FlexAutomationLauncher",

 "quality", "high",

 "bgcolor", "white",

 "name", "FlexAutomationLauncher",

 "allowScriptAccess","sameDomain",

214 | Testing in Your Environment with the Open Agent

 "type", "application/x-shockwave-flash",

 "pluginspage", "http://www.adobe.com/go/getflashplayer",

 "flashvars", "yourParameter=yourParameterValue"+
"&automationurl=YourApplication.swf"

);

 </script>

Note: Do not change the "FlexAutomationLauncher" value for "src", "id", or "name."

3. Add your own parameter to "yourParameter=yourParameterValue".

4. Pass the name of the Flex application that you want to test as value for the "&
automationurl=YourApplication.swf" value.

5. Save the file.

Creating Testable Flex Applications
As a Flex developer, you can employ techniques to make Flex applications as "test friendly" as possible.
These include:

• Providing Meaningful Identification of Objects
• Avoiding Duplication of Objects

Providing Meaningful Identification of Objects

To create "test friendly" applications, ensure that objects are identifiable in scripts. You can set the value of
the ID property for all controls that are tested, and ensure that you use a meaningful string for that ID
property.

To provide meaningful identification of objects:

• Give all testable MXML components an ID to ensure that the test script has a unique identifier to use
when referring to that Flex control.

• Make these identifiers as human-readable as possible to make it easier for the user to identify that
object in the testing script. For example, set the id property of a Panel container inside a TabNavigator
to submit_panel rather than panel1 or p1.

When working with Silk Test Classic, an object is automatically given a name depending on certain tags,
for instance, id, childIndex. If there is no value for the id property, Silk Test Classic uses other properties,
such as the childIndex property. Assigning a value to the id property makes the testing scripts easier to
read.

Avoiding Duplication of Objects

Automation agents rely on the fact that some properties of object instances will not be changed during run
time. If you change the Flex component property that is used by Silk Test Classic as the object name at run
time, unexpected results can occur. For example, if you create a Button control without an
automationName property, and you do not initially set the value of its label property, and then later set the
value of the label property, problems might occur. In this case, Silk Test Classic uses the value of the
label property of Button controls to identify an object if the automationName property is not set. If you later
set the value of the label property, or change the value of an existing label, Silk Test Classic identifies the
object as a new object and does not reference the existing object.

To avoid duplicating objects:

Testing in Your Environment with the Open Agent | 215

• Understand what properties are used to identify objects in the agent and avoid changing those
properties at run time.

• Set unique, human-readable id or automationName properties for all objects that are included in the
recorded script.

Flex AutomationName and AutomationIndex Properties

The Flex Automation API introduces the automationName and automationIndex properties. If you
provide the automationName, Silk Test Classic uses this value for the recorded window declaration's
name. Providing a meaningful name makes it easier for Silk Test Classic to identify that object. As a best
practice, set the value of the automationName property for all objects that are part of the application's
test.

Use the automationIndex property to assign a unique index value to an object. For instance, if two
objects share the same name, assign an index value to distinguish between the two objects.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache Flex Release Notes.

Setting the Flex automationName Property

The automationName property defines the name of a component as it appears in tests. The default value
of this property varies depending on the type of component. For example, the automationName for a
Button control is the label of the Button control. Sometimes, the automationName is the same as the id
property for the control, but this is not always the case.

For some components, Flex sets the value of the automationName property to a recognizable attribute of
that component. This helps testers recognize the component in their tests. Because testers typically do not
have access to the underlying source code of the application, having a control's visible property define that
control can be useful. For example, a Button labeled "Process Form Now" appears in the test as
FlexButton("Process Form Now").

If you implement a new component, or derive from an existing component, you might want to override the
default value of the automationName property. For example, UIComponent sets the value of the
automationName to the component's id property by default. However, some components use their own
methods for setting the value. For example, in the Flex Store sample application, containers are used to
create the product thumbnails. A container's default automationName would not be very useful because it
is the same as the container's id property. So, in Flex Store, the custom component that generates a
product thumbnail explicitly sets the automationName to the product name to make testing the
application easier.

Example

The following example from the CatalogPanel.mxml custom component sets the value
of the automationName property to the name of the item as it appears in the catalog.
This is more recognizable than the default automation name.

thumbs[i].automationName = catalog[i].name;

216 | Testing in Your Environment with the Open Agent

Example

The following example sets the automationName property of the ComboBox control to
"Credit Card List"; rather than using the id property, the testing tool typically uses
"Credit Card List" to identify the ComboBox in its scripts:

<?xml version="1.0"?>
<!-- at/SimpleComboBox.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 [Bindable]
 public var cards: Array = [
 {label:"Visa", data:1},
 {label:"MasterCard", data:2},
 {label:"American Express", data:3}
];

 [Bindable]
 public var selectedItem:Object;
]
]>
 </mx:Script>
 <mx:Panel title="ComboBox Control Example">
 <mx:ComboBox id="cb1" dataProvider="{cards}"
 width="150"
 close="selectedItem=ComboBox(event.target).selectedItem"
 automationName="Credit Card List"
 />
 <mx:VBox width="250">
 <mx:Text width="200" color="blue" text="Select a type of
credit card." />
 <mx:Label text="You selected: {selectedItem.label}"/>
 <mx:Label text="Data: {selectedItem.data}"/>
 </mx:VBox>
 </mx:Panel>
</mx:Application>

Setting the value of the automationName property ensures that the object name will
not change at run time. This helps to eliminate unexpected results.

If you set the value of the automationName property, tests use that value rather than
the default value. For example, by default, Silk Test Classic uses a Button control's label
property as the name of the Button in the script. If the label changes, the script can
break. You can prevent this from happening by explicitly setting the value of the
automationName property.

Buttons that have no label, but have an icon, are recorded by their index number. In this
case, ensure that you set the automationName property to something meaningful so
that the tester can recognize the Button in the script. After the value of the
automationName property is set, do not change the value during the component's life
cycle. For item renderers, use the automationValue property rather than the
automationName property. To use the automationValue property, override the
createAutomationIDPart() method and return a new value that you assign to the
automationName property, as the following example shows:

<mx:List xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 import mx.automation.IAutomationObject;
 override public function
 createAutomationIDPart(item:IAutomationObject):Object {

Testing in Your Environment with the Open Agent | 217

 var id:Object = super.createAutomationIDPart(item);
 id["automationName"] = id["automationIndex"];
 return id;
 }
]]>
 </mx:Script>
</mx:List>

Use this technique to add index values to the children of any container or list-like
control. There is no method for a child to specify an index for itself.

Setting the Flex Select Method to Use Name or Index

You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

1. Determine which class you want to modify to use the Index.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexOLAPDataGrid

• FlexComboBox

• FlexAdvancedDataGrid

2. Determine which XML file is related to the class that you want to modify.

The XML files related to the preceding controls include: FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml.

3. Navigate to the XML files that are related to the class that you want to modify.

The XML files are located in the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

4. Make the following adaptations in the corresponding XML file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

For instance, you might use "FlexList" as the " FlexControlName" and modify the
FlexCommonControls.xml file.

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.

Note: Setting the EnableIndexBasedSelection= to false in the code or removing the
boolean returns recording to using the name (FlexList::Select events).

5. Re-start your Flex application and the Open Agent in order for these changes to become active.

Coding Flex Containers
Containers differ from other kinds of controls because they are used both to record user interactions (such
as when a user moves to the next pane in an Accordion container) and to provide unique locations for
controls in the testing scripts.

218 | Testing in Your Environment with the Open Agent

Adding and Removing Containers from the Automation Hierarchy

In general, the automated testing feature reduces the amount of detail about nested containers in its
scripts. It removes containers that have no impact on the results of the test or on the identification of the
controls from the script. This applies to containers that are used exclusively for layout, such as the HBox,
VBox, and Canvas containers, except when they are being used in multiple-view navigator containers, such
as the ViewStack, TabNavigator, or Accordion containers. In these cases, they are added to the automation
hierarchy to provide navigation.

Many composite components use containers, such as Canvas or VBox, to organize their children. These
containers do not have any visible impact on the application. As a result, you typically exclude these
containers from testing because there is no user interaction and no visual need for their operations to be
recordable. By excluding a container from testing, the related test script is less cluttered and easier to read.

To exclude a container from being recorded (but not exclude its children), set the container's
showInAutomationHierarchy property to false. This property is defined by the UIComponent class,
so all containers that are a subclass of UIComponent have this property. Children of containers that are
not visible in the hierarchy appear as children of the next highest visible parent.

The default value of the showInAutomationHierarchy property depends on the type of container. For
containers such as Panel, Accordion, Application, DividedBox, and Form, the default value is true; for
other containers, such as Canvas, HBox, VBox, and FormItem, the default value is false.

The following example forces the VBox containers to be included in the test script's hierarchy:

<?xml version="1.0"?>
<!-- at/NestedButton.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Panel title="ComboBox Control Example">
<mx:HBox id="hb">
<mx:VBox id="vb1" showInAutomationHierarchy="true">
<mx:Canvas id="c1">
<mx:Button id="b1" automationName="Nested Button 1" label="Click Me" />
</mx:Canvas>
</mx:VBox>
<mx:VBox id="vb2" showInAutomationHierarchy="true">
<mx:Canvas id="c2">
<mx:Button id="b2" automationName="Nested Button 2" label="Click Me 2" />
</mx:Canvas>
</mx:VBox>
</mx:HBox>
</mx:Panel>
</mx:Application>

Multiview Containers

Avoid using the same label on multiple tabs in multiview containers, such as the TabNavigator and
Accordion containers. Although it is possible to use the same labels, this is generally not an acceptable UI
design practice and can cause problems with control identification in your testing environment.

Flex Automation Testing Workflow
The Silk Test Classic workflow for testing Flex applications includes:

• Automated Testing Initialization
• Automated Testing Recording
• Automated Testing Playback

Flex Automated Testing Initialization

When the user launches the Flex application, the following initialization events occur:

Testing in Your Environment with the Open Agent | 219

1. The automation initialization code associates component delegate classes with component classes.
2. The component delegate classes implement the IAutomationObject interface.
3. An instance for the AutomationManager is created in the mixin init() method. (The

AutomationManager is a mixin.)
4. The SystemManager initializes the application. Component instances and their corresponding delegate

instances are created. Delegate instances add event listeners for events of interest.
5. The Silk Test Classic FlexTechDomain is a mixin. In the FlexTechDomain init() method, the

FlexTechDomain registers for the SystemManager.APPLICATION_COMPLETE event. When the event
is received, it creates a FlexTechDomain instance.

6. The FlexTechDomain instance connects via a TCP/IP socket to the Silk Test Agent on the same
machine that registers for record/playback functionality.

7. The FlexTechDomain requests information about the automation environment. This information is stored
in XML files and is forwarded from the Silk Test Agent to the FlexTechDomain.

Flex Automated Testing Recording

When the user records a new test in Silk Test Classic for a Flex application, the following events occur:

1. Silk Test Classic calls the Silk Test Agent to start recording. The Agent forwards this command to the
FlexTechDomain instance.

2. FlexTechDomain notifies AutomationManager to start recording by calling beginRecording(). The
AutomationManager adds a listener for the AutomationRecordEvent.RECORD event from the
SystemManager.

3. The user interacts with the application. For example, suppose the user clicks a Button control.
4. The ButtonDelegate.clickEventHandler() method dispatches an AutomationRecordEvent

event with the click event and Button instance as properties.
5. The AutomationManager record event handler determines which properties of the click event to store

based on the XML environment information. It converts the values into proper type or format. It
dispatches the record event.

6. The FlexTechDomain event handler receives the event. It calls the
AutomationManager.createID() method to create the AutomationID object of the button. This
object provides a structure for object identification. The AutomationID structure is an array of
AutomationIDParts. An AutomationIDPart is created by using IAutomationObject. (The UIComponent.id,
automationName, automationValue, childIndex, and label properties of the Button control are read and
stored in the object. The label property is used because the XML information specifies that this property
can be used for identification for the Button.)

7. FlexTechDomain uses the AutomationManager.getParent() method to get the logical parent of
Button. The AutomationIDPart objects of parent controls are collected at each level up to the application
level.

8. All the AutomationIDParts are included as part of the AutomationID object.
9. The FlexTechDomain sends the information in a call to Silk Test Classic.
10.When the user stops recording, the FlexTechDomain.endRecording() method is called.

Flex Automated Testing Playback

When the user clicks the Playback button in Silk Test Classic, the following events occur:

1. For each script call, Silk Test Classic contacts the Silk Test Agent and sends the information for the
script call to be executed. This information includes the complete window declaration, the event name,
and parameters.

2. The Silk Test Agent forwards that information to the FlexTechDomain.
3. The FlexTechDomain uses AutomaionManager.resolveIDToSingleObject with the window

declaration information. The AutomationManager returns the resolved object based on the descriptive
information (automationName, automationIndex, id, and so on).

4. Once the Flex control is resolved, FlexTechDomain calls
AutomationManager.replayAutomatableEvent() to replay the event.

220 | Testing in Your Environment with the Open Agent

5. The AutomationManager.replayAutomatableEvent() method invokes the
IAutomationObject.replayAutomatableEvent() method on the delegate class. The delegate
uses the IAutomationObjectHelper.replayMouseEvent() method (or one of the other replay
methods, such as replayKeyboardEvent()) to play back the event.

6. If there are verifications in your script, FlexTechDomain invokes
AutomationManager.getProperties() to access the values that must be verified.

Testing the Silk Test Component Explorer Flex Sample
Application
Silk Test provides a sample Apache Flex test application called the Component Explorer. You can access
the sample application at http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/
Flex3TestApp.html.

To test the Component Explorer, follow the steps described in the following topics:

• Configuring Security Settings for Your Local Flash Player
• Launching the Component Explorer
• Creating a New Project
• Configuring Web Applications
• Recording a Sample Testcase for the Component Explorer
• Running a Test Case
• Customizing Apache FlexScripts

Silk Test provides several sample Apache Flex applications. To access the samples, go to http://
demo.borland.com/flex/SilkTest16.0/index.html and choose the sample application you want to use.

Configuring Security Settings for Your Local Flash Player
Before you launch an Apache Flex application, that runs as a local application, for the first time, you must
configure security settings for your local Flash Player. You must modify the Adobe specific security settings
to enable the local application access to the file system.

To configure the security settings for your local Flash player:

1. Open the Flex Security Settings Page by clicking Flash Player Security Manager on http://
demo.borland.com/flex/SilkTest16.0/index.html.

2. Click Always allow.

3. In the Edit Locations menu, click Add Location.

4. Click Browse for folder and navigate to the folder where your local application is installed.

5. Click Confirm and then close the browser.

Launching the Component Explorer
Silk Test provides a sample Apache Flex application, the Component Explorer. Compiled with the Adobe
Automation SDK and the Silk Test specific automation implementation, the Component Explorer is pre-
configured for testing.

Before you launch the application for the first time, you must configure security settings for your local Flash
Player.

To launch the Component Explorer in Internet Explorer, open http://demo.borland.com/flex/
SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html.

The application launches in Internet Explorer.

Testing in Your Environment with the Open Agent | 221

http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html

Creating a New Project
You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar.

2. On the Create Project dialog box, type the Project Name and Description.

3. Click OK to save your project in the default location, C:\Users\<Current user>\Documents\Silk
Test Classic Projects.

To save your project in a different location, click Browse and specify the folder in which you want to
save your project.

Silk Test Classic creates a <Project name> folder within this directory, saves the projectname.vtp
and projectname.ini to this location and copies the extension .ini files, which are appexpex.ini,
axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you do not want to save
your project in the default location, click Browse and specify the folder in which you want to save your
project. Silk Test Classic then creates your project and displays nodes on the Files and Global tabs for
the files and resources associated with this project.

4. Perform one of the following steps:

• If your test uses the Open Agent, configure the application to set up the test environment.
• If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Configuring Web Applications
Configure the Web application that you want to test to set up the environment that Silk Test Classic will
create each time you record or replay a test case. If you are testing a Web application or an application that
uses a child technology domain of the xBrowser technology domain, for example an Apache Flex
application, use this configuration.

1. Click Configure Application on the basic workflow bar.

If you do not see Configure Application on the workflow bar, ensure that the default agent is set to the
Open Agent.

The Select Application dialog box opens.

2. Select the Web tab.

3. Select the browser that you want to use from the list of available browsers.

If you want to record a test against a Web application, select Internet Explorer or a mobile browser.
You can use one of the other supported browsers to replay tests but not to record them.

4. Optional: Specify the Web page to open in the Browse to URL text box.

5. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

222 | Testing in Your Environment with the Open Agent

6. Click OK.

• If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame.inc by default.

• If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application. By default,
Silk Test Classic lists the caption of the main window of the application as the locator for the base state.
Then Silk Test Classic opens the Web page.

9. Record the test case whenever you are ready.

Recording a Sample Test Case for the Component Explorer
Use the following procedure to become familiar with the sample Silk Test Classic Flex application, the
Component Explorer.

To record a test case for the Component Explorer:

1. Click Record Testcase on the Basic Workflow bar.

2. In the Record Testcase dialog box, type the name of your test case in the Testcase name text box.

Test case names are case sensitive; they can have any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default BaseState before the test case begins executing.

4. Click Start Recording. Silk Test Classic closes the Record Testcase dialog box and displays the Flex
sample application.

5. When the Record Status window opens, record the following scenario using the Flex sample
application.

It is essential that you perform these steps exactly as they are documented. Otherwise, your test case
script may not match the sample provided later in this document.

6. Click the arrow next to the Visual Components tree element to expand the list.

7. Click the arrow next to the General Controls tree element to expand the list.

8. Click the SimpleAlert tree element.

9. In the Alert Control Example section, click Click Me near the top of the window and then click OK in
the Hello World message box.

10.Click the arrow next to the General Controls tree element to hide the list.

11.Click the arrow next to the Visual Components tree element to hide the list.

12.In the Recording Status window, click Stop Recording. SilkTest opens the Record Testcase dialog
box, which contains the script that has been recorded for you.

13.Click Paste to Editor. The Update Files dialog box opens.

14.Choose Paste testcase and update window declaration(s) and then click OK.

Your testcase should include the following calls:

WebBrowser.BrowserWindow.Application.CompLibTree.Open("Visual Components")
WebBrowser.BrowserWindow.Application.CompLibTree.Open("Visual
Components>General Controls")
WebBrowser.BrowserWindow.Application.CompLibTree.Select("Visual
Components>General Controls>SimpleAlert")
WebBrowser.BrowserWindow.Application.Button1.Click()
WebBrowser.BrowserWindow.Application.Ok.Click()

Testing in Your Environment with the Open Agent | 223

WebBrowser.BrowserWindow.Application.CompLibTree.Close("Visual
Components>General Controls")
WebBrowser.BrowserWindow.Application.CompLibTree.Close("Visual Components")

The Silk Test Classic Flex Automation SDK is based on the Automation API for Flex. The Silk Test Classic
Automation SDK supports the same components in the same manner that the Automation API for Flex
supports them. For instance, when an application is compiled with automation code and successive .swf
files are loaded, a memory leak occurs and the application runs out of memory eventually. The Flex
Component Explorer sample application is affected by this issue. The workaround is to not compile the
application .swf files that Explorer loads with automation libraries. For example, compile only the Explorer
main application with automation libraries. Another alternative is to use the module loader instead of
swfloader. For more information about using the Flex Automation API, refer to the Apache Flex Release
Notes.

Running a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.

Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag
Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

224 | Testing in Your Environment with the Open Agent

7. Optional: If necessary, you can click both Shift keys at the same time to stop the execution of the test.

Customizing Apache Flex Scripts
You can manually customize your Flex scripts. You can insert verifications using the Verification wizard.
Or, you can insert verifications manually using the Verify function on Flex object properties.

To customize Adobe Flex scripts:

1. Record a testcase for your Flex application.

2. Open the script file that you want to customize.

3. Manually type the code that you want to add.

For example, the following code adds a verification call to your script:

Desktop.Find("//BrowserApplication").Find("//BrowserWindow")
.Find("//FlexApplication[@caption='explorer']").Find("//
FlexButton[@caption='OK']")
.VerifyProperties({...})

Each Flex object has a list of properties that you can verify. For a list of the properties available for
verification, review the Flex.inc file. To access the file, navigate to the <SilkTest directory>
\extend\Flex directory. By default, this file is located in C:\Program Files\Silk\SilkTest
\extend\Flex\Flex.inc.

Testing Flex Custom Controls
Silk Test Classic supports testing Flex custom controls. By default, Silk Test Classic provides record and
playback support for the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

Option Description

Basic
support

With basic support, you use dynamic invoke to interact with the custom control during
replay. Use this low-effort approach when you want to access properties and methods of
the custom control in the test application that Silk Test Classic does not expose. The
developer of the custom control can also add methods and properties to the custom control
specifically for making the control easier to test. A Silk Test Classic user can then call those
methods or properties using the dynamic invoke feature.

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

• No specific class name is included in the locator. For example, Silk Test Classic
records //FlexBox rather than //FlexSpinner.

• Only limited recording support.
• Silk Test Classic cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking
Apache Flex Methods.

Advanced
support

With advanced support, you create specific automation support for the custom control. This
additional automation support provides recording support and more powerful play-back
support. The advantages of advanced support include:

• High-level recording and playback support, including the recording and replaying of
events.

Testing in Your Environment with the Open Agent | 225

Option Description

• Silk Test Classic treats the custom control exactly the same as any other built-in Flex
control.

• Seamless integration into Silk Test Classic API.
• Silk Test Classic uses the specific class name in the locator. For example, Silk Test

Classic records //FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open
Agent must be extended.

Defining a Custom Control in the Test Application
Typically, the test application already contains custom controls, which were added during development of
the application. If your test application already includes custom controls, you can proceed to Testing a
Custom Control Using Dynamic Invoke or to Testing a Custom Control Using Automation Support.

This procedure shows how a Flex application developer can create a spinner custom control in Flex. The
spinner custom control that we create in this topic is used in several topics to illustrate the process of
implementing and testing a custom control in Silk Test Classic.

The spinner custom control includes two buttons and a text box, as shown in the following graphic.

The user can click Down to decrement the value that is displayed in the text field and click Up to increment
the value in the text field.

The custom control offers a public CurrentValue property that can be set and retrieved.

To define the custom control:

1. In the test application, define the layout of the control.
For example, for the spinner control type:

<?xml version="1.0" encoding="utf-8"?>
<customcontrols:SpinnerClass xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:controls="mx.controls.*" xmlns:customcontrols="customcontrols.*">
 <controls:Button id="downButton" label="Down" />
 <controls:TextInput id="text" enabled="false" />
 <controls:Button id="upButton" label="Up"/>
</customcontrols:SpinnerClass>

2. Define the implementation of the custom control.
For example, for the spinner control type:

package
customcontrols
{
 import flash.events.MouseEvent;
 import mx.containers.HBox;
 import mx.controls.Button;
 import mx.controls.TextInput;
 import mx.core.UIComponent;
 import mx.events.FlexEvent;
 [Event(name="increment", type="customcontrols.SpinnerEvent")]
 [Event(name="decrement", type="customcontrols.SpinnerEvent")]

 public class SpinnerClass extends HBox
 {
 public var downButton : Button;

226 | Testing in Your Environment with the Open Agent

 public var upButton : Button;
 public var text : TextInput;
 public var ssss: SpinnerAutomationDelegate;
 private var _lowerBound : int = 0;
 private var _upperBound : int = 5;
 private var _value : int = 0;
 private var _stepSize : int = 1;

 public function SpinnerClass()
 {
 addEventListener(FlexEvent.CREATION_COMPLETE,
creationCompleteHandler);
 }

 private function creationCompleteHandler(event:FlexEvent) : void
 {
 downButton.addEventListener(MouseEvent.CLICK, downButtonClickHandler);
 upButton.addEventListener(MouseEvent.CLICK, upButtonClickHandler);
 updateText();
 }

 private function downButtonClickHandler(event : MouseEvent) : void
 {
 if(currentValue - stepSize >= lowerBound)
 {
 currentValue = currentValue - stepSize;
 }
 else
 {
 currentValue = upperBound - stepSize + currentValue - lowerBound +
1;
 }
 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.DECREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function upButtonClickHandler(event : MouseEvent) : void
 {
 if(currentValue <= upperBound - stepSize)
 {
 currentValue = currentValue + stepSize;
 }
 else
 {
 currentValue = lowerBound + currentValue + stepSize - upperBound -
1;
 }
 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.INCREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function updateText() : void
 {
 if(text != null)
 {
 text.text = _value.toString();
 }
 }

 public function get currentValue() : int

Testing in Your Environment with the Open Agent | 227

 {
 return _value;
 }

 public function set currentValue(v : int) : void
 {
 _value = v;
 if(v < lowerBound)
 {
 _value = lowerBound;
 }
 else if(v > upperBound)
 {
 _value = upperBound;
 }
 updateText();
 }

 public function get stepSize() : int
 {
 return _stepSize;
 }

 public function set stepSize(v : int) : void
 {
 _stepSize = v;
 }

 public function get lowerBound() : int
 {
 return _lowerBound;
 }

 public function set lowerBound(v : int) : void
 {
 _lowerBound = v;
 if(currentValue < lowerBound)
 {
 currentValue = lowerBound;
 }
 }

 public function get upperBound() : int
 {
 return _upperBound;
 }

 public function set upperBound(v : int) : void
 {
 _upperBound = v;
 if(currentValue > upperBound)
 {
 currentValue = upperBound;
 }
 }
 }
}

3. Define the events that the control uses.
For example, for the spinner control type:

package customcontrols
{
 import flash.events.Event;

228 | Testing in Your Environment with the Open Agent

 public class SpinnerEvent extends Event
 {
 public static const INCREMENT : String = "increment";
 public static const DECREMENT : String = "decrement";

 private var _steps : int;

 public function SpinnerEvent(eventName : String)
 {
 super(eventName);
 }

 public function set steps(value:int) : void
 {
 _steps = value;
 }

 public function get steps() : int
 {
 return _steps;
 }
 }
}

4. Proceed to Implement Automation Support.

Testing a Custom Control Using Dynamic Invoke
Silk Test Classic provides record and playback support for custom controls using dynamic invoke to interact
with the custom control during replay. Use this low-effort approach when you want to access properties and
methods of the custom control in the test application that Silk Test Classic does not expose. The developer
of the custom control can also add methods and properties to the custom control specifically for making the
control easier to test.

To test a custom control using dynamic invoke:

1. To retrieve a list of supported dynamic methods for a control, use the GetDynamicMethodList
method.

2. Call dynamic methods on objects with the DynamicInvoke method.
3. Call multiple dynamic methods on objects with the DynamicInvokeMethods method.
4. To retrieve a list of supported dynamic properties for a control, use the GetPropertyList method.
5. Retrieve dynamic properties with the GetProperty method and set dynamic properties with the

SetProperty method.

Example

This example tests a spinner custom control that includes two buttons and a text box, as
shown in the following graphic.

The user can click Down to decrement the value that is displayed in the text box and
click Up to increment the value in the text box.

The custom control offers a public CurrentValue property that can be set and
retrieved. The value in this example is 3.

To set the spinner's value to 4, type the following:

WINDOW spinner = Desktop.Find("//
FlexBox[@className=customcontrols.Spinner]")
spinner.SetProperty("CurrentValue", 4)

Testing in Your Environment with the Open Agent | 229

Testing a Custom Control Using Automation Support
Before you can test a custom control in Silk Test Classic, perform the following steps:

• Define the custom control in the test application.
• Implement automation support.

You can create specific automation support for the custom control. This additional automation support
provides recording support and more powerful play-back support. To create automation support, the test
application must be modified and the Open Agent must be extended.

After the test application has been modified and includes automation support, perform the following steps:

1. Open an existing Flex project or create a new project.

2. Click File > New.

The New File dialog box opens.

3. Choose 4Test include and then click OK.

A new include file opens.

4. Type the custom control class information in the INC file and then click Save.

For example, the INC file for the FlexSpinner class looks like the following:

winclass FlexSpinner : FlexBox
 tag "[FlexSpinner]"
 builtin void Increment(INTEGER steps)
 builtin void Decrement(INTEGER steps)
 property stepSize
 builtin INTEGER Get()
 property lowerBound
 builtin INTEGER Get()
 property currentValue
 builtin INTEGER Get()
 builtin Set(INTEGER value)
 property upperBound
 builtin INTEGER Get()

5. Click Options > Runtime Options and in the Use Files field navigate to the custom control INC file.

6. Record and replay tests for the custom control.

Implementing Automation Support for a Custom Control
Before you can test a custom control, implement automation support, which is the automation delegate, in
ActionScript for the custom control and compile that into the test application.

The following procedure uses a custom Flex spinner control to demonstrate how to implement automation
support for a custom control. The spinner custom control includes two buttons and a text box, as shown in
the following graphic.

The user can click Down to decrement the value that is displayed in the text box and click Up to increment
the value in the text box.

The custom control offers a public CurrentValue property that can be set and retrieved.

1. Implement automation support, which is the automation delegate, in ActionScript for the custom control.

For further information about implementing an automation delegate, see the Adobe Live Documentation
at http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html.

230 | Testing in Your Environment with the Open Agent

http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html

In this example, the automation delegate adds support for the methods increment and decrement.
The example code for the automation delegate looks like this:

package customcontrols
{
 import flash.display.DisplayObject;
 import mx.automation.Automation;
 import customcontrols.SpinnerEvent;
 import mx.automation.delegates.containers.BoxAutomationImpl;
 import flash.events.Event;
 import mx.automation.IAutomationObjectHelper;
 import mx.events.FlexEvent;
 import flash.events.IEventDispatcher;
 import mx.preloaders.DownloadProgressBar;
 import flash.events.MouseEvent;
 import mx.core.EventPriority;

 [Mixin]
 public class SpinnerAutomationDelegate extends BoxAutomationImpl
 {
 public static function init(root:DisplayObject) : void
 {
 //register delegate for the automation
 Automation.registerDelegateClass(Spinner, SpinnerAutomationDelegate);
 }
 public function SpinnerAutomationDelegate(obj:Spinner)
 {
 super(obj);
 // listen to the events of interest (for recording)
 obj.addEventListener(SpinnerEvent.DECREMENT, decrementHandler);
 obj.addEventListener(SpinnerEvent.INCREMENT, incrementHandler);
 }

 protected function decrementHandler(event : SpinnerEvent) : void
 {
 recordAutomatableEvent(event);
 }

 protected function incrementHandler(event : SpinnerEvent) : void
 {
 recordAutomatableEvent(event);
 }

 protected function get spinner() : Spinner
 {
 return uiComponent as Spinner;
 }

 //----------------------------------
 // override functions
 //----------------------------------

 override public function get automationValue():Array
 {
 return [spinner.currentValue.toString()];
 }

 private function replayClicks(button : IEventDispatcher, steps : int) :
Boolean
 {
 var helper : IAutomationObjectHelper =
Automation.automationObjectHelper;
 var result : Boolean;
 for(var i:int; i < steps; i++)

Testing in Your Environment with the Open Agent | 231

 {
 helper.replayClick(button);
 }
 return result;
 }

 override public function replayAutomatableEvent(event:Event):Boolean
 {
 if(event is SpinnerEvent)
 {
 var spinnerEvent : SpinnerEvent = event as SpinnerEvent;
 if(event.type == SpinnerEvent.INCREMENT)
 {
 return replayClicks(spinner.upButton, spinnerEvent.steps);
 }
 else if
 {
 return replayClicks(spinner.downButton, spinnerEvent.steps);
 }
 else
 {
 return false;
 }
 }
 else
 {
 return super.replayAutomatableEvent(event);
 }
 }

 // do not expose the child controls, which are the buttons and the
textfield, as individual controls
 override public function get numAutomationChildren():int
 {
 return 0;
 }
 }
}

2. To introduce the automation delegate to the Open Agent, create an XML file that describes the custom
control.

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

The XML file for the spinner custom control looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<TypeInformation>
 <ClassInfo Name="FlexSpinner" Extends="FlexBox">
 <Implementation Class="customcontrols.Spinner" />
 <Events>
 <Event Name="Decrement">
 <Implementation Class="customcontrols.SpinnerEvent"
 Type="decrement" />
 <Property Name="steps">
 <PropertyType Type="integer" />
 </Property>
 </Event>
 </Events>
 <Properties>
 <Property Name="lowerBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>

232 | Testing in Your Environment with the Open Agent

 <Property Name="upperBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <!-- expose read and write access for the currentValue property -->
 <Property Name="currentValue" accessType="both">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="stepSize" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 </Properties>
 </ClassInfo>
</TypeInformation>

3. Include the XML file for the custom control in the folder that includes all the XML files, which describe all
classes, methods, and properties for the supported Flex controls.

Silk Test Classic contains several XML files that describe all classes, methods, and properties for the
supported Flex controls. Those XML files are located in the <silktest_install_directory>\ng
\agent\plugins\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Open Agent starts
and initializes support for Flex, it reads the contents of this directory.

To test the Flex Spinner sample control, you must copy the CustomControls.xml file into this folder. If
the Open Agent is currently running, restart it after you copy the file into the folder.

Now, you can test the custom control using Silk Test Classic.

Flex Class Definition File
The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test Classic contains several XML files that describe all classes, events, and properties for the
common Flex common and specialized controls. Those XML files are located in the
<silktest_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the agent starts and
initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

 <TypeInformation>
<ClassInfo>
<Implementation />
<Events>
<Event />
...
</Events>
<Properties>
<Property />
...
</Properties>
</ClassInfo>
</TypeInformation>

Testing in Your Environment with the Open Agent | 233

Client/Server Application Support
Silk Test Classic provides built-in support for testing client/server applications including:

• .NET WinForms
• Java AWT applications
• Java SWT/RCP application
• Java Swing applications
• Windows-based applications

In a client/server environment, Silk Test Classic drives the client application by means of an Agent process
running on each application’s machine. The application then drives the server just as it always does. Silk
Test Classic is also capable of driving the GUI belonging to a server or of directly driving a server database
by running scripts that submit SQL statements to the database. These methods of directly manipulating the
server application are intended to support testing in which the client application drives the server. For
additional information on this capability, see Testing Databases.

Client/Server Testing Challenges
Silk Test Classic provides powerful support for testing client/server applications and databases in a
networked environment. Testing multiple remote applications raises the level of complexity of QA
engineering above that required for stand-alone application testing. Here are just a few of the testing
methodology challenges raised by client/server testing:

• Managing simultaneous automatic regression tests on different configurations and platforms.
• Ensuring the reproducibility of client/server tests that modify a server database.
• Verifying the server operations of a client application independently, without relying on the application

under test.
• Testing the concurrency features of a client/server application.
• Testing the intercommunication capabilities of networked applications.
• Closing down multiple failed applications and bringing them back to a particular base state (recovery

control).
• Testing the functioning of the server application when driven at peak request rates and at maximum

data rates (peak load and volume testing).
• Automated regression testing of multi-tier client/server architectures.

Verifying Tables in ClientServer Applications
This functionality is supported only if you are using the Classic Agent.

When verifying a table in a client/server application, that is, an object of the Table class or of a class
derived from Table, you can verify the value of every cell in a specified range in the table using the Table
tab in the Verify Window dialog box. For additional information on verifying tables in Web applications, see
Working with Borderless Tables.

Specifying the range

You specify the range of cells to verify in the Range text boxes using the following syntax for the starting
and ending cells in the range:

row_number : column_name

or

row_number : column_number

234 | Testing in Your Environment with the Open Agent

Example

Specifying the following in the Range text boxes of the Verify Window dialog box
causes the value of every cell in rows 1 through 3 to be verified, starting with the column
named ID and ending with the column named Company_Name:

From field: 1 : id

To field: 3 : company_name

After you specify a cell range in the Verify Window dialog box, you can click Update to
display the values in the specified range.

Specifying a file to store the values

You specify a file to store the current values of the selected range in the Table File Name text box.

What happens

When you dismiss the Verify Window dialog box and paste the code into your script, the following occurs:

• The values that are currently in the table's specified cell range are stored in the file named in the Table
File Name text box in the Verify Window dialog box.

• A VerifyFileRangeValue method is pasted in your script that references the file and the cell range
you specified.

For example, the following VerifyFileRangeValue method call would be recorded for the preceding
example:

table.VerifyFileRangeValue ("file.tbl", {{"1",
"id"}, {"3", "company_name"}})

When you run your script, the values in the range specified in the second argument to
VerifyFileRangeValue are compared to the values stored in the file referenced in the first argument to
VerifyFileRangeValue.

For additional information, see the VerifyFileRangeValue method.

Evolving a Testing Strategy
There are several reasons for moving your QA program from local to remote testing:

• You may have a stand-alone application that runs on many different platforms and now you want to
simultaneously drive testing on all the platforms from one Silk Test Classic host system.

• You may have been testing a client/server application as a single local application and now you want to
drive multiple instances of the application so as to apply a heavier load to the server.

• You may want to upgrade your client/server testing so that your test cases can automatically initialize
the server and recover from server failures— in addition to driving multiple application instances.

• You may need to test applications that have different user interfaces and that communicate as peers.

If you are already a Silk Test Classic user, you will find that your testing program can evolve in any of these
directions while preserving large portions of your existing tests. This topic and related topics help you to
evolve your testing strategy by showing the incremental steps you can take to move into remote testing.

Incremental Functional Test Design
Silk Test Classic simplifies and automates the classic QA testing methodology in which testing proceeds
from the simplest cases to the most complex. This incremental functional testing methodology applies
equally well in the client/ server environment, where testing scenarios typically proceed from the simplest
functional testing of one instance of a client application, to functional and performance testing of a heavily

Testing in Your Environment with the Open Agent | 235

loaded, multi-client configuration. Therefore, we recommend the following incremental progression for
client/server testing:

• Perform functional testing on a single client application that is running on the same system as Silk Test
Classic, with the server application on the same system (if possible).

• Perform functional testing on a single remote client application, with the server application on a
separate system.

• Perform functional and concurrency testing on two remote client applications.
• Perform stress testing on a single client application running locally or remotely.
• Perform volume load testing on a configuration large enough to stress the server application.
• Perform peak load testing on a large configuration, up to the limits of the server, if possible.
• Perform performance testing on several sets of loads until you can predict performance.

Network Testing Types
Software testing can be categorized according to the various broad testing goals that are the focus of the
individual tests. At a conceptual level, the kinds of automated application testing you can perform using Silk
Test Classic in a networked environment are:

• Functional
• Configuration
• Concurrency

The ordering of this list conforms to the incremental functional testing methodology supported by Silk Test
Classic. Each stage of testing depends for its effectiveness on the successful completion of the previous
stage. Functional, configuration, and concurrency testing are variations of regression testing, which is a
prerequisite for any type of load testing. You can use Silk Performer for load testing, stress testing, and
performance testing.

You can perform functional testing with a single client machine. You can perform the first four types of test
with a testbed containing only two clients. The last two testing types require a heavy multi-user load and so
need a larger testbed.

Concurrency Testing
Concurrency testing tests two clients using the same server. This is a variation of functional testing that
verifies that the server can properly handle simultaneous requests from two clients. The simplest form of
concurrency testing verifies that two clients can make multiple non-conflicting server requests during the
same period of time. This is a very basic sanity test for a client/server application.

To test for problems with concurrent access to the same database record, you need to write specific scripts
that synchronize two clients to make requests of the same records in your server’s databases at the same
time. Your goal is to encounter faulty read/write locks, software deadlocks, or other concurrency problems.

Once the application passes the functional tests, you can test the boundary conditions that might be
reached by large numbers of transactions.

Configuration Testing
A client/server application typically runs on multiple different platforms and utilizes a server that runs on
one or more different platforms. A complete testing program needs to verify that every possible client
platform can operate with every possible server platform. This implies the following combinations of tests:

• Test the client application and the server application when they are running on the same machine—if
that is a valid operational mode for the application. This testing must be repeated for each platform that
can execute in that mode.

• Test with the client and server on separate machines. This testing should be repeated for all different
platform combinations of server and client.

236 | Testing in Your Environment with the Open Agent

Functional Testing
Before you test the multi-user aspects of a client/server application, you should verify the functional
operation of a single instance of the application. This is the same kind of testing that you would do for a
non-distributed application.

Once you have written scripts to test all the operations of the application as it runs on one platform, you
can modify the scripts as needed for all other platforms on which the application runs. Testing multiple
platforms thus becomes almost trivial. Moreover, many of the tests you script for functional testing can
become the basis of your other types of testing. For example, you can easily modify the functional tests (or
a subset of them) to use in load testing.

Peak Load Testing
Peak load testing is placing a load on the server for a short time to emulate the heaviest demand that
would be generated at peak user times—for example, credit card verification between noon and 1 PM on
Christmas Eve. This type of test requires a significant number of client systems. If you submit complex
transactions to the server from each client in your test network, using minimal user setup, you can emulate
the typical load of a much larger number of clients.

Your testbed may not have sufficient machines to place a heavy load on your server system — even if your
clients are submitting requests at top speed. In this case it may be worthwhile to reconfigure your
equipment so that your server is less powerful. An inadequate server configuration should enable you to
test the server’s management of peak server conditions.

Volume Testing
Volume testing is placing a heavy load on the server, with a high volume of data transfers, for 24 to 48
hours. One way to implement this is to use one set of clients to generate large amounts of new data and
another set to verify the data, and to delete data to keep the size of the database at an appropriate level. In
such a case, you need to synchronize the verification scripts to wait for the generation scripts. The 4Test
script language makes this easy. Usually, you would need a very large test set to drive this type of server
load, but if you under-configure your server you will be able to test the sections of the software that handle
the outer limits of data capacity.

How 4Test Handles Script Deadlock
It is possible for a multi-threaded 4Test script to reach a state in which competing threads block one
another, so that the script cannot continue. This is called a script deadlock. When the 4Test runtime
environment detects a deadlock, it raises an exception and halts the deadlocked script.

Example

The following script will never exit successfully.

share INTEGER iIndex1 = 0
share INTEGER iIndex2 = 0

main ()
 parallel
 access iIndex1
 Sleep (1)
 access iIndex2
 Print ("Accessed iIndex1 and iIndex2")
 access iIndex2
 Sleep (1)
 access iIndex1
 Print ("Accessed iIndex2 and iIndex1")

Testing in Your Environment with the Open Agent | 237

Troubleshooting Configuration Test Failures
The test of your application may have failed for one of the reasons below. If the following suggestions do
not address the problem, you can enable your extension manually.

Note: Unsupported and embedded browsers, other than AOL, are recognized as client/server
applications.

The application may not have been ready to test

1. Click Enable Extensions on the Basic workflow bar.
2. On the Enable Extensions dialog box, select the application for which you want to enable extensions.
3. Close and restart your application. Make sure the application has finished loading, and then click Test.

Embedded browsers, other than AOL, are recognized as Client/Server applications

If you want to work with a web browser control embedded within an application, you must enable the
extension manually.

Testing .NET Applications with the Open Agent
Silk Test Classic provides built-in support for testing .NET applications with the Open Agent.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Windows Forms Applications
Silk Test Classic provides built-in support for testing .NET Windows Forms (Win Forms) applications using
the Open Agent as well as built-in support for testing .NET standalone and No-Touch Windows Forms (Win
Forms) applications using the Classic Agent. However, side-by-side execution is supported only on
standalone applications.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Locator Attributes for Windows Forms Applications
This functionality is supported only if you are using the Open Agent.

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

The attributes that Silk Test Classic supports for Windows Forms include:

• automationId
• caption. Supports wildcards ? and * .
• windowid
• priorlabel. For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Windows Forms Methods
This functionality is supported only if you are using the Open Agent.

238 | Testing in Your Environment with the Open Agent

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The DynamicInvoke Method

For a Windows Forms or a WPF control, you can use the DynamicInvoke method to call the following
methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the DynamicInvoke Method

For an object of the Silk Test Classic type DataGrid, you can call all methods that
MSDN defines for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//4Test code
BOOLEAN isExpanded = (BOOLEAN)
dataGrid.DynamicInvoke("IsExpanded", {3})

Second Example for the DynamicInvoke Method

To invoke the static method String.Compare(String s1, String s2) inside the
AUT, use the following code:

//4Test code
INTEGER result =
mainWindow.DynamicInvoke("System.String.Compare", {"a", "b"});

The DynamicInvokeMethods Method

For a Windows Forms or a WPF control, you can use the DynamicInvokeMethods method to invoke a
sequence of nested methods. You can call the following methods:

Testing in Your Environment with the Open Agent | 239

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the DynamicInvokeMethods method generates
a relatively complex script, because you have to pass five methods with their
corresponding parameters to the DynamicInvokeMethods method:

INTEGER rowIndex = 0
INTEGER columnIndex = 2

LIST OF STRING names = { ... }
 "Rows" // Get the list of rows from the grid.
 "get_Item" // Get a specific row from the list of rows by
using the indexer method.
 "Cells" // Get the list of cells from the the row.
 "get_Item" // Get a specific cell from the list of cells
by using the indexer method.
 "Text" // Get the text of the cell.

LIST OF LIST parameters = { ... }
 {} // Parameters for the Rows property.
 {rowIndex} // Parameters for the get_Item method.
 {} // Parameters for the Cells property.
 {columnIndex} // Parameters for the get_Item method.
 {} // Parameters for the Text property.

dataGrid.DynamicInvokeMethods(names, parameters)

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods and properties that the MSDN defines for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk Test Classic types

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and other types (such
as Point and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

240 | Testing in Your Environment with the Open Agent

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.

Suppressing Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.

For example, you might want to ignore container classes to streamline your test cases.

To suppress specific controls:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. Type the name of the class that you want to ignore during recording and playback into the text box.

If the text box already contains classes, add the new classes to the end of the list. Separate the classes
with a comma. For example, to ignore both the AOL Toolbar and the _AOL_Toolbar class, type AOL
Toolbar, _AOL_Toolbar into the text box.

The OPT_TRANSPARENT_CLASSES option is set to true for these classes.

4. Click OK. The OPT_TRANSPARENT_CLASSES option is set to true for these classes, which means
the classes are added to the list of the classes that are ignored during recording and playback.

WPF Applications
This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides built-in support for testing Windows Presentation Foundation (WPF) applications
using the Open Agent. Silk Test Classic supports standalone WPF applications and can record and play
back controls in .NET version 3.5 or later.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

WPF applications support hierarchical object recognition and dynamic object recognition. You can create
tests for both dynamic and hierarchical object recognition in your test environment. You can use both
recognition methods within a single test case if necessary. Use the method best suited to meet your test
requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Testing in Your Environment with the Open Agent | 241

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

When you create a new WPF project, Silk Test Classic uses the Open Agent by default.

Supported Controls for WPF
Silk Test Classic includes record and replay support for WPF controls. In Silk Test 2009, WPF replay
support was provided. However, with the release of Silk Test 2010, the earlier WPF controls, which were
prefixed with MSUIA, are deprecated and users should use the new WPF technology domain instead.
When you record new test cases, Silk Test Classic automatically uses the new WPF technology domain.

Note: If you have an existing project that includes scripts that use the earlier MSUIA technology
domain, the test cases will no longer work.

For a complete list of the controls available for WPF testing, see the WPF Class Reference.

Locator Attributes for Windows Presentation Foundation (WPF)
Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for WPF controls:

• automationId
• caption
• className
• name

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamic Object Recognition

To identify components within WPF scripts, you can specify the automationId, caption, className, or
name. The name that is given to an element in the application is used as the automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationId might look like: //
WPFButton[@automationId='okButton']".

If you define an automationId and any other attribute, only the automationId is used during replay. If there is
no automationId defined, the name is used to resolve the component. If neither a name nor an
automationId are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationId because it is the most useful property.

Attribute Type Description Example

automationId An ID that was provided by
the developer of the test
application.

//WPFButton[@automationId='okButton']"

name The name of a control. The
Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify

//WPFButton[@name='okButton']"

242 | Testing in Your Environment with the Open Agent

Attribute Type Description Example

the control in the application
code.

caption The text that the control
displays. When testing a
localized application in
multiple languages, use the
automationId or name
attribute instead of the
caption.

//WPFButton[@automationId='Ok']"

className The simple .NET class
name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk Test Classic recognizes.

//WPFButton[@className='MyCustomButton']"

During recording, Silk Test Classic creates a locator for a WPF control by using the automationId, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has a automationId and a name, Silk Test Classic uses the automationId when creating the locator.

The following example shows how an application developer can define a name and an automationId for a
WPF button in the XAML code of the application:

<Button Name="okButton" AutomationProperties.AutomationId="okButton"
Click="okButton_Click">Ok</Button>

Classes that Derive from the WPFItemsControl Class
Silk Test Classic can interact with classes that derive from WPFItemsControl, such as WPFListBox,
WPFTreeView, and WPFMenu, in two ways:

Working with
the control

Most controls contain methods and properties for typical use cases. The items are
identified by text or index.

For example:

listBox.Select("Banana")
listBox.Select(2)
tree.Expand("/Fruit/Banana")

Working with
individual items

For example WPFListBoxItem, WPFTreeViewItem, or WPFMenuItem. For
advanced use cases, use individual items. For example, use individual items for
opening the context menu on a specific item in a list box, or clicking a certain position
relative to an item.

Custom WPF Controls
Generally, Silk Test Classic provides record and playback support for all standard WPF controls.

Silk Test Classic handles custom controls based on the way the custom control is implemented. You can
implement custom controls by using the following approaches:

Deriving classes from
UserControl

This is a typical way to create compound controls. Silk Test Classic
recognizes these user controls as WPFUserControl and provides full
support for the contained controls.

Testing in Your Environment with the Open Agent | 243

Deriving classes from
standard WPF controls,
such as ListBox

Silk Test Classic treats these controls as an instance of the standard WPF
control that they derive from. Record, playback, and recognition of children
may not work if the user control behavior differs significantly from its base
class implementation.

Using standard controls
that use templates to
change their visual
appearance

Low-level replay might not work in certain cases. Switch to high-level
replay in such cases.

Silk Test Classic filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Setting WPF Classes to Expose During Recording and Playback
Silk Test Classic filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Options > Recorder. The Recording Options dialog box opens.
2. Click the Transparent Classes tab.
3. In the Custom WPF class names grid, type the name of the class that you want to expose during

recording and playback.
Separate class names with a comma.

4. Click OK.

Dynamically Invoking WPF Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

244 | Testing in Your Environment with the Open Agent

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The DynamicInvoke Method

For a Windows Forms or a WPF control, you can use the DynamicInvoke method to call the following
methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the DynamicInvoke Method

For an object of the Silk Test Classic type DataGrid, you can call all methods that
MSDN defines for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//4Test code
BOOLEAN isExpanded = (BOOLEAN)
dataGrid.DynamicInvoke("IsExpanded", {3})

Second Example for the DynamicInvoke Method

To invoke the static method String.Compare(String s1, String s2) inside the
AUT, use the following code:

//4Test code
INTEGER result =
mainWindow.DynamicInvoke("System.String.Compare", {"a", "b"});

The DynamicInvokeMethods Method

For a Windows Forms or a WPF control, you can use the DynamicInvokeMethods method to invoke a
sequence of nested methods. You can call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the DynamicInvokeMethods method generates
a relatively complex script, because you have to pass five methods with their
corresponding parameters to the DynamicInvokeMethods method:

INTEGER rowIndex = 0
INTEGER columnIndex = 2

Testing in Your Environment with the Open Agent | 245

LIST OF STRING names = { ... }
 "Rows" // Get the list of rows from the grid.
 "get_Item" // Get a specific row from the list of rows by
using the indexer method.
 "Cells" // Get the list of cells from the the row.
 "get_Item" // Get a specific cell from the list of cells
by using the indexer method.
 "Text" // Get the text of the cell.

LIST OF LIST parameters = { ... }
 {} // Parameters for the Rows property.
 {rowIndex} // Parameters for the get_Item method.
 {} // Parameters for the Cells property.
 {columnIndex} // Parameters for the get_Item method.
 {} // Parameters for the Text property.

dataGrid.DynamicInvokeMethods(names, parameters)

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods and properties that the MSDN defines for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk Test Classic types

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and other types (such
as Point and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.
• A string for all other types

Call ToString on returned .NET objects to retrieve the string representation

246 | Testing in Your Environment with the Open Agent

Example

A custom calculator control has a Reset method and an Add method, which performs
an addition of two numbers. You can use the following code to call the methods directly
from your tests:

customControl.DynamicInvoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

The calculator control also has a LastCalculationResult property. You can use the
following code to read the property:

REAL lastResult =
customControl.GetProperty("LastCalculationResult")

WPF Class Reference
When you configure a WPF application, Silk Test Classic automatically provides built-in support for testing
standard WPF controls.

Microsoft Silverlight Applications
Microsoft Silverlight (Silverlight) is an application framework for writing and running rich internet
applications, with features and purposes similar to those of Adobe Flash. The run-time environment for
Silverlight is available as a plug-in for most web browsers.

Silk Test Classic provides built-in support for testing Silverlight applications with the Open Agent. Silk Test
Classic supports Silverlight applications that run in a browser as well as out-of-browser and can record and
play back controls in Silverlight.

The following applications, that are based on Silverlight, are supported:

• Silverlight applications that run in Internet Explorer.
• Silverlight applications that run in Mozilla Firefox.
• Out-of-Browser Silverlight applications.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Silverlight applications support dynamic object recognition. You can create tests for dynamic object
recognition in your test environment.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Silk Test Classic includes record and replay support for Silverlight controls. For a complete list of the
controls available for Silverlight testing, see the Silverlight Class Reference.

The support for testing Silverlight applications in Microsoft Windows XP requires the installation of Service
Pack 3 and the Update for Windows XP with the Microsoft User Interface Automation that is provided in
Windows 7. You can download the update from http://www.microsoft.com/download/en/details.aspx?
id=13821.

Note: The Microsoft User Interface Automation needs to be installed for the Silverlight support. If you
are using a Windows operating system and the Silverlight support does not work, you can install the
update with the Microsoft User Interface Automation, which is appropriate for your operating system,
from http://support.microsoft.com/kb/971513.

Locator Attributes for Silverlight Controls
Silk Test Classic supports the following locator attributes for Silverlight controls:

Testing in Your Environment with the Open Agent | 247

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://www.microsoft.com/download/en/details.aspx?id=13821
http://www.microsoft.com/download/en/details.aspx?id=13821
http://support.microsoft.com/kb/971513

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamic Object Recognition

To identify components within Silverlight scripts, you can specify the automationId, caption, className,
name or any dynamic locator attribute. The automationId can be set by the application developer. For
example, a locator with an automationId might look like //SLButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
SLButton[@automationId="okBu
tton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//SLButton[@caption="OK"]

className The simple .NET class name (without namespace) of
the Silverlight control. Using the className attribute
can help to identify a custom control that is derived
from a standard Silverlight control that Silk Test
recognizes.

//
SLButton[@className='MyCusto
mButton']

name The name of a control. Can be provided by the
developer of the application under test.

//SLButton[@name="okButton"]

Attention: The name attribute in XAML code maps to the locator attribute automationId, not to the
locator attribute name.

During recording, Silk Test Classic creates a locator for a Silverlight control by using the automationId,
name, caption, or className attributes in the order that they are listed in the preceding table. For example,
if a control has a automationId and a name, Silk Test Classic uses the automationId when creating the
locator.

The following table shows how an application developer can define a Silverlight button with the text Ok in
the XAML code of the application:

XAML Code for the Object Locator to Find the Object from Silk Test

<Button>Ok</Button> //SLButton[@caption="OK"]

<Button Name="okButton">Ok</Button> //SLButton[@automationId="okButton"]

<Button
AutomationProperties.AutomationId="okB
utton">Ok</Button>

//SLButton[@automationId="okButton"]

248 | Testing in Your Environment with the Open Agent

XAML Code for the Object Locator to Find the Object from Silk Test

<Button
AutomationProperties.Name="okButton">O
k</Button>

//SLButton[@name="okButton"]

Dynamically Invoking Silverlight Methods
You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Call dynamic methods on Silverlight objects with the DynamicInvoke method. To retrieve a list of
supported dynamic methods for a Silverlight control, use the GetDynamicMethodList() method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a Silverlight control, use the GetDynamicMethodList() method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a Silverlight control, use the
GetPropertyList() method.

Note: Typically, most properties are read-only and cannot be set.

Supported Parameter Types

All built-in Silk
Test Classic
types

Silk Test Classic types include primitive types, for example boolean, int, and string, lists,
and other types, for example Point and Rect.

Enum types Enum parameters must be passed as string. The string must match the name of an
enum value. For example, if the method expects a parameter of the .NET enum type
System.Windows.Visiblity you can use the string values of Visible, Hidden, or
Collapsed.

.NET structs
and objects

Pass .NET struct and object parameters as a list. The elements in the list must match
one constructor for the .NET object in the test application. For example, if the method
expects a parameter of the .NET type System.Windows.Vector, you can pass a list
with two integers. This works because the System.Windows.Vector type has a
constructor with two integer arguments.

Other controls Control parameters can be passed as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types.
• All methods that have no return value return NULL.
• A string for all other types.

To retrieve this string representation, call the ToString() method on returned .NET objects in the
application under test.

Example

A TabItem in Silverlight, which is an item in a TabControl.

tabItem.DynamicInvoke("SelectionItemPattern.Select")
mySilverligtObject.GetProperty("IsPassword")

Testing in Your Environment with the Open Agent | 249

Scrolling in Silverlight
Silk Test Classic provides two different sets of scrolling-related methods and properties, depending on the
Silverlight control.

• The first type of controls includes controls that can scroll by themselves and therefore do not expose the
scrollbars explicitly as children. For example combo boxes, panes, list boxes, tree controls, data grids,
auto complete boxes, and others.

• The second type of controls includes controls that cannot scroll by themselves but expose scrollbars as
children for scrolling. For example text fields.

This distinction in Silk Test Classic exists because the controls in Silk Test Classic implement scrolling in
those two ways.

Controls that support scrolling

In this case, scrolling-related methods and property are available for the control that contains the
scrollbars. Therefore, Silk Test Classic does not expose scrollbar objects.

Examples

The following command scrolls a list box to the bottom:

listBox.SetVerticalScrollPercent(100)

The following command scrolls the list box down by one unit:

listBox.ScrollVertical(ScrollAmount.SmallIncrement)

Controls that do not support scrolling

In this case the scrollbars are exposed. No scrolling-related methods and properties are available for the
control itself. The horizontal and vertical scrollbar objects enable you to scroll in the control by specifying
the increment or decrement, or the final position, as a parameter in the corresponding API functions. The
increment or decrement can take the values of the ScrollAmount enumeration. For additional information,
refer to the Silverlight documentation. The final position is related to the position of the object, which is
defined by the application designer.

Examples

The following command scrolls a vertical scrollbar within a text box to position 15:

 textBox.SLVerticalScrollBar().ScrollToPosition(15)

The following command scrolls a vertical scrollbar within a text box to the bottom:

 textBox.SLVerticalScrollBar().ScrollToMaximum()

Troubleshooting when Testing Silverlight Applications

Silk Test Classic cannot see inside the Silverlight application and no green rectangles are drawn
during recording

The following reasons may cause Silk Test Classic to be unable to see inside the Silverlight application:

Reason Solution

You use a Mozilla Firefox version prior to 4.0. Use Mozilla Firefox 4.0 or later.

250 | Testing in Your Environment with the Open Agent

Reason Solution

You use a Silverlight version prior to 3. Use Silverlight 3 (Silverlight Runtime 4) or Silverlight 4
(Silverlight Runtime 4).

Your Silverlight application is running in windowless
mode.

Silk Test Classic does not support Silverlight applications
that run in windowless mode. To test such an application,
you need to change the Web site where your Silverlight
application is running. Therefore you need to set the
windowless parameter in the object tag of the HTML
or ASPX file, in which the Silverlight application is hosted,
to false.

The following sample code sets the windowless
parameter to false:

<object ...>
 <param name="windowless"
value="false"/>
 ...
</object>

Silverlight Class Reference
When you configure a Silverlight application, Silk Test Classic automatically provides built-in support for
testing standard Silverlight controls.

Testing Java AWT/Swing Applications with the Open
Agent

Silk Test Classic provides built-in for testing stand-alone Java applications developed using supported Java
virtual machines and for testing Java applets using supported browsers. You must configure Silk Test
Classic Java support before using it. When you configure a Java AWT/Swing application or applet, Silk Test
Classic automatically provides support for testing standard Java AWT/Swing controls. You can also test
Java SWT controls embedded in Java AWT/Swing applications or applets as well as Java AWT/Swing
controls embedded in Java SWT applications.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Testing Standard Java Objects and Custom Controls
Any single Java application or applet may contain a mix of standard and custom Java objects. With Java
support, you can test both types of visible Java objects in applications and applets that you develop using
the Java Development Kit (JDK)/Java Runtime Environment (JRE).

Standard Java objects are often defined in class libraries. The Java support of Silk Test Classic lets you
record and play back tests against standard controls by providing 4Test definitions for many Java classes
defined in the following class libraries:
• Abstract Windowing Toolkit (AWT)
• Java Foundation Class (JFC), which includes the Swing set of GUI components
• Standard Widget Toolkit (SWT)
• Symantec Visual Café Itools (only for the Classic Agent)
If you are using the Classic Agent, you can use the setName("<desiredwindow ID>") method to create a
window ID that Silk Test Classic will detect. setName() is a method inherited from class
java.awt.Component, so it should work for most, if not all, of the Java classes that Silk Test Classic can

Testing in Your Environment with the Open Agent | 251

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

detect. If you are using the Open Agent, the equivalent of the setName method is the Name property of the
AWTComponent class.

By contrast, custom controls often use native properties and native methods written in Java. Increasingly,
custom controls also take the form of JavaBeans, which are reusable platform-independent software
components written in Java. Developers frequently design custom controls to achieve functionality that is
not available in standard class libraries. You can test custom Java objects, including JavaBeans, using the
Silk Test Classic Java support.

The Silk Test Classic approach to testing custom Java objects is to give you direct access to their native
methods and properties. A major advantage of this methodology is that it obviates the need to write your
own native methods.

The procedure for testing custom Java objects is simple: Record a class for the custom control, then save
the class definition in an include file. The class definition includes the native methods you can call and
native properties you can verify from your 4Test script.

The predefined property sets supplied with Silk Test Classic have not been customized for Java; however,
you can modify these property sets. For additional information about editing existing property sets or
creating new property sets, see Creating a Property Set.

Recording and Playing Back JFC Menus
For Sun JDK v1.4 or later, Silk Test Classic can record and play back regular menus that conform to the
Windows standard, as well as JFC heavyweight and lightweight pop-up menus.

Recording and Playing Back Java AWT Menus
Unlike JFC menus, AWT menus are not conform to the Java component-container paradigm. Therefore,
their behavior is different than that of the JFC menus, and is independent of the JVM version. Silk Test
Classic can record regular AWT menus for all versions of the JDK.

For context menus that are conform to the Windows standard, which means that they can be opened with a
right-click, Silk Test Classic can play back, but not record, the context menus for all versions of the JDK.

For AWT popup menus that are not conform to the Windows standard, Silk Test Classic cannot record or
play back for all versions of the JDK. The JavaAwtPopupMenu class is available for playback only. Silk
Test Classic is not able to record it and you must hand script any interaction with such a menu.

Object Recognition for Java AWT/Swing Applications
Java AWT/Swing applications support hierarchical object recognition and dynamic object recognition. You
can create tests for both dynamic and hierarchical object recognition in your test environment. Use the
method best suited to meet your test requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition.

To test Java AWT/Swing applications using hierarchical object recognition, record a test for the application
that you want to test. Then, replay the tests at your convenience.

Agent Support for Java AWT/Swing Applications
You can test Java AWT/Swing applications using the Classic Agent or the Open Agent. When you create a
new Java AWT/Swing project, Silk Test Classic uses the Open Agent by default. However, you can use
both the Open Agent and the Classic Agent within a single Java AWT/Swing environment. Certain

252 | Testing in Your Environment with the Open Agent

functions and methods run on the Classic Agent only. As a result, if you are running an Open Agent
project, the Classic Agent may also open because a function or method requires the Classic Agent.

When you are using the Classic agent to test Java AWT/Swing applications, Silk Test Classic uses the Sun
JDK by default.

Supported Controls for Java AWT/Swing Applications
For a complete list of the record and replay controls available for Java AWT/Swing testing with the Open
Agent, refer to the Java AWT and Swing Class Reference in the 4Test Language section of the Help.

For a complete list of the record and replay controls available for Java AWT/Swing testing with the Classic
Agent, refer to the Java AWT Classes for the Classic Agent and the Java JFC Classes in the 4Test
Language section of the Help.

Java AWT and Swing Class Reference
When you configure a Java AWT/Swing application, Silk Test Classic automatically provides built-in support
for testing standard Java AWT/Swing controls.

Configuring a Test Application that Uses the Java
Network Launching Protocol (JNLP)
This functionality is supported only if you are using the Open Agent.

Applications that start using the Java Network Launching Protocol (JNLP) require additional configuration
in Silk Test Classic. Because these applications are started from the Web, you must manually configure the
application configuration to start the actual application as well as the application that launches the "Web
Start". Otherwise, the test will fail on playback unless the application is already running.

1. Record a test case for the application that you want to test.

2. In the INC file, replace the const sCmdLine = value with the command line pattern that includes the
absolute path to javaws.exe and the URL to the Web Start.

For example, to use the SwingSet3 JNLP application, type const sCmdLine = "%ProgramFiles%
\Java\jre6\bin\javaws.exe http://download.java.net/javadesktop/swingset3/
SwingSet3.jnlp"

When you replay the test case, the JNLP application starts as expected.

Custom Attributes
This functionality is supported only if you are using the Open Agent.

Add custom attributes to a test application to make a test more stable. You can use custom attributes with
the following technologies:

• Java SWT
• Swing
• WPF
• xBrowser
• Windows Forms
• SAP

For example, in Java SWT, the developer implementing the GUI can define an attribute (for example,
silkTestAutomationId) for a widget that uniquely identifies the widget in the application. A tester using
Silk Test Classic can then add that attribute to the list of custom attributes (in this case,
silkTestAutomationId), and can identify controls by that unique ID. Using a custom attribute is more
reliable than other attributes like caption or index, since a caption will change when you translate the

Testing in Your Environment with the Open Agent | 253

application into another language, and the index will change whenever another widget is added before the
one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different fields, both fields will return when you call the loginName attribute.

First, enable custom attributes for your application and then create the test.

Recording tests that use dynamic object recognition

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition. For example, If you create a button in the application that you want to test using the
following code:

Button myButton = Button(parent, SWT.NONE);
myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test case, you can use the following query:

Window button = Desktop.Find(".//
PushButton[@SilkTestAutomationId='myButton']")

Locator Attributes for Java AWT/Swing Controls
This functionality is supported only if you are using the Open Agent.

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for Java AWT/Swing controls:

• caption
• name
• accessibleName
• priorlabel (For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.)
• Swing only: All custom object definition attributes set in the widget with

SetClientProperty("propertyName", "propertyValue").

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
This functionality is supported only if you are using the Open Agent.

You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList() method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList() method.

254 | Testing in Your Environment with the Open Agent

Note: Typically, most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods of the SWT, AWT, or Swing widget.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

All built-in Silk
Test Classic
types.

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and
other types (such as Point and Rect).

Enum types. Enum parameters must be passed as string. The string must match the name of an
enum value. For example, if the method expects a parameter of the enum type,
java.sql.ClientInfoStatus you can use the string values of REASON_UNKNOWN,
REASON_UNKNOWN_PROPERTY, REASON_VALUE_INVALID, or
REASON_VALUE_TRUNCATED.

Example

A custom calculator control has a Reset method and an Add method, which performs an addition of two
numbers. You can use the following code to call the methods directly from your tests:

customControl.Invoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

Determining the priorLabel in the Java AWT/Swing
Technology Domain
This functionality is supported only if you are using the Open Agent.

To determine the priorLabel in the Java AWT/Swing technology domain, all labels and groups in the same
window as the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• If a parent of the control is a JViewPort or a ScrollPane, the algorithm works as if the parent is the
window that contains the control, and nothing outside is considered relevant.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, and one is to the left and the other above the

control, the left one is preferred.
• If no label is eligible, the caption of the closest group is used.

Supported Browsers for Testing Java Applets
Silk Test Classic supports the following browsers for testing Java applets:

• For the Classic Agent: Internet Explorer 7 using the Java plug-in.
• For the Open Agent: All supported versions of Internet Explorer and Mozilla Firefox.

Testing in Your Environment with the Open Agent | 255

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Overview of JavaScript Support
Silk Test Classic provides support for executing JavaScript code within a Web application. You can test
applications that include JavaScript by performing one of the following tasks:

• Configuring an xBrowser application that uses the Open Agent.
• Enabling extensions for a generic application that uses the Classic Agent.

The type of agent that you use determines the classes that are available for you to create tests with.

As a best practice, we recommend using xBrowser rather than the Web application because xBrowser
uses the Open Agent and dynamic object recognition.

We recommend recording test cases using dynamic object recognition. Then, replay the tests at your
convenience.

JavaScript Support for the Open Agent

With the Open Agent, you can use ExecuteJavaScript to test anything that uses JavaScript. You can:

• Call any function already contained in a document.
• Inject new functions into a document and call them.
• Trigger Document Object Model (DOM) events, such as calling onmouseover directly for an element.
• Modify the DOM tree.

JavaScript Support for the Classic Agent

If you use the Classic Agent, you can test JavaScript using the following methods:

• ExecLine

• ExecMethod

• ExecScript

Oracle Forms Support
Silk Test Classic provides built-in support for testing applications that are based on Oracle Forms.

Note: For some controls, Silk Test Classic provides only low-level recording support.

For information on the supported versions and browsers for Oracle Forms, refer to the Release Notes.

Prerequisites for Testing Oracle Forms
To test an application that is built with Oracle Forms, the following prerequisites need to be fulfilled:

• The next-generation Java Plug-In needs to be enabled. This setting is enabled by default. You can
change the setting in the Java Control Panel. For additional information on the next-generation Java
Plug-In, refer to the Java documentation.

• To prevent Java security dialogs from displaying during a test run, the Applet needs to be signed.
• Micro Focus recommends enabling the Names property. When this property is enabled, the Oracle

Forms runtime exposes the internal name, which is the name that the developer of the control has
specified for the control, as the Name property of the control. Otherwise, the Name property will hold a
calculated value, which usually consists of the class name of the control plus an index. This enables Silk
Test Classic to generate stable locators for controls.

256 | Testing in Your Environment with the Open Agent

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Attributes for Oracle Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Oracle Forms include:

• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a
form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Classes in Object-Oriented Programming Languages
Classes are the core of object-oriented programming languages, such as Java. Applets or applications
developed in Java are built around objects, which are reusable components of code that include methods
and properties. Methods are tasks that can be performed on objects. Properties are characteristics of an
object that you can access directly.

Each object is an instance of a class of objects. GUI objects in Java, for example, may belong to such
classes as Menu, Dialog, and Checkbox. Each class defines the methods and properties for objects that
are part of that class. For example, the JavaAwtCheckBox class defines the methods and properties for
all Java Abstract Windowing Toolkit check boxes. The methods and properties defined for
JavaAwtCheckboxes work only on these check boxes, not on other Java objects.

Configuring Silk Test Classic to Test Java
This section describes how to configure Silk Test Classic to test Java applications.

Prerequisites for Testing Java Applications
To test… Install…

standalone Java applications JDK/JRE

Java applets JDK, supported browser, and plug-in (if necessary)

Java applets using the Java Applet Viewer JDK and plug-in

Note:

• When you are using the Classic Agent, Java support is configured automatically when you use
Enable Extensions in the Basic Workflow bar.

• When you are using the Open Agent, Java support is configured automatically when you use
Configure Applications in the Basic Workflow bar.

• You can use the Basic Workflow bar to configure your application or applet or manually configure
Java Support. If you choose to manually configure Java support, you may need to change the
CLASSPATH environment variable. For JVM/JRE 1.2 or later, you must also copy the applicable
Silk Test Classic .jar file to the lib\ext folder of your JVM/JRE.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Testing in Your Environment with the Open Agent | 257

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Enabling Java Support
There are several ways to enable Java support for testing standalone Java applications. Pick the scenario
that fits your runtime environment and testing needs.

Scenario How to enable Java support

You need to test your application on the 32-bit Windows
host machine using a JVM that is invoked from a
java.exe, jre.exe, jrew.exe, or vcafe.exe
executable, including:

• JDK/JRE
• Symantec Visual Café (only if you are using the

Classic Agent)

Enable the default Java application.

You need to test your application on a remote 32-bit
Windows machine using a JVM that is invoked from
ajava.exe, jre.exe, jrew.exe, or vcafe.exe
executable.

Install Silk Test Classic on your remote machine and
enable the default Java application on your host machine.

You need to test your application on the 32-bit Windows
host machine using a JVM that is not invoked from a
java.exe, jre.exe, jrew.exe, or vcafe.exe
executable.

Enable a new Java application.

You need to test your application on a remote 32-bit
Windows machine using a JVM that is not invoked from a
java.exe, jre.exe, jrew.exe, or vcafe.exe
executable.

Install Silk Test Classic on your target machine and
enable a new Java application.

Configuring Silk Test Classic Java Support for the Sun JDK
When you are using the Classic Agent, Java support is configured automatically when you use Enable
Extensions in the Basic Workflow bar. When you are using the Open Agent, Java support is configured
automatically when you use Configure Applications in the Basic Workflow bar. We recommend that you
use the basic workflow bar to configure your application or applet, but it is also possible to manually
configure Java support.

If you incorrectly alter files that are part of the JVM extension, such as the accessibility.properties
file, in the Java\lib folder, or any of the files in the jre\lib\ext directory, such as
SilkTest_Java3.jar, unpredictable behavior may occur. There are two methods for configuring Silk
Test Classic Java Support:

• Manually configuring Silk Test Classic Java support.
• Configuring Standalone Java Applications and Java Applets.

Manually Configuring Silk Test Classic Java Support

If you want to enable Java support manually, or if the Basic Workflow does not support your configuration,
perform the following tasks:

If you are using
the Classic
Agent

Click Options > Extensions to open the Extensions dialog box and enable Java
applet or application support by checking or un-checking the Java check box for your
application. The Java check box can be checked or un-checked for a specific
application or applet. If you check or un-check this check box for one extension, it is
checked or un-checked for all.

If you are using
the Open Agent

Click Options > Application Configurations to open the Edit Application
Configuration and add a standard test configuration for your Java application.

258 | Testing in Your Environment with the Open Agent

Configuring Standalone Java Applications and Java Applets

In order for Silk Test Classic to recognize Java controls, you may need to change the CLASSPATH
environment variable. For JVM/JRE 1.3 or later, you must also copy the applicable SilkTest.jar file to
the lib\ext folder of your JVM/JRE. The SilkTest.jar file is located in the <SilkTest Install
Directory>\JavaEx directory.

1. If you are using JVM/JRE 1.3 or later, use SilkTest_Java3.jar.

For information about new features, supported platforms and versions, known issues, and work-
arounds, refer to the Release Notes.

2. For Java 1.3 or later, you should not set a specific classpath variable – instead, use the default
CLASSPATH=.;. Copy the SilkTest_Java3.jar file to the lib\ext folder of your JVM/JRE, and
remove any previous Silk Test Classic JAR files.

3. In the Silk Test Classic folder, rename the file access3.prop to accessibility.properties and
copy it to the Java…\lib folder.

4. Finally, qapjconn.dll and qapjarex.dll are new DLL files that must be installed in the Windows
\System32 directory.

The Silk Test Classic installer places these files in the Windows\System32 folder, and also places
copies of these files in the SilkTest\Extend folder. If the default directory for your library files is in a
location other than Windows\System32, you must also copy qapjconn.dll and qapjarex.dll to
the alternate location.

Note:

• The Java recorder does not support applets for embedded Internet Explorer browsers(AOL).
• It is not possible, using normal configuration methods, to gain recognition of Java applications that

use .ini files to set the environment. However, if your application sets the Java library path using
the JVM launcher directive Djava.library.path=< path >, you can obtain full recognition by
copying qapjarex.dll and qapjconn.dll from the System32 directory into the location
pointed to by the JVM launcher directive.

Java Security Privileges Required by Silk Test Classic
Before reviewing your security privileges, make sure that you have configured Silk Test Classic Java
support.

Required security privileges

In order to load the Silk Test Classic Java support files, Silk Test Classic must have the appropriate Java
security privileges. At a minimum, Silk Test Classic requires the following abilities:

• Create a new thread.
• Access members of classes loaded by your application.
• Create, read from, and write to file on a local drive.
• Access, connect, listen and send information through sockets.
• Access AWT event queue.
• Access system properties.

For standalone applications, the security policy is set in the java.security file which is located in
JRE/lib/security. By default this file contains the following line:

Policy.provider = sun.security.provider.PolicyFile

Testing in Your Environment with the Open Agent | 259

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

which means that the standard policy file should be used. The standard policy file, java.policy, is
located in the same folder, JRE/lib/security. It contains the following code that gives all necessary
permission to any file located in lib\ext directory:

// Standard extensions get all permissions by default
grant codeBase "file:${java.home}/lib/ext/*"{permission
java.security.AllPermission;};

Silk Test Classic has the necessary privileges, if the SilkTest_Java3.jar file is in this directory and the
JVM runs with the default set of security permissions.

If you have changed the Java security policy

The system administrator can change security policy by starting the JVM with the following option:

java _Djava.security.policy=Myown.policy MyApp

In this case the custom policy file Myown.policy should contain the following lines that grant all
permission to classes from the lib\ext directory:

grant codeBase "file:${java.home}/lib/ext/*"{permission
java.security.AllPermission;};

The default java.policy may also be changed implicitly, for example, when the application uses an RMI
server with the custom RMISecurityManager and the client security policy. In cases like these, the client
security policy should grant all required permissions to Silk Test Classic by including the code listed above.

In some cases, setting these permissions may not provide Silk Test Classic with the necessary security
privileges. The cause of the problem may be that permissions are frame specific. So if Silk Test Classic
runs in the context of frames (thread) in which it does not have the necessary permissions, it may fail. In
cases like this in which the client does not trust code running in the context of the AWT event thread, you
need to set the parameter ThreadSafe=False in the javaex.ini in the <Silk Test
installation>/extend directory. This prevents the Silk Test Classic Java code from running in the
context of the AWT event thread, preserving permissions granted to Silk Test Classic, but could make the
GUI less responsive.

Testing Java Applications and Applets
Silk Test Classic supports testing Java applications that use the Sun JDK. By default, Silk Test Classic uses
the Sun JDK with the Classic Agent.

Preparing for Testing Stand-Alone Java Applications and Applets
To prepare for testing stand-alone Java applications using Silk Test Classic:

1. In the Basic Workflow bar:

• If you are using the Classic Agent, enable extensions for Java support for application and applet
testing.

• If you are using the Open Agent, configure your Java application.

2. If you do not plan to test applets during the session, disable browser support.

3. Identify the custom controls in your Java application.

4. If you are testing Java applications with the Classic Agent, enable the recovery system.

5. Record classes for any custom controls you want to test in a new class include file or in your test frame
file.

If Silk Test Classic does not recognize some of your custom objects, see Recording Classes for Ignored
Java Objects.

6. If you are testing standalone Java applications with the Classic Agent, record window declarations for
your Java application, including declarations for any new classes you defined.

260 | Testing in Your Environment with the Open Agent

Indexed Values in Test Scripts
4Test methods use a 1-based indexing scheme, where the first indexed value is stored in position 1. Native
Java methods use a 0-based indexing scheme, where the first indexed value is stored in position 0. This
incompatibility can create challenges in coding test scripts that access indexed values using both native
methods and 4Test methods.

When to Use 4Test Versus Native Java Controls
Silk Test Classic provides a predefined set of Java classes, including Abstract Windowing Toolkit (AWT)
controls, Java Foundation Class (JFC) controls, and Symantec Visual Café controls. To test these controls,
you can use their inherited 4Test methods. Inherited methods are the 4Test methods associated with the
class from which the control is derived.

For custom Java controls, we provide access to native Java methods, as defined in JDK 1.1.2 or later. You
can also access native methods for predefined Java classes.

When both 4Test methods and native methods are available for all controls you want to test, we
recommend using 4Test methods in your test scripts. 4Test provides a richer, more efficient set of methods
that more closely mirror user interaction with the GUI elements of an application. For the
JavaAwtPushButton, for example, use the 4Test methods associated with the PushButton class.

When you must use native methods for controls that are not supported in 4Test, refer to the Java API
documentation to gain a full understanding of how the native method works. For example, 4Test methods
and native Java methods use incompatible array indexing schemes so you must use caution when
accessing indexed values.

Note: We recommend not to mix 4Test and native methods because of incompatibilities between Java
and 4Test.

Predefined Class Definition File for Java
The file javaex.inc includes 4Test class definitions for the following controls:

• Abstract Windowing Toolkit (AWT) controls
• Java Foundation Class (JFC) library controls
• Symantec Visual Café Itools controls
• Java-equivalent window controls

We provide these class definitions to help you quickly get started with testing your Java applications. You
can record additional classes if you determine that additional controls are necessary to test your
application.

The file javaex.inc is installed in the Extend subdirectory under the directory where you installed Silk
Test Classic.

Troubleshooting Java Applications
This section provides solutions for common reasons that might lead to a failure of the test of your
standalone Java application or applet. If these do not solve the specific problem that you are having, you
can enable your extension manually.

The test of your standalone Java application or applet may fail if the application or applet was not ready to
test, the Java plug-in was not enabled properly, if there is a Java recognition issue, or if the Java applet
does not contain any Java controls within the JavaMainWin.

What Can I Do If the Silk Test Java File Is Not Included in a Plug-In?

If the SilkTest_Java3.jar file is not included in the lib/ext directory of the plug-in that you are
using:

Testing in Your Environment with the Open Agent | 261

1. Locate the lib/ext directory of the plug-in that you are using and check if the SilkTest_Java3.jar
file is included in this folder.

2. If the SilkTest_Java3.jar file is not included in the folder, copy the file from the javaex folder of
the Silk Test installation directory into thelib\ext directory of the plug-in.

What Can I Do If Java Controls In an Applet Are Not Recognized?

Silk Test Classic cannot recognize any Java children within an applet if your applet contains only custom
classes, which are Java classes that are not recognized by default, for example a frame containing only an
image. For information about mapping custom classes to standard classes, see Mapping Custom Classes
to Standard Classes. Additionally, you have to set the Java security privileges that are required by Silk Test
Classic.

Supported Java Classes
We provide 4Test definitions in our class definition file for the following Java classes:

• Abstract Windowing Toolkit (AWT) classes
• Java Foundation Class (JFC) library classes
• Symantec Visual Café Itools classes (only for the Classic Agent)
• Java-equivalent window classes

Each of these predefined classes inherits 4Test properties and methods, which are referenced in the class
descriptions in this Help. Not all inherited methods have been implemented for Java controls.

You can also access the native methods of the supported classes by removing the 4Test definition and re-
recording the class.

The only assumption that the Java extension makes about the implementation of the Java classes in an
AUT is that the classes do not violate the standard Swing or AWT models. The Java extension should be
able to recognize and manipulate a Java class in an application, as long as the class extends one of the
components that the Java extension supports, and any customization does not violate the API of that
component. For example, changing a method from public to private violates the API of the component.

Predefined Java-Equivalent Window Classes

The following 4Test classes are provided for testing Java-equivalent window controls:

Classic Agent Open Agent

JavaApplet AppletContainer

JavaDialogBox AWTDialog

JDialog

JavaMainWin AWTFrame

JFrame

Predefined AWT Classes

The following 4Test classes are provided for testing Abstract Windowing Toolkit (AWT) controls:

Classic Agent Open Agent

JavaAwtCheckBox AWTCheckBox

JavaAwtListBox AWTList

JavaAwtPopupList AWTChoice

JavaAwtPopupMenu No corresponding class.

262 | Testing in Your Environment with the Open Agent

Classic Agent Open Agent

JavaAwtPushButton AWTPushButton

JavaAwtRadioButton AWTRadioButton

JavaAwtRadioList No corresponding class.

JavaAwtScrollBar AWTScrollBar

JavaAwtStaticText AWTLabel

JavaAwtTextField AWTTextField

AWTTextArea

Predefined JFC Classes

The following 4Test classes are provided for testing Java Foundation Class (JFC) controls:

Classic Agent Open Agent

JavaJFCCheckBox JCheckBox

JavaJFCCheckBoxMenuItem JCheckBoxMenuItem

JavaJFCChildWin No corresponding class.

JavaJFCComboBox JComboBox

JavaJFCImage No corresponding class.

JavaJFCListBox JList

JavaJFCMenu JMenu

JavaJFCMenuItem JMenuItem

JavaJFCPageList JTabbedPane

JavaJFCPopupList JList

JavaJFCPopupMenu JPopupMenu

JavaJFCProgressBar JProgressBar

JavaJFCPushButton JButton

JavaJFCRadioButton JRadioButton

JavaJFCRadioButtonMenuItem JRadioButtonMenuItem

JavaJFCRadioList No corresponding class.

JavaJFCScale JSlider

JavaJFCScrollBar JScrollBar

JHorizontalScrollBar

JVerticalScrollBar

JavaJFCSeparator JComponent

JavaJFCStaticText JLabel

JavaJFCTable JTable

JavaJFCTextField JTextField

JTextArea

Testing in Your Environment with the Open Agent | 263

Classic Agent Open Agent

JavaJFCToggleButton JToggleButton

JavaJFCToolBar JToolBar

JavaJFCTreeView JTree

JavaJFCUpDown JSpinner

Invoking Java Applications and Applets
This section describes how you can invoke Java applications and applets.

Invoking Java Applets

To invoke the Java applet from within a supported browser, perform the following tasks:

• If you are using the Classic Agent, configure Silk Test Classic for Java support and enable the Java
extension.

• If you are using the Open Agent, configure the application.

Invoking JRE Applications

Once you set CLASSPATH for testing standalone Java applications, you are ready to invoke your
application using the Java Runtime Environment (JRE).

Note: The JRE ignores the CLASSPATH environment variable. As a result, you must invoke JRE
applications with command line arguments to pick up the value of CLASSPATH.

The following table describes the commands you can use:

Command Description

-cp Searches first through directories and files specified, then
through standard JRE directories.

-classpath Ignores the value of your CLASSPATH environment
variable. You must specify a complete search path on the
command line.

Does not search the standard JRE directories.

To invoke JRE applications using -cp

Enter the following command:

jre -cp %CLASSPATH%;<other directories, if any> <name of application>

Example

Assuming your CLASSPATH is set to the complete search path including the Java
support path, you would launch the application MyJREapp by entering:

jre -cp %CLASSPATH% MyJREapp

Invoking JRE Applications Using -classpath

To invoke JRE applications using –classpath, enter the following command:

jre -classpath <Java support path>;<other directories, if any>

Example

Assuming you installed Silk Test Classic in the default directory c:\Program Files
\Silk\SilkTest, you are using JRE 1.1.5 as your Java Virtual Machine (JVM), and

264 | Testing in Your Environment with the Open Agent

your CLASSPATH contains only the Java support path, you would launch the application
MyJREapp by entering:

Java -classpath c:\Progra~1\Silk\SilkTest\JavaEx
\SilkTest_Java3.jar MyJREapp

invokeMethods Example: Draw a Line in a Text Field

To draw a line in a multiline text field, you need to access a graphics object inside the text field by calling
the following methods in Java:

main()
{
 TextField multiLine = ...; // get reference to multiline text field
 Graphics graphObj = multiLine.getGraphics();
 graphObj.drawLine(10, 10, 20, 20);
}

However, you cannot call the above sequence of methods from 4Test because Graphics is not 4Test-
compatible. Instead, you can insert the invokeMethods prototype in the TextField class declaration, then
add invokeMethods by hand to your test script to draw a line in the Graphics object nested inside the
multiline text field, as shown in this 4Test function:

DrawLineInTextField()
MyDialog.Invoke() // Invoke Java dialog that contains the text field
MyDialog.TheTextField.invokeMethods ({"getGraphics", "drawLine"}, {{}, {10,
10, 20, 20}})

In this code, the following methods are called in Java:

• getGraphics is invoked on the multiline text field TheTextField with an empty argument list, returning a
Graphics object.

• drawLine is invoked on the Graphics object, to draw a line starting from (x,y) coordinates (10,10) and
continuing to (x,y) coordinates (20,20).

Accessing Java Objects and Methods
This section describes how you can access Java objects and methods.

Accessing Nested Java Objects

Sometimes you cannot retrieve 4Test-compatible information about a Java control with a single call to a
4Test method; instead, you need to call several nested methods, each returning an intermediate object to
be passed to the next method. If any of these methods returns intermediate results that are not 4Test-
compatible, you will not be able to perform these nested calls from 4Test.

You can use the following methods to access nested Java objects:

Method Agent What it does

InvokeJava Classic Agent This method allows you to invoke a Java class from 4Test
for manipulating a nested Java object.

invokeMethods Classic Agent

Open Agent

Allows you to perform nested calls inside Java, even if
intermediate results are not 4Test-compatible.You can call
invokeMethods for any Java object as long as you add
the invokeMethods prototype inside the object's class
declaration.

Calling Nested Methods

Sometimes you cannot retrieve 4Test-compatible information about a Java control with a single call to a
4Test method; instead, you need to call several nested methods, each returning an intermediate object to

Testing in Your Environment with the Open Agent | 265

be passed to the next method. If any of these methods returns intermediate results that are not 4Test-
compatible, you will not be able to perform these nested calls from 4Test.

You can use the following methods to call nested methods:

Method Agent What it does

InvokeJava Classic Agent This method allows you to invoke a Java class from 4Test
for manipulating a nested Java object.

invokeMethods Classic Agent

Open Agent

Allows you to perform nested calls inside Java, even if
intermediate results are not 4Test-compatible.You can call
invokeMethods for any Java object as long as you add
the invokeMethods prototype inside the object's class
declaration.

Example: How to add an invokeMethods prototype to your script

This example shows how to add an invokeMethods prototype inside the declaration
for a JavaAwtListBox in javaex.inc.

winclass JavaAwtListBox : ListBox
 tag "[JavaAwtListBox]"

 setting MultiTags = {TAG_CAPTION}

 obj AnyType invokeMethods(list of Strings stra, List of List
of Anytype anyaa)

Testing Java Scroll Panes

A scroll pane in Java is a container that holds a single child component. If the scroll pane is smaller than
the child component, you can scroll vertically and horizontally to see all parts of that component.

The state of the scroll bars in a scroll pane is managed by internal objects that implement the Adjustable
interface. To manipulate the scroll bars, you must first get an Adjustable object, and then use
Adjustable and scroll bar methods to move them.

To test scroll bars in a scroll pane, use invokeMethods, a method that allows you to perform nested calls
inside Java to access Adjustable objects.

Frequently Asked Questions About Testing Java
Applications
This section provides answers to frequently asked questions about classpath and testing Java applications
and applets.

Why Do I See so Many Java CustomWin Objects?
Objects that do not belong to any of our predefined Java classes are custom controls, which are identified
as CustomWin objects by Silk Test Classic. Most Java applications and applets use many custom controls
to fine tune functionality and the user interface.

To manipulate a custom Java object for testing, you do not need to write your own extensions. Instead, you
can use the object's own native methods and properties. Our Java support lets you access native methods
and properties, by recording classes for custom controls.

266 | Testing in Your Environment with the Open Agent

Why Do I Need to Disable the Classpath if I have Java Installed but Am
not Testing It?
If you are not testing Java but do have Java installed, we recommend that you disable the classpath before
using Silk Test Classic. If you do not disable the classpath, Silk Test Classic checks for a Java classpath
every time you run a test plan. To disable the classpath during the Silk Test Classic installation, select
None on the Java dialog box. To verify that you have disabled the classpath, verify that the path to the Java
extension is disabled in the Java variable, which is stored in the system variables.

For example, to verify that the path to the Java extension is disabled on Microsoft Windows 7, perform the
following steps:

1. Click Start > Control Panel.
2. In the Control Panel, click System and Security.
3. In the System and Security pane, click System.
4. In the System pane, click Advanced System Settings.
5. In the System Properties dialog box, click Environment Variables.
6. In the System variables area of the Environment Variables dialog box, select the Java variable.
7. Disable the path to the Java extension, by placing an underscore at the beginning of the path.

How Do I Decide Whether to Use 4Test Methods or Native Methods?
For information on when to use 4Test methods or native methods, see When to Use 4Test Versus Native
Java Controls.

How Can I Record AWT Menus?
You cannot use the JavaAwtPopupMenu class to record AWT menus. It is available for playback only. You
must manually script any interaction with AWT menus.

Can I Use the Java Plug-In to Test Applets Outside My Browsers Native
JVM?
For testing purposes, you can use the Java plug-in to run applets outside the native Java virtual machine of
your browser.

Can I Test JavaScript Objects?
With the Classic Agent, you can use InvokeJava to access methods for testing JavaScript objects, if
these objects reside on a Web page that contains an applet.

With the Open Agent, you can use ExecuteJavaScript to test anything that uses JavaScript.

Can I Invoke Java Code from 4Test Scripts?
• If you are using the Classic Agent, you can invoke Java code from 4Test scripts using the method

InvokeJava.
• You can invoke Java code from 4Test scripts using the method invokeMethods, for both the Classic

Agent and the Open Agent.

Testing in Your Environment with the Open Agent | 267

Testing Java SWT and Eclipse Applications with the Open
Agent

Silk Test Classic provides built-in support using the Basic Workflow for testing applications that use widgets
from the Standard Widget Toolkit (SWT) controls. When you configure a Java SWT/RCP application, Silk
Test Classic automatically provides support for testing standard Java SWT/RCP controls.

Silk Test Classic supports:

• Testing Java SWT controls embedded in Java AWT/Swing applications as well as Java AWT/Swing
controls embedded in Java SWT applications.

• Standalone SWT applications that use the EXT or CLASSPATH configuration.
• Testing Java SWT applications that use the IBM JDK or the Sun JDK.
• Any Eclipse-based application that uses SWT widgets for rendering. Silk Test Classic supports both

Eclipse IDE-based applications and RCP-based applications.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Java SWT applications support dynamic object recognition. When you record a test case with the Open
Agent, Silk Test Classic creates locator keywords in an INC file to create scripts that use dynamic object
recognition and window declarations.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition.

For a complete list of the widgets available for SWT testing, see Supported SWT Widgets for the Open
Agent.

For a complete list of the record and replay controls available for Java SWT testing, view the SWT.inc and
JavaSWT.inc file. To access the JavaSWT.inc file that is used with the Open Agent, navigate to the
<SilkTest directory>\extend\JavaSWT directory. By default, this file is located in C:\Program
Files\Silk\SilkTest\extend\JavaSWT\JavaSWT.inc. To access the SWT.inc file, navigate to
the <SilkTest directory>\extend\ directory. By default, this file is located in C:\Program Files
\Silk\SilkTest\extend\SWT.inc.

Suppressing Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.

For example, you might want to ignore container classes to streamline your test cases.

To suppress specific controls:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

268 | Testing in Your Environment with the Open Agent

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

3. Type the name of the class that you want to ignore during recording and playback into the text box.

If the text box already contains classes, add the new classes to the end of the list. Separate the classes
with a comma. For example, to ignore both the AOL Toolbar and the _AOL_Toolbar class, type AOL
Toolbar, _AOL_Toolbar into the text box.

The OPT_TRANSPARENT_CLASSES option is set to true for these classes.

4. Click OK. The OPT_TRANSPARENT_CLASSES option is set to true for these classes, which means
the classes are added to the list of the classes that are ignored during recording and playback.

Custom Attributes
This functionality is supported only if you are using the Open Agent.

Add custom attributes to a test application to make a test more stable. You can use custom attributes with
the following technologies:

• Java SWT
• Swing
• WPF
• xBrowser
• Windows Forms
• SAP

For example, in Java SWT, the developer implementing the GUI can define an attribute (for example,
silkTestAutomationId) for a widget that uniquely identifies the widget in the application. A tester using
Silk Test Classic can then add that attribute to the list of custom attributes (in this case,
silkTestAutomationId), and can identify controls by that unique ID. Using a custom attribute is more
reliable than other attributes like caption or index, since a caption will change when you translate the
application into another language, and the index will change whenever another widget is added before the
one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different fields, both fields will return when you call the loginName attribute.

First, enable custom attributes for your application and then create the test.

Recording tests that use dynamic object recognition

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition. For example, If you create a button in the application that you want to test using the
following code:

Button myButton = Button(parent, SWT.NONE);
myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test case, you can use the following query:

Window button = Desktop.Find(".//
PushButton[@SilkTestAutomationId='myButton']")

Locator Attributes for Java SWT Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for Java SWT controls:

• caption

Testing in Your Environment with the Open Agent | 269

• all custom object definition attributes

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
This functionality is supported only if you are using the Open Agent.

You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList() method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList() method.

Note: Typically, most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods of the SWT, AWT, or Swing widget.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

All built-in Silk
Test Classic
types.

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and
other types (such as Point and Rect).

Enum types. Enum parameters must be passed as string. The string must match the name of an
enum value. For example, if the method expects a parameter of the enum type,
java.sql.ClientInfoStatus you can use the string values of REASON_UNKNOWN,
REASON_UNKNOWN_PROPERTY, REASON_VALUE_INVALID, or
REASON_VALUE_TRUNCATED.

Example

A custom calculator control has a Reset method and an Add method, which performs an addition of two
numbers. You can use the following code to call the methods directly from your tests:

customControl.Invoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

Java SWT Classes for the Open Agent

270 | Testing in Your Environment with the Open Agent

Testing Mobile Web Applications
Silk Test Classic enables you to automatically test your mobile applications (apps). Automated testing with
Silk Test Classic provides the following benefits:

• It can significantly reduce the testing time of your mobile applications.
• You can create your tests once and then test your mobile applications on a large number of different

devices and platforms.
• You can ensure the reliability and performance that is required for enterprise mobile applications.
• It can increase the efficiency of QA team members and mobile application developers.
• Manual testing might not be efficient enough for an agile-focused development environment, given the

large number of mobile devices and platforms on which a mobile application needs to function.

Note: Silk Test Classic provides support for testing mobile Web apps and hybrid mobile apps on both
Android and iOS devices.

For information on the supported operating system versions and the supported browsers for testing mobile
applications, refer to the Release Notes.

Testing Mobile Web Applications on Android
Silk Test Classic enables you to test a mobile application on an Android device or an Android emulator.

Testing Mobile Web Applications on a Physical Android device
To test a mobile application on a physical Android device, perform the following tasks:

1. Connect the device to the machine on which Silk Test Classic is installed.

2. If you are testing this Android device for the first time on this machine, install the appropriate Android
USB Driver on the machine.

For additional information, see Installing a USB Driver.

3. Enable USB-debugging on the Android device.

For additional information, see Enabling USB-Debugging.

4. Ensure that the Open Agent is running on the machine to which the Android device is connected.

When testing a mobile Web application, the Open Agent is automatically used as a proxy for the
Android device.

Note: A network connection needs to be active on the Android device.

5. If the Silk Test Web Tunneler app is not installed on the Android device, Silk Test Classic installs the
app to enable the USB connection between the Open Agent and the device.

6. To test a secure mobile Web application over HTTPS, Silk Test Classic copies a root certificate to the
device or emulator during hooking. If the certificate is not installed, the Silk Test Web Tunneler app
displays a message box, stating that the root certificate is not installed. Click on the message box to
install the certificate.

Note: If the certificate is not installed automatically during hooking, see Troubleshooting when
Testing Mobile Web Applications or Manually Adding a Root Certificate to Test a Secure Web
Application.

7. Close all browsers on the device or emulator, to enable Silk Test Classic to check whether all required
certificates for the web application are properly installed and used.

8. Create a Silk Test Classic project for your mobile application.

9. Create a test for your mobile application.

Testing in Your Environment with the Open Agent | 271

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

10.Use the Mobile Recording feature to record the test against the mobile application.

11.When the Mobile Recording feature starts, the Select Application dialog box opens. Select the
mobile browser that you want to use and start recording.

12.If the selected browser cannot connect to the Web, check if the Silk Test Web Tunneler app displays a
message stating that the proxy settings are not correct. To manually change the proxy settings:

a) Locate the proxy settings of the wireless connection that you are using for the Android device. For
additional information on locating the proxy settings, refer to the documentation of your Android
device.

b) Type localhost into the Proxy or Proxy hostname field.
c) Type 9999 into the Port field.
d) Click OK.

13.Replay the test.

An Android device or emulator must not be screen-locked during testing. To keep the device awake
while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

14.Analyze the test results.

Testing Mobile Web Applications on an Android Emulator
To test a mobile Web application on an Android emulator, perform the following tasks:

1. Configure the emulator settings for Silk Test Classic.

For additional information, see Configuring the Android Emulator for Silk Test Classic.

2. Start the Android emulator.

3. To test a mobile application, set the Open Agent as a proxy for the Android emulator.

Note: Ensure that the Open Agent is running on the machine on which the emulator is installed.

For additional information, see Manually Setting the Open Agent as a Proxy for an Android Device or
Emulator.

4. To test a secure mobile Web application over HTTPS, install the root certificate of the Web application
on the emulator.

For additional information, see Installing the Root Certificate to Test a Secure Web Application.

Note: Install the root certificate directly after setting the Open Agent as the proxy, because an
issue with the Android emulator will not allow you to install a root certificate when you have
otherwise used the Android emulator.

5. Close all browsers on the device or emulator, to enable Silk Test Classic to check whether all required
certificates for the web application are properly installed and used.

6. Create a Silk Test Classic project for your mobile application.

7. Create a test for your mobile application.

8. Use the Mobile Recording feature to record the test against the mobile application.

9. Replay the test.

An Android device or emulator must not be screen-locked during testing. To keep the device awake
while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

10.Analyze the test results.

Installing a USB Driver
To connect an Android device for the first time to your local machine to test your mobile applications, you
need to install the appropriate USB driver.

272 | Testing in Your Environment with the Open Agent

The device manufacturer might provide an EXE with all the necessary drivers for the device. In this case
you can just install the EXE on your local machine. If the manufacturer does not provide such an EXE, you
can install a single USB driver for the device on the machine.

To install the Android USB driver on Microsoft Windows 7:

1. Find the appropriate driver for your device.

For information on finding and installing a USB driver, see http://developer.android.com/tools/extras/
oem-usb.html.

2. Connect your Android device to a USB port on your local machine.

3. From your desktop or Windows Explorer, right-click Computer and select Manage.

4. In the left pane, select Device Manager.

5. In the right pane, locate and expand Other device.

6. Right-click the device name, for example Nexus S, and select Update Driver Software. The Hardware
Update Wizard opens.

7. Select Browse my computer for driver software and click Next.

8. Click Browse and locate the USB driver folder.

By default, the Google USB Driver is located in <sdk>\extras\google\usb_driver\.

9. Click Next to install the driver.

For information on upgrading an existing USB driver or installing a USB driver on another operating
system, see http://developer.android.com/tools/extras/oem-usb.html.

Enabling USB-Debugging
To communicate with an Android device over the Android Debug Bridge (adb), enable USB debugging on
the device.

1. On the Android device, open the settings.

2. Tap Developer Settings.

The developer settings are hidden by default. If the developer settings are not included in the settings
menu of the device:

a) Depending on whether the device is a phone or a pad, scroll down and tap About phone or About
Pad.

b) Scroll down again and tap Build Number seven times.

3. In the Developer settings window, check USB-Debugging.

4. Set the USB mode of the device to Media device (MTP), which is the default setting.

For additional information, refer to the documentation of the device.

Manually Setting the Open Agent as a Proxy for an Android Emulator
To set the Open Agent as a proxy for your Android emulator, install the Open Agent on the machine from
which you want to test the emulator and enable USB debugging on the emulator.

1. Start the Android emulator.

2. On the Android emulator, open the settings.

3. In the WIRELESS & MORE section, click More.

4. Select Mobile Networks > Access Point Names.

5. Select an existing access point to edit it or create a new access point.

6. Type the IP-address of the machine on which the Open Agent is installed into the Proxy or Proxy
hostname field.

7. Click Port.

Testing in Your Environment with the Open Agent | 273

http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/extras/oem-usb.html

8. Type the port for the Open Agent into the Port field. By default, the port number is dynamic, so first you
need to set a permanent port number. To change the port number, use the configuration setting
ext.http.proxy.port in the file AppData\Roaming\Silk\SilkTest\conf
\silkproxy.properties.sample to set a permanent port number. For example, to set the port
number to 9999, set ext.http.proxy.port=9999. Then type the port number into the Port field and
rename the file silkproxy.properties.sample to silkproxy.properties.

9. Click OK.

The Open Agent is now set as a proxy for your Android device or Android emulator. For additional
information on configuring a proxy for your Android device or Android emulator, refer to the documentation
of the device or the emulator.

Note: As long as the Open Agent is running, you can use the Internet connection on the mobile
device that uses the Open Agent as a proxy. If the Open Agent is not running, the connection will no
longer work, and you have to use another connection to connect to the Internet from your mobile
device. If you remove the wireless network connection while the device or emulator is still running, the
connection to the Open Agent persists until you shut down the device or emulator.

Recommended Settings for Android Devices
To optimize testing with Silk Test Classic, configure the following settings on the Android device that you
want to test:

• Enable USB-debugging on the Android device. For additional information, see Enabling USB-Debugging
• Set a pattern or a PIN to lock the screen of the Android device.
• An Android device must be connected as a media device to the machine on which the Open Agent is

running. The USB mode of the Android device must be set to Media device (MTP).
• An Android device or emulator must not be screen-locked during testing. To keep the device awake

while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

• To persist your changes for the Android emulator, for example the proxy settings, uncheck the Wipe
user data check box in the Launch Options dialog box of the emulator.

Configuring the Android Emulator for Silk Test Classic
When you want to test mobile applications on an Android emulator with Silk Test Classic, you have to
configure the emulator for testing:

1. Install the Android SDK.

For information on how to install and configure the Android SDK, see Get the Android SDK.

2. From Eclipse, click Window > Android SDK Manager to start the Android SDK Manager.

3. For all Android versions that you want to test with the emulator, expand the version node and check the
check box next to Intel x86 Atom System Image.

4. Click Install to install the selected packages.

5. Expand the Extras node and check the check box next to Intel x86 Emulator Accelerator (HAXM).

6. Click Install to install the selected packages.

7. Review the Intel Corporation license agreement. If you accept the terms, select Accept and click
Install. The Android SDK Manager will download the installer to the extras directory, under the main
SDK directory. Even though the Android SDK Manager says Installed it actually means that the
Intel HAXM executable was downloaded. You will still need to run the installer from the extras directory
to get it installed.

8. Extract the installer inside the extras directory and follow the installation instructions for your platform.

9. In Eclipse, click Window > Android Virtual Device Manager to add a new Android Virtual Device
(AVD).

274 | Testing in Your Environment with the Open Agent

http://developer.android.com/sdk/index.html

10.Select the Android Virtual Devices tab.

11.Click New.

12.Configure the virtual device according to your requirements.

13.Set the RAM size used by the emulator to an amount that is manageable by your machine.

For example, set the RAM size for the emulator to 512.

14.Set a size for the SD card.

Note: If you do not set a size for the SD card, you need to set the value of the internal storage to
50 MB or more, otherwise you cannot copy the certificate file to the emulator.

15.To enhance the speed of the transactions on the emulator, select the Intel Atom (x86) CPU in the
CPU/ABI field.

16.Optional: To enhance the speed of the transactions on the emulator, you can also check the Use Host
GPU check box in the emulation options.

Note: By setting Use Host GPU, you can no longer capture screenshots and would see a black
image in the Mobile Recording dialog box. However, you could still highlight controls within the
Mobile Recording dialog box. For additional information, see https://code.google.com/p/android/
issues/detail?id=58724.

17.Click OK.

18.Optional: To persist your changes for the Android emulator, for example the proxy settings, uncheck the
Wipe user data check box in the Launch Options dialog box of the emulator.

Testing in Your Environment with the Open Agent | 275

https://code.google.com/p/android/issues/detail?id=58724
https://code.google.com/p/android/issues/detail?id=58724

Testing Mobile Web Applications on iOS
Silk Test Classic enables you to test a mobile application on an iOS device.

Testing Mobile Web Applications on a Physical iOS Device
To test a mobile application (app) on a physical iOS device, perform the following tasks:

1. If you are testing a hybrid app, make the app accessible. For additional information, see Making Your
iOS App Accessible.

2. If you are testing a mobile application on an iOS device for the first time on this machine, install iTunes
on the machine.

iTunes is required because it contains the device drivers that are needed to test on an iOS device.

3. Install the Silk Test application on the iOS device. For additional information, see Installing the Silk Test
Application on an iOS Device.

4. Set localhost:9999 as a proxy for your iOS device.

For additional information on setting the proxy for an iOS device, see Setting the Proxy for an iOS
Device.

5. Connect the device to the machine on which Silk Test Classic is installed.

6. Run a simple test to ensure that the Open Agent is running on the machine to which the iOS device is
connected.

7. Open the Silk Test application on the iOS device.

8. To test a secure mobile Web application over HTTPS, install a root certificate for the mobile Web
application by using the Silk Test application.

9. Close all browsers on the device or emulator, to enable Silk Test Classic to check whether all required
certificates for the web application are properly installed and used.

10.Create a Silk Test Classic project for your mobile application.

11.Create a test for your mobile application.

12.Use the Mobile Recording feature to record the test against the mobile application.

13.Replay the test.

The iOS device should not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock. In iOS 7, select Settings > Passcode.

14.Analyze the test results.

Installing the Silk Test Application on an iOS Device
Install the Silk Test application on an iOS device to enable the USB connection between the Open Agent
and the iOS device.

Note: To test an iOS device with Silk Test, the UDID of the iOS device must be registered in the Apple
Developer Account of your company.

1. Download Xcode, for example from https://developer.apple.com/xcode/downloads/, and install it on a
Mac.

The Mac is only required to install the Silk Test application on an iOS device, and does not have to be
very fast. For example, a Mac Mini with minimal configuration would be sufficient.

2. Connect the iOS device to the Mac.

3. When a dialog box opens on the iOS device, click Trust. You can now use the device in combination
with Xcode. After you launch an App for the first time, a Provisioning Profile which matches the
developer profile of your company is installed on the device.

276 | Testing in Your Environment with the Open Agent

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Making_Application_Accessible/Making_Application_Accessible.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Making_Application_Accessible/Making_Application_Accessible.html
https://developer.apple.com/xcode/downloads/

4. Copy the archive SilkTestiOS.zip, which is located by default under C:\Program Files
(x86)\Silk\SilkTest\ng\iOS on the Windows machine on which the Open Agent is installed, to
the Mac and unpack the archive.

Note: To retrieve the password for unpacking the archive, log in to our SupportLine site and report
an incident with the subject iOS Password.

5. Click File > Open to import the project to Xcode or click the .xcodeproj file to open the project.

6. In Xcode, select your device as the target instead of the iOS Simulator, which is set as the target by
default.

7. In the project settings, select the developer program of your company.

8. Click on the arrow in the upper left corner or select Product > Run.

9. To automatically install the Silk Test application on additional iOS devices used in your company, see
Automatically Installing the Silk Test Application on an iOS Device.

10.The Silk Test application on the iOS device is started for the first time.

Note: As soon as the Silk Test application has been successfully started on the iOS device, you
can simply tap the icon of the application on the iOS device to start the application.

Automatically Installing the Silk Test Application on an iOS Device
Generate an IPA file and distribute it to enable users in your company to install the Silk Test application
automatically on iOS devices.

Note: To test an iOS device with Silk Test, the UDID of the iOS device must be registered in the Apple
Developer Account of your company.

1. Download Xcode, for example from https://developer.apple.com/xcode/downloads/, and install it on a
Mac.

The Mac is only required to install the Silk Test application on an iOS device, and does not have to be
very fast. For example, a Mac Mini with minimal configuration would be sufficient.

2. Connect the iOS device to the Mac.

3. When a dialog box opens on the iOS device, click Trust. You can now use the device in combination
with Xcode. After you launch an App for the first time, a Provisioning Profile which matches the
developer profile of your company is installed on the device.

4. In Xcode, compile the Silk Test application.

5. Click Products > Archive and generate the IPA file for the Silk Test application.

6. Copy the generated IPA file and a developer disk image for every iOS version that you want to test into
the distribution folder that you want to use.

a) The developer disk image is located by default in the Xcode installation folder under xCode/
Contents/Developer/Platforms/IPhoneOS.platform/DeviceSupport/
<iOS_version_number>/, where iOS_version_number is the iOS version of the device that you
want to test.

b) You need to copy two files for the developer disk image, DeveloperDiskImage.dmg and
DeveloperDiskImage.dmg.signature.

7. On every machine from which you want to test an iOS device, open the folder %APPDATA%\Silk
\SilkTest\Conf.

8. Rename the file iosApp.properties.sample to iosApp.properties.

9. Open the iosApp.properties file and change the file locations to the distribution folder to which you
have copied the IPA file and the developer disk image.

When you select an iOS device, with an iOS version for which you have copied a developer disk image,
from the Select Application dialog, the Silk Test application is installed on the iOS device.

Testing in Your Environment with the Open Agent | 277

http://supportline.microfocus.com/MF_incident_add.aspx
https://developer.apple.com/xcode/downloads/

Setting the Proxy for an iOS Device
To set the localhost as a proxy for your iOS device, install the Open Agent on the machine from which you
want to test the device.

1. On the iOS device, click Settings > WiFi.

2. Click on the information button (i) of the active wireless network.

3. In the Proxy section, select Manual.

4. Type localhost into the hostname field.

5. Type 9999 into the port field.

For additional information on configuring a proxy for your iOS device, refer to the documentation of the
device.

Note: As long as the Open Agent is running, you can use the Internet connection on the mobile
device. If the Open Agent is not running, the connection will no longer work, and you have to use
another connection to connect to the Internet from your mobile device. If you remove the wireless
network connection while the device is still running, the connection to the Open Agent persists until
you shut down the device.

Recommended Settings for iOS Devices
To optimize testing with Silk Test Classic, configure the following settings on the iOS device that you want
to test:

• Ensure that the iOS device is running with Xcode and in developer mode.
• To ensure that Apple Safari starts correctly, tap Settings > Safari and select Clear Cookies and Data.
• To make the testing reflect the actions an actual user would perform, disable AutoFill and remembering

passwords for Apple Safari. Tap Settings > Safari > Passwords & AutoFill and turn off the Names
and Passwords setting.

• The iOS device should not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock. In iOS 7, select Settings > Passcode.

Recording Mobile Applications
Note: Some low-level methods and classes are not supported for mobile Web applications. To be able
to correctly replay a test recorded against a mobile Web application, uncheck the Record native user
input option in the Browser options of Silk Test Classic before recording against the mobile Web
application. For additional information, see Limitations for Testing Mobile Web Applications.

Once you have established the connection between Silk Test Classic and a mobile device or an emulator,
you can record the actions that are performed on a mobile browser on the device to create tests. To record
mobile Web applications, Silk Test Classic uses the Mobile Recording feature, which provides additional
functionality compared to the recorder that is used for standard or Web applications.

The Mobile Recording feature displays the screen of the mobile device or Android emulator which you are
testing.

Note: If no mobile device is connected to the machine and no emulator is started, the Mobile
Recording window displays an error message. Connect your mobile device to the machine or start
the emulator and then click Refresh in the Mobile Recording window.

When you perform an action in the Mobile Recording feature, the same action is performed on the mobile
device.

When you interact with a control on the screen, the Mobile Recording feature preselects the default
action. A list of all the available actions against the control displays, and you can select the action that you
want to perform or simply accept the preselected action by clicking OK. You can type values for the

278 | Testing in Your Environment with the Open Agent

parameters of the selected action into the parameter fields. Silk Test Classic automatically validates the
parameters.

When you cannot directly interact with a control, for example because other controls are hiding the control,
you can click Toggle Object Hierarchy in the Mobile Recording feature to select the control from the
control hierarchy tree.

When you pause the recording, you can perform actions in the screen which are not recorded to bring the
device into a state from which you want to continue recording.

When you stop recording, a script is generated with your recorded actions, and you can proceed with
replaying the test.

Interacting with a Mobile Device
To interact with a mobile device and to perform an action like a swipe in the application under test:

1. In the Mobile Recording window, click Show Mobile Device Actions. All the actions that you can
perform against the mobile device are listed.

2. Select the action that you want to perform from the list.

3. To record a swipe on an Android device or emulator, move the mouse while clicking the left mouse
button.

4. Continue with the recording of your test.

Troubleshooting when Testing Mobile Web
Applications

Why does the Select Application dialog box not display my mobile browsers?

Silk Test Classic might not recognize a mobile device or emulator for one of the following reasons:

Reason Solution

The mobile device is not connected to the local machine. Connect the mobile device to the local machine.

The emulator is not running. Start the emulator.

The Android Debug Bridge (adb) does not recognize the
mobile device.

To check if the mobile device is recognized by adb:

1. Navigate to C:\Program Files (x86)\Silk
\SilkTest\ng\agent\plugins
\com.microfocus.silktest.adb_15.0.0.
6733\bin.

2. Hold Shift and right-click into the File Explorer
window.

3. Select Open command window here.

4. In the command window, type adb devices to get
a list of all attached devices.

5. If your device is not listed, check if USB-debugging is
enabled on the device.

The version of the operating system of the device is not
supported by Silk Test Classic.

For information on the supported mobile operating
system versions, refer to the Release Notes.

The USB driver for the device is not installed on the local
machine.

Install the USB driver for the device on the local machine.
For additional information, see Installing a USB Driver.

Testing in Your Environment with the Open Agent | 279

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Reason Solution

USB-debugging is not enabled on the device. Enable USB-debugging on the device. For additional
information, see Enabling USB-Debugging.

Why can my mobile device or emulator no longer connect to the Internet?

If you have configured a proxy for every network connection on your mobile device or emulator, and you are
currently not recording or replaying any tests, the mobile device or emulator cannot connect to the Internet.
For a physical mobile device you can check the connection status in the Silk Test Web Tunneler
application.

If the mobile device is connected and the Open Agent is running, and the mobile device still cannot
connect to the Internet, check if the proxy settings are correct.

To be able to connect to the Internet when the Open Agent is not running, you can temporarily disable the
proxy.

Why does Silk Test Classic search for a URL in Chrome for Android instead of navigating to the
URL?

Chrome for Android might in some cases interpret typing an URL into the address bar as a search. As a
workaround you can manually add a command to your script to navigate to the URL.

Why can I not record on an Android emulator with Android 4.3?

To record on an Android emulator with Android version 4.3, uncheck the Use Host GPU check box in the
emulator settings.

Why do mobile applications no longer work when I configure the proxy?

Some mobile applications do not use the global proxy that you can set for the WiFi connection. Browsers
and some applications like Gmail use the proxy settings, but most other mobile applications ignore the
proxy settings and therefore cannot connect to the Internet while the proxy is set.

What do I do if the adb server does not start correctly?

When the Android Debug Bridge (adb) server starts, it binds to local TCP port 5037 and listens for
commands sent from adb clients. All adb clients use port 5037 to communicate with the adb server. The
adb server locates emulator and device instances by scanning odd-numbered ports in the range 5555 to
5585, which is the range used by emulators and devices. Adb does not allow changing those ports. If you
encounter a problem while starting adb, check if one of the ports in this range is already in use by another
program.

For additional information, see http://developer.android.com/tools/help/adb.html.

Why do I get the error: Failed to allocate memory: 8?

This error displays if you are trying to start up the emulator and the system cannot allocate enough
memory. You can try the following:

1. Lower the RAM size in the memory options of the emulator.
2. Lower the RAM size of Intel HAXM. To lower the RAM size, run the IntelHaxm.exe again and choose

change.
3. Open the Task Manager and check if there is enough free memory available. If not, try to free up

additional memory by closing a few programs.

Why can I not work with a secure website?

If you cannot test a secure website (HTTPS) on a physical mobile device, try the following:

280 | Testing in Your Environment with the Open Agent

http://developer.android.com/tools/help/adb.html

1. Open the Silk Test Web Tunneler application on the mobile device to check the following:

• A certificate is installed for the secure website.
• The certificate matches the root certificate of the machine on which the Open Agent is installed.

If no certificate is installed or the certificate does not match the root certificate of the machine on which
the Open Agent is installed, a yellow warning message is displayed.

2. Click on the warning and select Ok to install the certificate. Installing a certificate requires to set a
password or a screen lock for the mobile device. If no password or screen lock is set you are prompted
to set one during this step.

3. If the certificate is not found on the device the installation fails and an error message displays. Check if
the file root.crt exists under sdcard/silk/certs/.

4. If the file root.crt does not exist, copy the file manually by using the File Explorer. The certificate
might be missing if you have no write permissions on the mobile device.

5. After you have copied the certificate to the device, you can install the certificate by using the Silk Test
Web Tunneler application or by clicking on the certificate in the file system.

If you cannot test a secure website (HTTPS) on an emulator, manually add the root certificate of the
website. For additional information, see Manually Adding a Root Certificate to Test a Secure Web
Application.

Manually Adding a Root Certificate to Test a Secure Web Application
If you are testing an Android emulator with Android version 4.4 or later, you cannot follow the process
described in this topic. For information on how to add a root certificate to test a secure Web application on
an Android emulator with Android version 4.4 or later, see Retrieving the Root Certificate of a Secure Web
Application.

Note: To perform the steps described in this topic, you must have configured the Open Agent as a
proxy for the Android device or Android emulator.

When you are testing a mobile Web application which uses HTTPS on an Android device or Android
emulator, each request to open a specific site will automatically generate a certificate for this site on the
machine on which the Open Agent is installed. This new certificate is issued to the same domain as the
original certificate, replacing the original certificate to enable testing over the SSL connection.

The first certificate that is generated is the root certificate for the mobile Web application.

To be able to test the application with Silk Test Classic, the root certificate needs to be installed on the
Android device or Android emulator. By default, the root certificate is copied to the device during hooking.
However, if the root certificate is not automatically installed, manually install the root certificate once for
each mobile Web application that you want to test.

1. If you are testing a mobile Web application on an Android emulator with Android 4.4 or later, perform the
following steps:

a) From the Android device or Android emulator, open the mobile Web application that you want to test.
b) For example, open www.borland.com.
c) Append the following extension to the URL: /_st_/dynamic/certificate. For example, the new

URL for www.borland.com in the mobile browser is the following: www.borland.com/_st_/dynamic/
certificate.

2. Open the mobile Web application that you want to test. If it is the first time that you open the mobile
Web application, the Open Agent generates the modified root certificate for the application.

3. On the machine on which the Open Agent is installed, go to the folder where the root certificate is
located.

By default, this is the folder %Appdata%\Silk\SilkTest\certs\authority.

4. Copy the root certificate file root.crt.

5. Paste the root certificate file to the root folder in the storage of your Android device.

Testing in Your Environment with the Open Agent | 281

http://www.borland.com

If you are testing on an Android emulator, the Open Agent automatically copies the certificate to the root
directory of the emulator.

Note: To enable the Open Agent to copy the certificate to the emulator, configure a size for the SD
card in the emulator settings.

6. If you are testing on a physical Android device, install the certificate from the storage into your Android
device.

For additional information about how to install a certificate from the storage, refer to the documentation
of your Android device or Android emulator.

7. If you are testing on an Android emulator:

a) Navigate to Settings > Security > Install from SD card on the emulator.
b) Click OK to install the certificate.
c) Optional: Navigate to Settings > Security > Trusted credentials > USER to verify that the

certificate is installed on the emulator.

8. Close all browsers on the device or emulator, to enable Silk Test Classic to check whether all required
certificates for the web application are properly installed and used.

Installing the Root Certificate to Test a Secure Web Application
Note: If you are testing a physical Android device, or an Android emulator with an Android version
prior to 4.4, see Manually Adding a Root Certificate to Test a Secure Web Application.

Note: To perform the steps described in this topic, you must have configured the Open Agent as a
proxy for the Android device or Android emulator.

When you are testing a mobile Web application which uses HTTPS on an Android device or Android
emulator, each request to open a specific site will automatically generate a certificate for this site on the
machine on which the Open Agent is installed. This new certificate is issued to the same domain as the
original certificate, replacing the original certificate to enable testing over the SSL connection.

The first certificate that is generated is the root certificate for the mobile Web application.

To be able to test the application with Silk Test Classic, the root certificate needs to be installed on the
Android device or Android emulator. By default, the root certificate is copied to the device during hooking.
However, if the root certificate is not automatically installed, manually install the root certificate once for
each mobile Web application that you want to test.

1. From the Android emulator, open the mobile Web application that you want to test.

For example, open www.borland.com.

2. Append /_st_/dynamic/certificate to the URL and go to the new URL.

For example, the URL for www.borland.com in the mobile browser is the following: www.borland.com/
st/dynamic/certificate.

3. Type a name for the certificate into the Certificate name field in the certificate download dialog box.

4. Leave the default setting, VPN and apps, in the Credential use list box.

5. Click OK. The certificate is installed on the emulator.

6. Close all browsers on the device or emulator, to enable Silk Test Classic to check whether all required
certificates for the web application are properly installed and used.

Limitations for Testing Mobile Web Applications
The support for playing back tests and recording locators on mobile browsers is not as complete as the
support for the other supported browsers. The following list lists the known limitations for playing back tests
and recording locators on mobile browsers:

• The following classes, interfaces, methods, and properties are currently not supported for mobile Web
applications:

282 | Testing in Your Environment with the Open Agent

http://www.borland.com

• BrowserApplication class.

• CloseOtherTabs method
• CloseTab method
• ExistsTab method
• GetActiveTab method
• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• OpenTab method
• SelectTab method

• DomElement class.

• DomDoubleClick method
• DomMouseMove method
• GetDomAttributeList method

• DomForm class. All methods and properties in this class are not supported for mobile Web
applications.

• DomRadioButton class.

• RadioListItemCount property
• RadioListItems property
• RadioListSelectedIndex property
• RadioListSelectedItem property

• DomTable class. All methods and properties in this class are not supported for mobile Web
applications.

• DomTableRow class. All methods and properties in this class are not supported for mobile Web
applications.

• IClickable interface.

• Click method. You can use clicks on Web applications running on an Android device, but not on
an iOS device.

• DoubleClick method
• PressMouse method
• ReleaseMouse method

• IKeyable interface. All methods and properties in this interface are not supported for mobile Web
applications.

• Image recognition is not supported for iOS. When you are testing a Web application on an iOS
device, you can only use image verifications.

• XPath logical operators are supported only for standard HTML attributes, and are not supported for
properties and custom Silk Test attributes. For example, the logical operators are not supported for the
textContents attribute and the innerText attribute. Expressions built with these operators are
always case-sensitive, independent of the Silk Test setting.

• XPath logical operators are not supported on stock Android browser on Android versions prior to version
4.4.

• Recording in landscape mode is not supported for emulators that include virtual buttons in the system
bar. Such emulators do not correctly detect rotation and render the system bar in landscape mode to
the right of the screen, instead of the lower part of the screen. However, you can record against such an
emulator in portrait mode.

Testing in Your Environment with the Open Agent | 283

Clicking on Objects in a Mobile Website
When clicking on an object during the recording and replay of an automated test, a mobile website
presents the following challenges in comparison to a desktop website:

• Varying zoom factors and device pixel ratios.
• Varying screen sizes for different mobile devices.
• Varying font and graphic sizes between mobile devices, usually smaller in comparison to a website in a

desktop browser.
• Varying pixel size and resolution for different mobile devices.

Silk Test Classic enables you to surpass these challenges and to click the appropriate object on a mobile
website.

When recording a test on a mobile device, Silk Test Classic does not record coordinates when recording a
Click. However, for cross-browser testing, coordinates are allowed during replay. You can also manually
add coordinates to a Click. Silk Test Classic interprets these coordinates as the HTML coordinates of the
object. To click on the appropriate object inside the BrowserWindow, during the replay of a test on a
mobile device, Silk Test Classic applies the current zoom factor to the HTML coordinates of the object. The
device pixel coordinates are the HTML coordinates of the object, multiplied with the current zoom factor.

If the object is not visible in the currently displayed section of the mobile website, Silk Test Classic scrolls to
the appropriate location in the website.

Example

The following code shows how you can test a DomButton with a fixed size of 100 x 20
px in your HTML page.

DomButton domButton = Desktop.Find("locator for the button")
domButton.Click(MouseButton.LEFT, new Point(50, 10))

During replay on a different mobile device or with a different zoom factor, the
DomButton might for example have an actual width of 10px on the device screen. Silk
Test Classic clicks in the middle of the element when using the code above,
independent of the current zoom factor, because Silk Test Classic interprets the
coordinates as HTML coordinates and applies the current zoom factor.

Testing Rumba Applications
Rumba is the world's premier Windows desktop terminal emulation solution. Silk Test provides built-in
support for recording and replaying Rumba.

When testing with Rumba, please consider the following:

• The Rumba version must be compatible to the Silk Test version. Versions of Rumba prior to version 8.1
are not supported.

• All controls that surround the green screen in Rumba are using basic WPF functionality (or Win32).
• The supported Rumba desktop types are:

• Mainframe Display
• AS400 Display
• Unix Display

For a complete list of the record and replay controls available for Rumba testing, see the Rumba Class
Reference.

284 | Testing in Your Environment with the Open Agent

Enabling and Disabling Rumba
Rumba is the world's premier Windows desktop terminal emulation solution. Rumba provides connectivity
solutions to mainframes, mid-range, UNIX, Linux, and HP servers.

Enabling Support

Before you can record and replay Rumba scripts, you need to enable support:

1. Install Rumba desktop client software version 8.1 or later.
2. Click Start > Programs > Silk > Silk Test > Administration > Rumba plugin > Enable Silk Test

Rumba plugin.

Disabling Support

Click Start > Programs > Silk > Silk Test > Administration > Rumba plugin > Disable Silk Test Rumba
plugin.

Locator Attributes for Identifying Rumba Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. Supported attributes include:

caption The text that the control displays.

priorlabel Since input fields on a form normally have a label explaining the purpose of the input,
the intention of priorlabel is to identify the text input field, RumbaTextField, by the
text of its adjacent label field, RumbaLabel. If no preceding label is found in the same
line of the text field, or if the label at the right side is closer to the text field than the left
one, a label on the right side of the text field is used.

StartRow This attribute is not recorded, but you can manually add it to the locator. Use
StartRow to identify the text input field, RumbaTextField, that starts at this row.

StartColumn This attribute is not recorded, but you can manually add it to the locator. Use
StartColumn to identify the text input field, RumbaTextField, that starts at this
column.

All dynamic
locator
attributes.

For additional information on dynamic locator attributes, see Dynamic Locator
Attributes.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Testing a Unix Display
For Unix displays, Silk Test Classic can only record the interactions with the main RUMBA screen control,
because the underlying structure of the Unix display differs to the structure of the AS/400 and Mainframe
displays.

Rumba Class Reference
When you configure a Rumba application, Silk Test Classic automatically provides built-in support for
testing standard Rumba controls.

Testing in Your Environment with the Open Agent | 285

Testing SAP Applications
Silk Test Classic provides built-in support for testing SAP client/server applications based on the Windows-
based GUI module.

For information on the supported versions and any eventual known issues, refer to the Release Notes.

Note: If you use SAP NetWeaver with Internet Explorer or Mozilla Firefox, Silk Test Classic tests the
application using the xBrowser technology domain.

Silk Test Agent Support

When you create a Silk Test Classic SAP project, the Open Agent is assigned as the default Agent.

Note: You must set Ctrl+Shift as the shortcut key combination to use to pause recording. To change
the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

Locator Attributes for SAP Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for SAP controls:

• automationId
• caption

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking SAP Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

286 | Testing in Your Environment with the Open Agent

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods that the SAP automation interface defines
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk Test Classic types

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and other types (such
as Point and Rect).

• UI controls

UI controls can be passed or returned as AnyWin.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.

Example

A custom calculator control has a Reset method and an Add method, which performs
an addition of two numbers. You can use the following code to call the methods directly
from your tests:

customControl.Invoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

Configuring Automation Security Settings for SAP
Before you launch an SAP application, you must configure the security warning settings. Otherwise, the
security warning A script is trying to attach to the GUI displays each time a test plays back
an SAP application.

1. Click Start > Control Panel.

2. Choose SAP Configuration. The SAP GUI Configuration dialog box opens.

3. In the Design Selection tab, uncheck the Notify When a Script Attaches to a Running SAP GUI
check box.

SAP Class Reference
When you configure an SAP application, Silk Test Classic automatically provides built-in support for testing
standard SAP controls.

Testing in Your Environment with the Open Agent | 287

Testing Web Applications with the Open Agent
Silk Test Classic provides support for applications that require Web testing capabilities, including Web
applications and browsers. For example, Web application support enables you to test an application that
runs in Internet Explorer.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Supported Controls for Web Applications
For a complete list of the controls available for record and replay of Web applications, see the
browser.inc and explorer.inc files. By default, these files are located in C:\Program Files\Silk
\SilkTest\extend\. The browser.inc file contains the objects that are shared by all Web browsers,
for example the Back button on the toolbar. Objects that are unique to each browser are included in a
separate file. Internet Explorer objects are contained in explorer.inc.

Sample Web Applications
To access the Silk Test Classic sample Web applications, go to:

• http://demo.borland.com/gmopost
• http://demo.borland.com/InsuranceWebExtJS/

Testing Dynamic HTML (DHTML) Popup Menus
Silk Test Classic supports testing Dynamic HTML (DHTML) popup menus in tests that use hierarchical and
dynamic object recognition; specifically for JavaScript popup menus.

• For tests that use hierarchical object recognition, to produce an accurate recording of interactions with a
DHTML popup menu, you can record window declarations and record your actions.

• For tests that use dynamic object recognition, you can manually create tests since recording is not
supported for dynamic object recognition.

Web Application Setup Steps
Before testing a Web application, take the following steps to set up Silk Test Classic for this type of testing:

• If you are using the Classic Agent, enable support for browsers and disable all non-Web extensions.
• If you are using the Open Agent, configure the Web application.
• Specify your default browser.
• Make sure your browser is configured properly.
• Set the proper agent options, if necessary.

Recording the Test Frame for a Web Application
When you record a test frame for a Web application, the results differ from those for a non-Web application.

1. Start your browser and go to the initial page of your Web application.

2. Click File > New from the menu bar.

3. Click Test Frame and then click OK. The New Test Frame dialog box displays.

4. If you are using the Open Agent, perform the following steps:

288 | Testing in Your Environment with the Open Agent

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://demo.borland.com/gmopost
http://demo.borland.com/InsuranceWebExtJS/

a) Click Web Site Test Configuration. The New Web Site Configuration dialog box opens.
b) From the Browser Type list box, select the browser type that you are using.
c) In the Browser Instance section, check the appropriate check box to determine whether you want to

test an application in an existing instance of the browser, or you want to start a new browser.
d) Click Finish.

5. If you are using the Classic Agent, perform the following steps:

a) Select your Web application.

The New Test Frame dialog box displays the following fields:

File name Name of the frame file you are creating. You can change the name and path to
anything you want, but make sure you retain the .inc extension.

Application The title of the currently loaded page.

URL The URL of the currently loaded page.

4Test identifier The identifier that you will use in all your test cases to qualify your application's
home page. We recommend to keep the identifier short and meaningful.

b) Edit the file name and 4Test identifier as appropriate.
c) Click OK.

Test Frames
This section describes how Silk Test Classic uses test frames as global information repositories about the
application under test.

Overview of Test Frames
A test frame is an include file (.inc) that serves as a central global repository of information about the
application under test. It contains all the data structures that support your test cases and test scripts.
Though you do not have to create a test frame, by declaring all the objects in your application, you will find
it much easier to understand, modify, and interpret the results of your tests.

When you create a test frame, Silk Test Classic automatically adds the frame file to the Use files field of
the Runtime Options dialog box. This allows Silk Test Classic to use the information in the declarations
and recognize the objects in your application when you record and run test cases.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box. For extensions that use
the Open Agent, Silk Test Classic names the include file <technology_type>.inc. For instance, if you
enable extensions for an Apache Flex application, a file named flex.inc is added. If you enable
extensions for an Internet Explorer browser, Silk Test Classic adds the explorer.inc file to the Runtime
Options dialog box.

A constant called wStartup is created when you record the test frame. By assigning the identifier of the
login window to wStartup and by recording a new invoke method, your tests can start the application,
enter any required information into the login window, then dismiss the login window.

See Marking 4Test Code as GUI-Specific to learn about the ways you modify the test frame when porting
your test cases to other GUIs.

Modifying the Identifiers
Identifiers are arbitrary strings. You use identifiers to identify objects in your scripts. Tags, on the other
hand, are not arbitrary and should not be changed except in well-specified ways.

To make your tests easier to understand and maintain, you can change your objects’ identifiers to
correspond to their meaning in your application. Then when Silk Test Classic records tests, it will use the
identifiers that you specify.

Testing in Your Environment with the Open Agent | 289

Testing Methodology for Web Applications
You test Web applications with using the same methodology as when you test standalone and client/server
applications. Testing of both Web-based applications and non-Web-based applications includes the
following test phases:

• Creating and working with test plans.
• Designing and recording test cases.
• Running tests and interpreting results.
• Debugging test cases.
• Generalizing test cases.
• Handling exceptions.
• Making test cases data-driven.
• Customizing Silk Test Classic.

Testing Web Applications on Different Browsers
One of the challenges of testing Web applications is that your users will probably be using different browser
types and your application must support the browsers that your users use. When you develop tests for Web
applications running on different browser types, you must decide:

• How your test cases will handle differences between browsers.
• How to specify which browser to use for the test case or test script.

Handling differences between browsers

In most cases, your include files (declarations) and scripts apply to any browser. You can run test cases
against different browsers by simply changing the default browser and running the test case, even if the
pages look a bit different, such as pushbuttons being in different places. Because Silk Test Classic is
object-based, it doesn’t care about layout. It just cares what objects are on the page.

There may be times when declarations and scripts have one or more lines that apply only to particular
browsers. In these situations you can use browser specifiers to make lines specific to one or more
browsers. Browser specifiers are of the built-in data type BROWSERTYPE.

Testing Objects in a Web Page
This section describes how you can test the objects in a Web page.

Document Object Model Extension
Silk Test Classic uses the Document Object Model (DOM) extension of Internet Explorer which uses
information in the HTML source to recognize and manipulate objects on a Web page.

Advantages of DOM
The Document Object Model (DOM) extension has several advantages:

• By default, when you are using the DOM extension the recorder displays a rectangle which highlights
the controls as you are recording them.

• The DOM extension is highly accurate, because it gets information directly from the browser. For
example, the DOM extension recognizes text size and the actual name of objects.

• The DOM extension is independent of the browser size and text size settings.
• The DOM extension will find non-GUI, which means non-visible, objects. For example, if you are using

the Classic Agent, the DOM extension will find objects of the types HtmlMeta, HtmlHidden, XML
Node, and HtmlForm.

290 | Testing in Your Environment with the Open Agent

• The DOM extension offers support for borderless tables.
• The DOM extension is consistent with the standard being developed by the W3C.

Useful Information About DOM

Internet Explorer

• When you use the DOM extension with Internet Explorer, in order to interact with a browser dialog box,
the dialog box must be the active (foreground) window. If another application is active, then Silk Test
Classic is not able to interact with the browser dialog box, and the test case times out with an
Application not ready exception.

• You may receive a Window not found error when you are running scripts using the DOM
extension. This error occurs when the test case calls Exists() on the browser page before it is finished
loading. This problem is due to the fact that the DOM extension does not check for DOM Ready in the
Exists() method. The workaround is to call Browser.WaitForReady() in your script, prior to the
Exists() method.

• If you are using the Classic Agent, see the GetProperty method and GetTextProp method for
information about how Silk Test Classic recognizes tags.

• If you are using the Classic Agent, you may see differences in image tags based on the same URL if
you used two different URLs to get there. For example, Silk Test Classic cannot differentiate between
two images if Internet Explorer displays two different URLs that both point to the same image.

• The DOM extension does not record inside a secure frame. This means that if an Html page contains
frames with security, for example on a banking page, the DOM extension on Internet Explorer will not be
able to record the window declaration for the page because the secure site prevents DOM from getting
any information.

Mozilla Firefox

There are several things to remember when you work with Mozilla Firefox and XML User-interface
Language (XUL). XUL is a cross-platform language for describing user interfaces of applications. The
support of XUL elements in Silk Test Classic is limited. All menu, toolbar, scrollbar, status bar and most
dialog boxes are XUL elements. Almost all elements in the browser are XUL elements except the area that
actually renders HTML pages.

• If you are using the Classic Agent, you can record window declarations on the menu and toolbar by
pointing the cursor to the caption of the browser.

• You can record actions and test cases against the menu and toolbar through mouse actions.
• If you are using the Classic Agent, you can record window declarations on a single frame XUL dialog

box, such as the authentication dialog box. However, you cannot record window declarations on a multi-
framed XUL dialog box, for example, the preference dialog box.

• Silk Test Classic does not support:

• Keyboard recording on the menu and toolbar. There is no keyboard recording on the URL.
• Record actions and record test case on XUL dialog boxes.
• Record identifier and location on XUL elements.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Recording and playback

• When you record using the Internet Explorer DOM extension, a rectangle will flash to indicate the
current target object of the recorder.

• Silk Test Classic can recognize XML Node objects in your Web page if your Web page contains XML
content.

• The DOM extension supports HTML Components (HTCs), including those implemented using the
viewLink property.

Testing in Your Environment with the Open Agent | 291

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

• It is a limitation of DOM that it cannot see the location of any text that is a direct descendant of the
<body> tag. GetRect() does not work for body text. For example, when you record window
declarations with the Classic Agent over body text, you do not get any objects. This was implemented
for HTML pages where no <p> tags or other text formatting tags preface the displayed text.

• DOM cannot find an insertion on a multi-line text field.
• If you are using the Classic Agent, images created with the <input type="image"> tag are seen as

HtmlPushButtons.
• If you are using the Classic Agent and you open a font statement on a Web page with several

HtmlText fields and HtmlCheckbox controls, but do not close it off, the DOM extension will not
recognize anything beyond the first object. Closing off the font statement with a tag enables
Silk Test Classic to work correctly.

• The DOM extension is not designed to handle multiple links with the same file name. If you do have
multiple links, be sure to use the full URL to identify links.

• If you are using the Classic Agent to test Html pages that do not have explicit titles and which load
ActiveX applications, you may have to modify test frames that you have previously recorded using the
VO Extension before you can use them with the DOM extension. This is because the DOM extension
tags the BrowserChild slightly differently. Alternatively you could record new declarations for the
page.

• If you are using the Classic Agent, the GetPosition() function of the TextField class always returns
the last position when called on an HtmlTextField. There is no method in the DOM which allows Silk
Test Classic to get the cursor position in an HtmlTextField.

• If you are using the Classic Agent to record a window declaration over a table that has indented links,
the indentation is recorded as an additional HtmlText object.

• If you are using the Classic Agent and you are recording with the DOM extension, TypeKeys
("<Tab>") are not captured. Since the script refers to the object to type in directly, it is not necessary
to record this manual Tab. You can manually enter a TypeKeys ("<Tab>") into your script if you want
to; it just is not recorded.

• For additional information about Silk Test Classic's rules for object recognition, refer to Object
Recognition with the Classic Agent. To open the document, click Start > Programs > Silk > Silk Test >
Documentation > Silk Test Classic > Tutorials.

The 4Test language and the DOM extension

• If you are using the Classic Agent, use the ForceReady method when Silk Test Classic never receives
a Document complete message from the browser. Unless Silk Test Classic receives the Document
complete message, Silk Test Classic acts as if the browser is not ready and will raise an
Application not ready error.

• For a list of the supported classes for the DOM extension on each agent, see Differences in the Classes
Supported by the Open Agent and the Classic Agent.

• If you are using the Classic Agent, use the FlushCache method of the BrowserChild class to re-
examine the currently loaded page and to get any new items as they are generated. This method is very
useful when you are recording dynamic objects that may not initially display.

Testing Columns and Tables
• If you are using the Classic Agent, tables in Web applications are recognized as HtmlTable controls.

An HtmlTable consists of two or more HtmlColumn controls.
• If you are using the Open Agent, tables in Web applications are recognized as DomTable controls.

Rows in a table are recognized as DomTableRow controls.

292 | Testing in Your Environment with the Open Agent

Definition of a Table

Classic Agent

If you are using the Classic Agent, the definition of a table in HTML is the following:

• An HtmlTable with 2 or more rows, which are specified with the <tr> tag in the page source.
• Where at least 1 row has 2 or more columns, which are specified with the <td> tag in the page source.

A single <td> with a colspan > 1 does not qualify as 2 or more columns.

If a table with insufficient dimensions is nested inside other tables, then the parent tables of this table are
not recognized as HtmlTable controls, even if these parent tables have sufficient dimensions.

If a table does not meet this definition, Silk Test Classic does not recognize it as a table. For example, if a
table is empty, which means that it has no rows or columns, and you attempt to select a row by using
table.SelectRow (1, TRUE, FALSE), you will get an error message saying E_WINDOW_NOT_FOUND,
when you might expect to see a message such as E_ROW_INDEX_INVALID instead.

Open Agent

If you are using the Open Agent, the definition of a table is a DomTable, which is a DOM element that is
specified using the <table> tag.

Testing Controls
Web applications can contain the same controls as standard applications, including the following:

Control Classic Agent Class Open Agent Class

check box HtmlCheckBox DomCheckBox

combo box HtmlComboBox No corresponding class.

list boxes HtmlListBox DomListBox

popup lists HtmlPopupList DomListBox

pushbuttons HtmlPushButton DomButton

radio lists HtmlCheckBox DomCheckBox

All these classes are derived from their respective standard class. For example, HtmlCheckBox is derived
from CheckBox. So all the testing you can do with these controls in standard applications you can also do
in Web applications.

Classic Agent Example

The following code gets the list of items in the credit card list in the Billing Information
page of the sample GMO application:

LIST OF STRING lsCards
lsCards = BillingPage.CreditCardList.GetContents ()
ListPrint (lsCards)

Result:
American Express
MasterCard
Visa

Testing in Your Environment with the Open Agent | 293

Open Agent Example

The following code gets the list of items in the credit card list in the Billing Information
page of the sample GMO application:

LIST OF STRING lsCards
lsCards = WebBrowser.BrowserWindow.CardType.Items
ListPrint(lsCards)

Result:
American Express
MasterCard
Visa

Testing Images

Classic Agent

If you are using the Classic Agent, images in your Web application are objects of type HtmlImage. You
can verify the appearance of the image by using the Bitmap tab in the Verify Window dialog box.

If an HtmlImage is an image map, which means that the image contains clickable regions, you can use
the following methods to test the clickable regions:

• GetRegionList

• MoveToRegion

• ClickRegion

Open Agent

If you are using the Open Agent, you can test images by using the IMG locator. For example, the following
code sample finds an image and then prints some of the properties of the image:

Window img = FindBrowserApplication("/
BrowserApplication").FindBrowserWindow("//BrowserWindow").Find("//
IMG[@title='Image1.png']")
String src = img.GetProperty("src")
String altText = img.GetProperty("alt")
print(src)
print(altText)

Testing Links
• If you are using the Classic Agent, links in your application are objects of type HtmlLink.
• If you are using the Open Agent, links in your application are objects of type DomLink.

Silk Test Classic provides several methods that let you get their text properties as well as the location to
which they jump.

Classic Agent Example

The following code returns the definition for the HtmlLink on a sample home page:

STRING sJump
sJump = Acme.LetUsKnowLink.GetLocation ()
Print (sJump)

Result:
mailto:support@acme.com

294 | Testing in Your Environment with the Open Agent

Open Agent Example

The following code returns the definition for the DomLink on the sample home page:

STRING sJump
sJump =
WebBrowser.BrowserWindow.LetUsKnowLink.GetProperty("href")
Print(sJump)

Result:
mailto:support@acme.com

Testing Text in Web Applications

Classic Agent

Straight text in a Web application can be in the following classes:

• HtmlHeading

• HtmlText

Silk Test Classic provides methods for getting the text and all its properties, such as color, font, size, and
style.

There are also classes for text in Java applets and applications.

Classic Agent Example

For example, the following code gets the copyright text on a sample Web page:

STRING sText
sText = Acme.Copyright.GetText ()
Print (sText)

Result:
Copyright © 2006 Acme Software, Inc. All rights reserved.

Open Agent

When you are using the Open Agent, use the GetText() method to get text out of every DomElement
control.

Open Agent Example

For example, the following code gets the text of a DomLink control:

Window link = FindBrowserApplication("/BrowserApplication")

 .FindBrowserWindow("//BrowserWindow")
 .FindDomLink("A[@id='story2128000']")
String linkText = link.GetText()
print(linkText)

Using the xBrowser Technology Domain
This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides support for testing Web applications using the Open Agent. Use the xBrowser
technology domain to test Web applications that use one of the supported browsers.

Testing in Your Environment with the Open Agent | 295

The xBrowser technology domain supports the testing of plain HTML pages as well as AJAX pages. AJAX
pages require additional, sophisticated strategies for object recognition and synchronization.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Testing a Web Application Using the xBrowser TechDomain
This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides built-in support for testing Web applications with the xBrowser technology
domain. To test a Web application, follow these steps:

• Create a new project.
• Configure Web Applications.
• Record test cases with the Open Agent.
• Run a test case.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Test Objects for xBrowser
Silk Test Classic uses the following classes to model a Web application:

Class Description

BrowserApplication Exposes the main window of a Web browser and
provides methods for tabbing.

BrowserWindow Provides access to tabs and embedded browser controls
and provides methods for navigating to different pages.

DomElement Exposes the DOM tree of a Web application (including
frames) and provides access to all DOM attributes.
Specialized classes are available for several DOM
elements.

Object Recognition for xBrowser Objects
This functionality is supported only if you are using the Open Agent.

The xBrowser technology domain supports dynamic object recognition.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

Test cases use locator strings to find and identify objects. A typical locator includes a locator name and at
least one locator attribute, such as "//LocatorName[@locatorAttribute='value']".

Locator
Names

With other technology types, such as Java SWT, locator names are created using the
class name of the test object. With xBrowser, the tag name of the DOM element can also
be used as locator name. The following locators describe the same element:

1. Using the tag name: "//a[@href='http://www.microfocus.com']"
2. Using the class name: "//DomLink[@href='http://www.microfocus.com']"

To optimize replay speed, use tag names rather than class names.

296 | Testing in Your Environment with the Open Agent

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Locator
Attributes

All DOM attributes can be used as locator string attributes. For example, the element
<button automationid='123'>Click Me</button> can be identified using the
locator "//button[@automationid='123']".

Recording
Locators

Silk Test Classic uses a built-in locator generator when recording test cases and using the
Locator Spy. You can configure the locator generator to improve the results for a specific
application.

xBrowser Default BaseState
This functionality is supported only if you are using the Open Agent.

By default, Silk Test Classic uses the dynamic base state for xBrowser projects. When you configure the
application, the base state is generated to the frame.inc file.

• The wDynamicMainWindow variable in the first line of the frame.inc file tells Silk Test Classic to use
the dynamic base state rather than the classic base state.

• The WebBrowser window declaration contains the necessary information to launch the browser and
navigate to the Web application that you want to test.

• If you do not want to close all other tabs during base state execution, change bCloseOtherTabs to
false.

Locator Attributes for xBrowser controls
This functionality is supported only if you are using the Open Agent.

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for xBrowser controls:

caption Supports wildcards ? and *.

all DOM attributes Supports wildcards ? and *.

priorlabel For controls that do not have a caption, the priorlabel is used as the caption
automatically. For controls with a caption, it may be easier to use the caption.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Note: Whitespace, which includes spaces, carriage returns, line feeds, and tabs, is handled differently
by each browser. As a result, the textContents and innerText attributes have been normalized.
Whitespace is skipped or replaced by a single space if an empty space is followed by another empty
space. The matching of such values is normalized also. In Silk Test 14.0 or later, whitespace in texts,
which are retrieved through the textContents property of an element, is trimmed consistently
across all supported browsers. For some browser versions, this whitespace handling differs to Silk
Test versions prior to Silk Test 13.5. You can re-enable the old behavior by setting the
OPT_COMPATIBILITY option to a version lower than 13.5.0.

For example:

<a>abc
 abc
 //Uses the following locator:
//A[@innerText='abc abc']

Page Synchronization for xBrowser
This functionality is supported only if you are using the Open Agent.

Testing in Your Environment with the Open Agent | 297

Synchronization is performed before and after every method call. This means that the method call is not
started and does not end until the synchronization criteria is met.

Any property access is not synchronized.

Synchronization Modes

Silk Test Classic includes synchronization modes for HTML and AJAX.

Using the HTML mode ensures that all HTML documents are in an interactive state. With this mode, you
can test simple Web pages. If more complex scenarios with Java script are used, it might be necessary to
manually script synchronization functions, such as:

• WaitForObject

• WaitForProperty

• WaitForDisappearance

• WaitForChildDisappearance

The AJAX mode synchronization waits for the browser to be in a kind of idle state, which is especially
useful for AJAX applications or pages that contain AJAX components. Using the AJAX mode eliminates the
need to manually script synchronization functions (such as wait for objects to appear or disappear, wait for
a specific property value, and so on), which eases the script creation process dramatically. This automatic
synchronization is also the basis for a successful record and replay approach without manual script
adoptions.

Troubleshooting

Because of the true asynchronous nature of AJAX, generally there is no real idle state of the browser.
Therefore, in rare situations, Silk Test Classic will not recognize an end of the invoked method call and
throws a timeout error after the specified timeout period. In these situations, it is necessary to set the
synchronization mode to HTML at least for the problematic call.

Regardless of the page synchronization method that you use, in tests where a Flash object retrieves data
from a server and then performs calculations to render the data, you must manually add a synchronization
method to your test case. Otherwise, Silk Test Classic does not wait for the Flash object to complete its
calculations. For example, you might add Sleep(secs) to your test.

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently open
in order to retrieve asynchronous data from the server. These requests may let the synchronization hang
until the specified synchronization timeout expires. To prevent this situation, either use the HTML
synchronization mode or specify the URL of the problematic request in the Synchronization exclude list
setting. To add the URL to the exclusion filter, specify the URL in the Synchronization exclude list in the
Agent Options dialog box.

Use a monitoring tool to determine if playback errors occur because of a synchronization issue. For
instance, you can use FindBugs, http://findbugs.sourceforge.net/, to determine if an AJAX call is affecting
playback. Then, add the problematic service to the Synchronization exclude list.

Note: If you exclude a URL, synchronization is turned off for each call that targets the URL that you
specified. Any synchronization that is needed for that URL must be called manually. For example, you
might need to manually add WaitForObject to a script. To avoid numerous manual calls, exclude
URLs for a concrete target, rather than for a top-level URL, if possible.

Configuring Page Synchronization Settings

You can configure page synchronization settings for each individual test or you can set global options that
apply to all tests in the Agent Options dialog box. Click Options > Agent and click the Synchronization
tab to configure these options.

To configure individual settings for tests, record the test and then insert an agent option to override the
global replay value.

298 | Testing in Your Environment with the Open Agent

http://findbugs.sourceforge.net

For example, you might set the Synchronization mode replay setting to HTML and then return the
Synchronization mode to AJAX for the remaining portion of the test if necessary.

To configure individual settings within a test, call any of the following:

• OPT_XBROWSER_SYNC_MODE

• OPT_XBROWSER_SYNC_EXCLUDE_URLS

• OPT_SYNC_TIMEOUT

Setting xBrowser Synchronization Options

This functionality is supported only if you are using the Open Agent.

Specify the synchronization and timeout values for Web applications. Synchronization is performed before
and after every method call. A method call is not started and does not end until the synchronization criteria
is met.

1. Click OptionsAgent and then click the Synchronization tab.

2. From the Synchronization mode list box, select the synchronization algorithm for the ready state of a
web application.

The synchronization algorithm configures the waiting period for the ready state of an invoke call.

Using the HTML mode ensures that all HTML documents are in an interactive state. With this mode, you
can test simple Web pages. If more complex scenarios with Java script are used, it might be necessary
to manually script synchronization functions.

Using the AJAX mode eliminates the need to manually script synchronization functions (such as wait for
objects to appear or disappear, wait for a specific property value, and so on), which eases the script
creation process dramatically. This automatic synchronization is also the base for a successful record
and replay approach without manual script adoptions.

3. In the Synchronization timeout text box, enter the maximum time, in seconds, to wait for an object to
be ready.

4. In the Synchronization exclude list text box, type the entire URL or a fragment of the URL for any
service or Web page that you want to exclude.

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently
open in order to retrieve asynchronous data from the server. These requests may let the
synchronization hang until the specified synchronization timeout expires. To prevent this situation, either
use the HTML synchronization mode or specify the URL of the problematic request in the
Synchronization exclude list setting.

For example, if your web application uses a widget that displays the server time by polling data from the
client, permanent traffic is sent to the server for this widget. To exclude this service from the
synchronization, determine what the service URL is and enter it in the exclusion list.

For example, you might type:

http://example.com/syncsample/timeService
timeService
UICallBackServiceHandler

Separate multiple entries with a comma.

Note: If your application uses only one service, and you want to disable that service for testing, you
must use the HTML synchronization mode rather than adding the service URL to the exclusion list.

5. Click OK.

You can now record or manually create a test that uses ignores browser attributes and uses the type of
page input that you specified.

Testing in Your Environment with the Open Agent | 299

Configuring the Locator Generator for xBrowser
This functionality is supported only if you are using the Open Agent.

The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unique at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

To achieve optimal results, add a custom automation ID to the elements that you want to interact with in
your test. In Web applications, you can add an attribute to the element that you want to interact with, such
as <div myAutomationId=”my unique element name” />. This approach can eliminate the
maintenance associated with locator changes.

1. Click Options > Recorder and then click the Custom Attributes tab.

2. If you use custom automation IDs, from the Select a TechDomain list box, select xBrowser and then
add the IDs to the list.

The custom attributes list contains attributes that are suitable for locators. If custom attributes are
available, the locator generator uses these attributes before any other attribute. The order of the list also
represents the priority in which the attributes are used by the locator generator. If the attributes that you
specify are not available for the objects that you select, Silk Test Classic uses the default attributes for
xBrowser.

3. Click the Browser tab.

4. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.

For example, use this list to specify attributes that change frequently, such as size, width, height, and
style. You can include the wildcards ‘*’ and ‘?’ in the Locator attribute name blacklist.

Separate attribute names with a comma.

5. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

Some AJAX frameworks generate attribute values that change every time the page is reloaded. Use this
list to ignore such values. You can also use wildcards in this list.

Separate attribute values with a comma.

6. Click OK.

You can now record or manually create a test case.

Comparing API Playback and Native Playback for xBrowser
This functionality is supported only if you are using the Open Agent.

Silk Test Classic supports API playback and native playback for Web applications. If your application uses a
plug-in or AJAX, use native user input. If your application does not use a plug-in or AJAX, we recommend
using API playback.

Advantages of native playback include:

• With native playback, the agent emulates user input by moving the mouse pointer over elements and
pressing the corresponding elements. As a result, playback works with most applications without any
modifications.

• Native playback supports plug-ins, such as Flash and Java applets, and applications that use AJAX,
while high-level API recordings do not.

Advantages of API playback include:

300 | Testing in Your Environment with the Open Agent

• With API playback, the Web page is driven directly by DOM events, such as onmouseover or
onclick.

• Scripts that use API playback do not require that the browser be in the foreground.
• Scripts that use API playback do not need to scroll an element into view before clicking it.
• Generally API scripts are more reliable since high-level user input is insensitive to pop-up windows and

user interaction during playback.
• API playback is faster than native playback.

Differences Between API and Native Playback Functions

The DomElement class provides different functions for API playback and native playback.

The following table describes which functions use API playback and which use native playback.

API Playback Native Playback

Mouse Actions DomClick

DomDoubleClick

DomMouseMove

Click

DoubleClick

MoveMouse

PressMouse

ReleaseMouse

Keyboard Actions not available TypeKeys

Specialized Functions Select

SetText

etc.

not available

Setting Recording Options for xBrowser
This functionality is supported only if you are using the Open Agent.

There are several options that can be used to optimize the recording of Web applications.

1. Click Options > Recorder.

2. Check the Record mouse move actions box if you are testing a Web page that uses mouse move
events. You cannot record mouse move events for child technology domains of the xBrowser technology
domain, for example Apache Flex and Swing.

Silk Test Classic will only record mouse move events that cause changes to the hovered element or its
parent in order to keep scripts short.

3. You can change the mouse move delay if required.

Mouse move actions will only be recorded if the mouse stands still for this time. A shorter delay will
result in more unexpected mouse move actions.

4. Click the Browser tab.

5. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.

For example, if you do not want to record attributes named height, add the height attribute name to the
grid. Separate attribute names with a comma.

6. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to the grid.
Separate attribute values with a comma.

7. To record native user input instead of DOM functions, check the
OPT_XBROWSER_RECORD_LOWLEVEL check box.

Testing in Your Environment with the Open Agent | 301

For example, to record Click instead of DomClick and TypeKeys instead of SetText, check this
check box.

If your application uses a plug-in or AJAX, use native user input. If your application does not use a plug-
in or AJAX, we recommend using high-level DOM functions, which do not require the browser to be
focused or active during playback. As a result, tests that use DOM functions are faster and more
reliable.

8. Click the Custom Attributes tab.

9. Select xBrowser in the Select a tech domain list box and add the DOM attributes that you want to use
for locators to the text box.

Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added. If custom attributes are available, the locator generator uses these attributes
before any other attribute. The order of the list also represents the priority in which the attributes are
used by the locator generator. If the attributes that you specify are not available for the objects that you
select, Silk Test Classic uses the default attributes for xBrowser.

10.Click OK.

You can now record or manually create a test that uses ignores browser attributes and uses the type of
page input that you specified.

Browser Configuration Settings for xBrowser
Several browser settings help to sustain stable test executions. Although Silk Test Classic works without
changing any settings, there are several reasons that you might want to change the browser settings.

Increase replay speed Use about:blank as home page instead of a slowly loading Web
page.

Avoid unexpected behavior of the
browser

• Disable pop up windows and warning dialog boxes.
• Disable auto-complete features.
• Disable password wizards.

Prevent malfunction of the
browser

Disable unnecessary third-party plugins.

The following sections describe where these settings are located in the corresponding browser.

Internet Explorer

The browser settings are located at Tools > Internet Options. The following table lists options that you
might want to adjust.

Tab Option Configuration Comments

General Home page Set to about:blank. Minimize start up time of new tabs.

General Tabs • Disable warning when closing multiple tabs.

• Enable to switch to new tabs when they are
created.

• Avoid unexpected dialog boxes.

• Links that open new tabs might
not replay correctly otherwise.

Privacy Pop-up
blocker

Disable pop up blocker. Make sure your Web site can open
new windows.

Content AutoComplete Turn off completely • Avoid unexpected dialog boxes.

• Avoid unexpected behavior when
typing keys.

302 | Testing in Your Environment with the Open Agent

Tab Option Configuration Comments

Program
s

Manage add-
ons

Only enable add-ons that are absolutely required. • Third-party add-ons might contain
bugs.

• Possibly not compatible to Silk
Test Classic.

Advance
d

Settings • Disable Automatically check for Internet
Explorer updates.

• Enable Disable script debugging (Internet
Explorer).

• Enable Disable script debugging (Other).

• Disable Enable automatic crash recovery.

• Disable Display notification about every
script error.

• Disable all Warn ... settings

Avoid unexpected dialog boxes.

Note: Recording a Web application in Internet Explorer with a zoom level different to 100% might not
work as expected. Before recording actions against a Web application in Internet Explorer, set the
zoom level to 100%.

Mozilla Firefox

In Mozilla Firefox, you can edit all settings by navigating a tab to about:config. The following table lists
options that you might want to adjust. If any of the options do not exist, you can create them by right-
clicking the table and choosing New.

Option Value Comments

app.update.auto false Avoid unexpected behavior (disable auto update).

app.update.enabled false Avoid unexpected behavior (disable updates in general).

app.update.mode 0 Avoid unexpected dialog boxes (do not prompt for new updates).

app.update.silent true Avoid unexpected dialog boxes (do not prompt for new updates).

browser.sessionstore.res
ume_from_crash

false Avoid unexpected dialog boxes (warning after a browser crash).

browser.sessionstore.ma
x_tabs_undo

0 Enhance performance. Controls how many closed tabs are kept track of
through the Session Restore service.

browser.sessionstore.ma
x_windows_undo

0 Enhance performance. Controls how many closed windows are kept track
of through the Session Restore service.

browser.sessionstore.res
ume_session_once

false Avoid unexpected dialog boxes. Controls whether the last saved session is
restored once the next time the browser starts.

browser.shell.checkDefau
ltBrowser

false Avoid unexpected dialog boxes. Checks if Mozilla Firefox is the default
browser.

browser.startup.homepag
e

"about:blank
"

Minimize start up time of new tabs.

browser.startup.page 0 Minimize browser startup time (no start page in initial tab).

browser.tabs.warnOnClo
se

false Avoid unexpected dialog boxes (warning when closing multiple tabs).

Testing in Your Environment with the Open Agent | 303

Option Value Comments

browser.tabs.warnOnClo
seOtherTabs

false Avoid unexpected dialog boxes (warning when closing other tabs).

browser.tabs.warnOnOpe
n

false Avoid unexpected dialog boxes (warning when opening multiple tabs).

dom.max_chrome_script
_run_time

180 Avoid unexpected dialog boxes (warning when XUL code takes too long to
execute, timeout in seconds).

dom.max_script_run_tim
e

600 Avoid unexpected dialog boxes (warning when script code takes too long to
execute, timeout in seconds).

dom.successive_dialog_ti
me_limit

0 Avoid unexpected Prevent page from creating additional dialogs dialog
box.

extensions.update.enable
d

false Avoid unexpected dialog boxes. Disables automatic extension update.

Google Chrome

You do not have to change browser settings for Google Chrome. Silk Test Classic automatically starts
Google Chrome with the appropriate command-line parameters.

Note: To avoid unexpected behavior when testing web applications, disable auto updates for Google
Chrome. For additional information, see http://dev.chromium.org/administrators/turning-off-auto-
updates.

Changing the Browser Type When Replaying Tests
When testing Web applications, you can replay test cases in either Internet Explorer or a different browser.

1. Record the test case against the Web application using Internet Explorer. With a browser that is
different to Internet Explorer, you can only replay tests.

2. Replay the test to ensure it works as expected.

3. Click Configure Applications on the Basic Workflow bar.

If you do not see Configure Applications on the Basic Workflow bar, ensure that the default Agent is
set to the Open Agent.

The Select Application dialog box opens.

4. Select the Web tab.

The New Web Site Configuration page opens.

5. Select the browser on which you want to replay the test.

You can use other supported browsers instead of Internet Explorer to replay tests, but not to record
tests.

6. Click OK.

If you have selected an existing instance of Google Chrome, Silk Test Classic checks whether the
automation support is included. If the automation support is not included, Silk Test Classic restarts
Google Chrome.

The Choose name and folder of the new frame file page opens. Silk Test Classic configures the
recovery system and names the corresponding file frame1.inc by default.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save.

9. Copy the window declaration for the additional browser into the original frame1.inc file.

304 | Testing in Your Environment with the Open Agent

http://dev.chromium.org/administrators/turning-off-auto-updates
http://dev.chromium.org/administrators/turning-off-auto-updates

frame1.inc must not contain two window declarations of the same name, so rename the Internet
Explorer declaration to InternetExplorer and the new declaration to another name, for example
Firefox.

10.To ensure that each of the window declarations works with the appropriate browser type, add the
browsertype property to the locator.

For example, "//BrowserApplication[@browsertype='Firefox']".

11.Determine which browser you want to use and change the const wDynamicMainWindow =
<browsertype> to use that browser and then replay the test.

For example, you might type const wDynamicMainWindow = InternetExplorer.

Prerequisites for Replaying Tests with Google Chrome

Command-line parameters

When you use Google Chrome to replay a test or to record locators, Google Chrome is started with the
following command:

%LOCALAPPDATA%\Google\Chrome\Application\chrome.exe
 --enable-logging
 --log-level=1
 --disable-web-security
 --disable-hang-monitor
 --disable-prompt-on-repost
 --dom-automation
 --full-memory-crash-report
 --no-default-browser-check
 --no-first-run
 --homepage=about:blank
 --disable-web-resources
 --disable-preconnect
 --enable-logging
 --log-level=1
 --safebrowsing-disable-auto-update
 --test-type=ui
 --noerrdialogs
 --metrics-recording-only
 --allow-file-access-from-files
 --disable-tab-closeable-state-watcher
 --allow-file-access
 --disable-sync
 --testing-channel=NamedTestingInterface:st_42

When you use the wizard to hook on to an application, these command-line parameters are automatically
added to the base state. If an instance of Google Chrome is already running when you start testing, without
the appropriate command-line parameters, Silk Test Classic closes Google Chrome and tries to restart the
browser with the command-line parameters. If the browser cannot be restarted, an error message displays.

Note: The command-line parameter disable-web-security is required when you want to record
or replay cross-domain documents.

Limitations for Testing with Google Chrome
The support for playing back tests and recording locators with Google Chrome is not as complete as the
support for the other supported browsers. The following list lists the known limitations for playing back tests
and recording locators with Google Chrome:

• Silk Test does not support testing child technology domains of the xBrowser domain with Google
Chrome. For example Apache Flex or Microsoft Silverlight are not supported with Google Chrome.

• Silk Test does not provide native support for Google Chrome. You cannot test internal Google Chrome
functionality. For example, in a test, you cannot change the currently displayed Web page by adding text

Testing in Your Environment with the Open Agent | 305

to the navigation bar through Win32. As a workaround, you can use API calls to navigate between Web
pages. Silk Test supports handling alerts and similar dialog boxes.

• The page synchronization for Google Chrome is not as advanced as for the other supported browsers.
Changing the synchronization mode has no impact on the synchronization for Google Chrome.

• Silk Test does not support the methods TextClick and TextSelect when testing applications with
Google Chrome.

• Silk Test does not recognize opening the Print dialog box in Google Chrome by using the Google
Chrome menu. To add opening this dialog box in Google Chrome to a test, you have to send Ctrl+Shift
+P using the TypeKeys method. Internet Explorer does not recognize this shortcut, so you have to first
record your test in Internet Explorer, and then manually add pressing Ctrl+Shift+P to your test.

• When two Google Chrome windows are open at the same time and the second window is detached
from the first one, Silk Test does not recognize the elements on the detached Google Chrome window.
For example, start Google Chrome and open two tabs. Then detach the second tab from the first one.
Silk Test does no longer recognize the elements on the second tab. To recognize elements with Silk
Test on multiple Google Chrome windows, use CTRL+N to open a new Google Chrome window.

• When you want to test a Web application with Google Chrome and the Continue running background
apps when Google Chrome is closed check box is checked, Silk Test cannot restart Google Chrome
to load the automation support.

• To replay a test with Google Chrome, you need to perform one of the following:

• Start Google Chrome and enable the Silk Test Chrome extension.

Note: If by mistake you have disabled the Silk Test Chrome extension, you have to re-install the
extension from the Chrome Web Store.

• If enabling the Silk Test Chrome extension is not possible, because you have no access to the
Chrome Web Store, remove the registry key HKEY_LOCAL_MACHINE\SOFTWARE\[Wow6432Node
\]Google\Chrome\Extensions\cjkcicfagnoafgjpgnpcdfllcnneidjj:

1. In the Start menu, type regedit into the search box and press Enter.
2. In the Registry Editor, navigate to HKEY_LOCAL_MACHINE\SOFTWARE\[Wow6432Node

\]Google\Chrome\Extensions.
3. Right click cjkcicfagnoafgjpgnpcdfllcnneidjj and select Delete.

Note: If the Silk Test Chrome extension symbol is marked red, this indicates an error with the Silk Test
Chrome support.

Manually Creating Tests for Dynamic Popup Menus
You must enable xBrowser extensions and use the Open Agent to create scripts that use dynamic object
recognition.

Although the xBrowser extension does not support recording, you can manually create scripts that test
dynamic popup menus. When you manually create scripts use the Record Window Identifiers dialog box
to identify the locator strings for dynamic object recognition. After you determine which event needs to be
triggered in order to pop up the menu, trigger it either by using native user input, by moving the mouse over
the element or clicking the element, or by triggering the event directly. For example, to trigger the event,
type:

DomElement.ExecuteJavaScript("currentElement.onmouseover()"))

xBrowser Frequently Asked Questions
This section includes a collection of questions that you might encounter when testing your Web application.

How do I Verify the Font Type Used for the Text of an Element?

You can access all attributes of the currentStyle attribute of a DOM element by separating the attribute
name with a ":".

306 | Testing in Your Environment with the Open Agent

https://chrome.google.com/webstore/detail/silk-test-chrome-extensio/cjkcicfagnoafgjpgnpcdfllcnneidjj?utm_source=chrome-app-launcher-info-dialog

Internet Explorer 8 or earlier wDomElement.GetProperty("currentStyle:fontName")

All other browsers, for example
Internet Explorer 9 or later and
Mozilla Firefox

wDomElement.GetProperty("currentStyle:font-name")

What is the Difference Between textContents, innerText, and innerHtml?

• textContents is all text contained by an element and all its children that are for formatting purposes
only.

• innerText returns all text contained by an element and all its child elements.
• innerHtml returns all text, including html tags, that is contained by an element.

Consider the following html code.

<div id="mylinks">
 This is my link collection:

 Bye bye Borland
 Welcome to Micro Focus

</div>

The following table details the different properties that return.

Code Returned Value

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("textContents")

This is my link collection:

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerText")

This is my link collection:Bye bye Borland
Welcome to Micro Focus

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerHtml")

This is my link collection:

 Bye bye
Borland
 Welcome to
Micro Focus

Note: In Silk Test 13.5 or later, whitespace in texts, which are retrieved through the textContents
property of an element, is trimmed consistently across all supported browsers. For some browser
versions, this whitespace handling differs to Silk Test versions prior to Silk Test 13.5. You can re-
enable the old behavior by setting the OPT_COMPATIBILITY option to a version lower than 13.5.0.

I Configured innerText as a Custom Class Attribute, but it Is Not Used in Locators

A maximum length for attributes used in locator strings exists. InnerText tends to be lengthy, so it might
not be used in the locator. If possible, use textContents instead.

What Should I Take Care Of When Creating Cross-Browser Scripts?

When you are creating cross-browser scripts, you might encounter one or more of the following issues:

• Different attribute values. For example, colors in Internet Explorer are returned as "# FF0000" and in
Mozilla Firefox as "rgb(255,0,0)".

Testing in Your Environment with the Open Agent | 307

• Different attribute names. For example, the font size attribute is called "fontSize" in Internet Explorer
8 or earlier and is called "font-size" in all other browsers, for example Internet Explorer 9 or later
and Mozilla Firefox.

• Some frameworks may render different DOM trees.

How Can I See Which Browser I Am Currently Using?

The BrowserApplication class provides a property "browsertype" that returns the type of the
browser. You can add this property to a locator in order to define which browser it matches.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Examples

To get the browser type, type the following into the locator:

browserApplication.GetProperty("browsertype")

Additionally, the BrowserWindow provides a method GetUserAgent that returns the user agent string of
the current window.

Which Locators are Best Suited for Stable Cross-Browser Testing?

The built in locator generator attempts to create stable locators. However, it is difficult to generate quality
locators if no information is available. In this case, the locator generator uses hierarchical information and
indices, which results in fragile locators that are suitable for direct record and replay but ill-suited for stable,
daily execution. Furthermore, with cross-browser testing, several AJAX frameworks might render different
DOM hierarchies for different browsers.

To avoid this issue, use custom IDs for the UI elements of your application.

Logging Output of My Application Contains Wrong Timestamps

This might be a side effect of the synchronization. To avoid this problem, specify the HTML synchronization
mode.

My Test Script Hangs After Navigating to a New Page

This can happen if an AJAX application keeps the browser busy (open connections for Server Push /
ActiveX components). Try to set the HTML synchronization mode. Check the Page Synchronization for
xBrowser topic for other troubleshooting hints.

Recorded an Incorrect Locator

The attributes for the element might change if the mouse hovers over the element. Silk Test Classic tries to
track this scenario, but it fails occasionally. Try to identify the affected attributes and configure Silk Test
Classic to ignore them.

Rectangles Around Elements in Internet Explorer are Misplaced

• Make sure the zoom factor is set to 100%. Otherwise, the rectangles are not placed correctly.
• Ensure that there is no notification bar displayed above the browser window. Silk Test Classic cannot

handle notification bars.

Link.Select Does Not Set the Focus for a Newly Opened Window in Internet Explorer

This is a limitation that can be fixed by changing the Browser Configuration Settings. Set the option to
always activate a newly opened window.

308 | Testing in Your Environment with the Open Agent

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

DomClick(x, y) Is Not Working Like Click(x, y)

If your application uses the onclick event and requires coordinates, the DomClick method does not
work. Try to use Click instead.

FileInputField.DomClick() Will Not Open the Dialog

Try to use Click instead.

The Move Mouse Setting Is Turned On but All Moves Are Not Recorded. Why Not?

In order to not pollute the script with a lot of useless MoveMouse actions, Silk Test Classic does the
following:

• Only records a MoveMouse action if the mouse stands still for a specific time.
• Only records MoveMouse actions if it observes activity going on after an element was hovered over. In

some situations, you might need to add some manual actions to your script.
• Silk Test Classic supports recording mouse moves only for Web applications, Win32 applications, and

Windows Forms applications. Silk Test Classic does not support recording mouse moves for child
technology domains of the xBrowser technology domain, for example Apache Flex and Swing.

I Need Some Functionality that Is Not Exposed by the xBrowser API. What Can I Do?

You can use ExecuteJavaScript() to execute JavaScript code directly in your Web application. This
way you can build a workaround for nearly everything.

Why Are the Class and the Style Attributes Not Used in the Locator?

These attributes are on the ignore list because they might change frequently in AJAX applications and
therefore result in unstable locators. However, in many situations these attributes can be used to identify
objects, so it might make sense to use them in your application.

Dialog is Not Recognized During Replay

When recording a script, Silk Test Classic recognizes some windows as Dialog. If you want to use such a
script as a cross-browser script, you have to replace Dialog with Window, because some browsers do not
recognize Dialog.

For example, the script might include the following line:

/BrowserApplication//Dialog//PushButton[@caption='OK']

Rewrite the line to enable cross-browser testing to:

/BrowserApplication//Window//PushButton[@caption='OK']

Why Do I Get an Invalidated-Handle Error?

This topic describes what you can do when Silk Test Classic displays the following error message: The
handle for this object has been invalidated.

This message indicates that something caused the object on which you called a method, for example
WaitForProperty, to disappear. For example, if something causes the browser to navigate to a new
page, during a method call in a Web application, all objects on the previous page are automatically
invalidated.

When testing a Web application, the reason for this problem might be the built-in synchronization. For
example, suppose that the application under test includes a shopping cart, and you have added an item to
this shopping cart. You are waiting for the next page to be loaded and for the shopping cart to change its
status to contains items. If the action, which adds the item, returns too soon, the shopping cart on the

Testing in Your Environment with the Open Agent | 309

first page will be waiting for the status to change while the new page is loaded, causing the shopping cart
of the first page to be invalidated. This behavior will result in an invalidated-handle error.

As a workaround, you should wait for an object that is only available on the second page before you verify
the status of the shopping cart. As soon as the object is available, you can verify the status of the shopping
cart, which is then correctly verified on the second page.

Why Are Clicks Recorded Differently in Internet Explorer 10?

When you record a Click on a DomElement in Internet Explorer 10 and the DomElement is dismissed
after the Click, then the recording behavior might not be as expected. If another DomElement is located
beneath the initial DomElement, Silk Test records a Click, a MouseMove, and a ReleaseMouse, instead
of recording a single Click.

A possible workaround for this unexpected recording behavior depends on the application under test.
Usually it is sufficient to delete the unnecessary MouseMove and ReleaseMouse events from the
recorded script.

Testing the Insurance Company Sample Web Application
Silk Test Classic provides a sample insurance company Web application, http://demo.borland.com/
InsuranceWebExtJS/.

To complete a tutorial for how to test the insurance company Web application using Silk Test Classic,
complete each of the following steps. Or, in the Help, click the Contents tab and then expand Testing in
Your Environment > Testing Web Applications > Using the xBrowser Tech Domain > Testing the
Insurance Company Sample Web Application. Follow the topics sequentially in the Testing the
Insurance Company Sample Web Application book to test the sample Web application using Silk Test
Classic.

To test the sample Web application, follow these steps:

• Create a New Project for the insurance company Web application.
• Configure the insurance company Web application.
• Record a test case for the insurance company Web site.
• Replay the test case for the insurance company Web site.
• Modify the insurance company test case to replay tests in a different browser than Internet Explorer.

Creating a New Project for the Insurance Company Web Application

The type of project that you select determines the default Agent. For Web application projects, the Open
Agent is automatically set as the default agent. Silk Test Classic uses the default agent when configuring
an application and recording a test case.

1. Click File > New Project, or click Open Project > New Project on the Basic workflow bar. The Create
Project dialog box opens.

2. Type a project name and a description in the appropriate fields.

3. Click OK to save your project in the default location, C:\Users\<Current user>\Documents\Silk
Test Classic Projects. Silk Test Classic creates a <Project name> folder within this directory,
saves the projectname.vtp and projectname.ini to this location and copies the extension .ini
files, which are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the extend
subdirectory. If you do not want to save your project in the default location, click Browse and specify the
folder in which you want to save your project.

Silk Test Classic creates your project and displays nodes on the Files and Global tabs for the files and
resources associated with this project.

310 | Testing in Your Environment with the Open Agent

http://demo.borland.com/InsuranceWebExtJS
http://demo.borland.com/InsuranceWebExtJS

Configuring the Insurance Company Web Application

When you configure an application, Silk Test Classic automatically creates a base state for the application.
An application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended execution.

1. Click Configure Applications on the Basic Workflow bar.

If you do not see Configure Applications on the Basic Workflow bar, ensure that the default Agent is
set to the Open Agent.

The Select Application dialog box opens.

2. Select the Web tab.

The New Web Site Configuration page opens.

3. Select Internet Explorer.

You can use other supported browsers instead of Internet Explorer to replay tests, but not to record
tests.

4. In the Browse to URL text box, type http://demo.borland.com/InsuranceWebExtJS.

5. Click OK.

The Choose name and folder of the new frame file page opens. Silk Test Classic configures the
recovery system and names the corresponding file frame.inc by default.

6. Navigate to the location in which you want to save the frame file.

7. In the File name field, type the name for the frame file that contains the default base state and recovery
system. Then, click Save.

Silk Test Classic automatically creates a base state for the application. By default, Silk Test Classic lists
the caption of the main window of the application as the locator for the base state. When you configure
an application, Silk Test Classic adds an include file based on the technology or browser type that you
enable to the Use files location in the Runtime Options dialog box. For instance, if you configure an
application that uses one of the supported browsers, Silk Test Classic adds the xBrowser.inc file to
the Runtime Options dialog box.

Silk Test Classic opens the Web page. Record the test case whenever you are ready.

Recording a Test Case for the Insurance Company Web Site

1. Click Record Testcase on the Basic Workflow bar. The Record Testcase dialog box opens.

2. Type the name of your test case in the Testcase name field.

For example, type ZipTest.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing. If you choose DefaultBaseState
as the application state, the test case is recorded in the script file as: testcase testcase_name ().

4. If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.

Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

5. Click Start Recording. Silk Test Classic:

• Closes the Record Testcase dialog box.
• Starts your application, if it is not already running
• Removes the editor window from the display.
• Displays the Recording status window.

Testing in Your Environment with the Open Agent | 311

http://demo.borland.com/InsuranceWebExtJS

• Waits for you to take further action.

6. In the insurance company Web site, perform the following steps:

a) From the Select a Service or login list box, select Auto Quote. The Automobile Instant Quote
page opens.

b) Type a zip code and email address in the appropriate fields, click an automobile type, and then click
Next.

c) Specify an age, click a gender and driving record type, and then click Next.
d) Specify a year, make, and model, click the financial info type, and then click Next. A summary of the

information you specified displays.
e) Point to the Zip Code that you specified and press Ctrl+Alt to add a verification to the script.

You can add a verification for any of the information that displays.

The Verify Properties dialog box opens.
f) Check the textContents check box and then click OK. A verification action is added to the script for

the zip code text.

An action that corresponds with each step is recorded.

7. To review what you have recorded, click Stop Recording in the Recording window.

Silk Test Classic displays the Record Testcase dialog box, which contains the code that has been
recorded for you.

8. Click Paste to Editor.

9. Click File > Save.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Replaying a Test Case for the Insurance Company Web Site

Replay a test to ensure that it works as expected.

1. Make sure that the test case you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select the ZipTest test case.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. Click Run.

312 | Testing in Your Environment with the Open Agent

Silk Test Classic runs the test case and generates a results file. The results file describes whether the
test passed or failed, and provides summary information.

Modifying the Insurance Company Test Case to Replay Tests in a Different Browser Instead Of
Internet Explorer

The original base state uses Internet Explorer as the browser. To additionally replay tests in a different
browser, create a base state for the browser type and add it to the existing base state file.

1. Click Configure Applications on the Basic Workflow bar.

If you do not see Configure Applications on the Basic Workflow bar, ensure that the default Agent is
set to the Open Agent.

The Select Application dialog box opens.

2. Select the Web tab.

The New Web Site Configuration page opens.

3. Select the browser on which you want to replay the test.

You can use other supported browsers instead of Internet Explorer to replay tests, but not to record
tests.

4. In the Browse to URL text box, type http://demo.borland.com/InsuranceWebExtJS.

5. Click OK.

If you have selected an existing instance of Google Chrome, Silk Test Classic checks whether the
automation support is included. If the automation support is not included, Silk Test Classic restarts
Google Chrome.

The Choose name and folder of the new frame file page opens. Silk Test Classic configures the
recovery system and names the corresponding file frame1.inc by default.

6. Navigate to the location in which you want to save the frame file.

7. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save.

8. Copy the window declaration for the additional browser into the original frame1.inc file.

frame1.inc must not contain two window declarations of the same name, so rename the Internet
Explorer declaration to InternetExplorer and the new declaration to another name, for example
Firefox.

9. To ensure that each of the window declarations works with the appropriate browser type, add the
browsertype property to the locator.

For example, "//BrowserApplication[@browsertype='Firefox']".

10.Determine which browser you want to use and change the const wDynamicMainWindow =
<browsertype> to use that browser and then replay the test.

For example, you might type const wDynamicMainWindow = InternetExplorer.

The following code shows a frame file that includes window declarations for Internet Explorer, Mozilla
Firefox, and Google Chrome. You can copy the following code by choosing Start > Programs > Silk > Silk
Test > Sample Scripts > 4Test and opening the frame.inc file.

// This frame.inc contains window declarations for Windows Internet Explorer,
// Mozilla Firefox, and Google Chrome.
// The wDynamicMainWindow variable indicates that the dynamic base state
// will be used. The window declaration that is assigned here will be
// used for launching the application and waiting for the main window.
// This is where you can decide whether to run your tests on Windows Internet
Explorer,
// Mozilla Firefox, or Google Chrome.
const wDynamicMainWindow = InternetExplorer

// Window declaration for Windows Internet Explorer

Testing in Your Environment with the Open Agent | 313

http://demo.borland.com/InsuranceWebExtJS

window BrowserApplication InternetExplorer

// Use the browsertype property in order to ensure Windows Internet Explorer
// is running. The locator does not require the browsertype.
locator "//BrowserApplication[@browsertype='Internet Explorer']"

// The working directory of the application when it is invoked
const sDir = "C:\Program Files\Internet Explorer"

// The command line used to invoke the application
const sCmdLine = "C:\Program Files\Internet Explorer\IEXPLORE.EXE"

// The start URL
const sUrl = "http://demo.borland.com/InsuranceWebExtJS"

// Window declaration for Mozilla Firefox
window BrowserApplication Firefox

// Use the browsertype property in order to ensure Mozilla Firefox
// is running. The locator does not require the browsertype.
locator "//BrowserApplication[@browsertype='Firefox']"

// The working directory of the application when it is invoked
const sDir = "C:\Program Files\Mozilla Firefox"

// The command line used to invoke the application
const sCmdLine = "C:\Program Files\Mozilla Firefox\firefox.exe"

// The start URL
const sUrl = "http://demo.borland.com/InsuranceWebExtJS"

// Window declaration for Google Chrome
window BrowserApplication GoogleChrome

// Use the browsertype property in order to ensure Google Chrome
// is running. The locator does not require the browsertype.
locator "//BrowserApplication[@browsertype='Google Chrome']"

// The working directory of the application when it is invoked
const sDir = "C:\Users\<current user>\AppData\Local\Google\Chrome\Application"

// The command line used to invoke the application
const sCmdLine = "C:\Users\<current user>\AppData\Local\Google\Chrome
\Application\chrome.exe"

// The start URL
const sUrl = "http://demo.borland.com/InsuranceWebExtJS"

xBrowser Classes
This section lists the classes that are used for the xBrowser technology domain.

Testing Windows API-Based Applications
This section describes how Silk Test Classic provides built-in support for testing Microsoft Windows API-
based applications.

314 | Testing in Your Environment with the Open Agent

Overview of Windows API-Based Application Support
Silk Test Classic provides built-in support for testing Microsoft Windows API-based applications. Several
objects exist in Microsoft applications that Silk Test Classic can better recognize if you enable Accessibility.
For example, without enabling Accessibility Silk Test Classic records only basic information about the menu
bar in Microsoft Word and the tabs that display in Internet Explorer 7.0. However, with Accessibility
enabled, Silk Test Classic fully recognizes those objects. You can also improve Silk Test Classic object
recognition by defining a new window, if necessary.

You can test Windows API-based applications using the Classic or Open Agent.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Object Recognition

Windows API-based applications support hierarchical object recognition and dynamic object recognition.
You can create tests for both dynamic and hierarchical object recognition in your test environment. Use the
method best suited to meet your test requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

To test Windows API-based applications using hierarchical object recognition, record a test for the
application that you want to test. Then, replay the tests at your convenience.

Supported Controls

For a complete list of the record and replay controls available for Windows-based testing for each Agent
type, view the WIN32.inc and winclass.inc file. To access the WIN32.inc file, which is used with the
Open Agent, navigate to the <SilkTest directory>\extend\WIN32 directory. By default, this file is
located in C:\Program Files\Silk\SilkTest\extend\WIN32\WIN32.inc. To access the
winclass.inc file, which is used with the Classic Agent, navigate to the <SilkTest directory>\
directory. By default, this file is located in C:\Program Files\Silk\SilkTest\winclass.inc.

Locator Attributes for Windows API-Based
Applications
Silk Test Classic supports the following locator attributes for the controls of Windows API-based client/
server applications:

• caption.
• windowid.
• priorlabel. For controls that do not have a caption, priorlabel is used as the caption

automatically. For controls with a caption, it may be easier to use the caption.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Suppressing Controls (Classic Agent)
This functionality is supported only if you are using the Classic Agent.

You can suppress the controls for certain classes for .NET, Java SWT, and Windows API-based
applications. For example, you might want to ignore container classes to streamline your test cases.

Testing in Your Environment with the Open Agent | 315

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Ignoring these unnecessary classes simplifies the object hierarchy and shortens the length of the lines of
code in your test scripts and functions. Container classes or ‘frames’ are common in GUI development, but
may not be necessary for testing.

The following classes are commonly suppressed during recording and playback:

Technology Domain Class

.NET Group

Java SWT org.eclipse.swt.widgets.Composite

org.eclipse.swt.widgets.Group

Windows API-based applications Group

To suppress specific controls:

1. Click Options > Class Map. The Class Map dialog box opens.

2. In the Custom class field, type the name of the class that you want suppress.

The class name depends on the technology and the extension that you are using. For Windows API-
based applications, use the Windows API-based class names. For Java SWT applications, use the fully
qualified Java class name. For example, to ignore the SWT_Group in a Windows API-based
application, type SWT_Group, and to ignore to ignore the Group class in Java SWT applications, type
org.eclipse.swt.widgets.Group.

3. In the Standard class list, select Ignore.

4. Click Add. The custom class and the standard class display at the top of the dialog box.

Suppressing Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.

For example, you might want to ignore container classes to streamline your test cases.

To suppress specific controls:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. Type the name of the class that you want to ignore during recording and playback into the text box.

If the text box already contains classes, add the new classes to the end of the list. Separate the classes
with a comma. For example, to ignore both the AOL Toolbar and the _AOL_Toolbar class, type AOL
Toolbar, _AOL_Toolbar into the text box.

The OPT_TRANSPARENT_CLASSES option is set to true for these classes.

4. Click OK. The OPT_TRANSPARENT_CLASSES option is set to true for these classes, which means
the classes are added to the list of the classes that are ignored during recording and playback.

Configuring Standard Applications
A standard application is an application that does not use a Web browser, such as a Windows application
or Java SWT application.

316 | Testing in Your Environment with the Open Agent

Configure the application that you want to test to set up the environment that Silk Test Classic will create
each time you record or replay a test case.

1. Start the application that you want to test.

2. Click Configure Application on the basic workflow bar.

If you do not see Configure Application on the workflow bar, ensure that the default agent is set to the
Open Agent.

The Select Application dialog box opens.

3. Select the Windows tab.

4. Select the application that you want to test from the list.

Note: If the application that you want to test does not appear in the list, uncheck the Hide
processes without caption check box. This option, checked by default, is used to filter only those
applications that have captions.

5. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

6. Click OK.

• If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame.inc by default.

• If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application and opens
the include file.

9. Record the test case whenever you are ready.

Note: For SAP applications, you must set Ctrl+Alt as the shortcut key combination to use. To change
the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

Determining the priorLabel in the Win32 Technology
Domain
To determine the priorLabel in the Win32 technology domain, all labels and groups in the same window as
the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, the priorLabel is determined based upon the

following criteria:

• If one label is to the left and the other above the control, the left one is preferred.
• If both levels are to the left of the control, the upper one is preferred.
• If both levels are above the control, the left one is preferred.

Testing in Your Environment with the Open Agent | 317

• If the closest control is a group control, first all labels within the group are considered according to the
rules specified above. If no labels within the group are eligible, then the caption of the group is used as
the priorLabel.

318 | Testing in Your Environment with the Open Agent

Using Advanced Techniques with the Open
Agent

This section describes advanced techniques for testing you applications with Silk Test Classic and the
Open Agent.

Starting from the Command Line
This section describes how you can start Silk Test Classic from the command line.

Starting Silk Test Classic from the Command Line
You can start the Silk Test Classic executable program from the command line by:

• Clicking Run in the Start menu.
• Using the command-line prompt in a DOS window or batch file.

The syntax is:

Partner [-complog filename] [-m mach] [-opt optionset.opt] [-p mess] [-proj
filename [-base filename]] [[-q] [-query query name] [-quiet] [-r filename] [-
resexport] [-resextract] [-r] scr.t/suite.s/plan.pln/link.lnk [args]]

The filename specified for various options expects the file to be located in the working directory (the
default location is the Silk Test Classic install directory, c:\Program Files\Silk\SilkTest\). If you
want to use a file that is located in another directory, you must specify the full path in addition to the
filename.

Options

The following table lists all the options to the partner command.

args Optional arguments to a script file. You can access the arguments using the GetArgs
function and use them with your scripts.

If you pass arguments in the command line, the arguments provided in the command line
are used and any arguments specified in the currently loaded options set are not used. To
use the arguments in the currently loaded options set, do not specify arguments in the
command line.

For more information, see Passing arguments to a script.

-complog Tells Silk Test Classic to log compilation errors to a file you specify. Enter the argument as
-complog filename. For example: partner [-complog c:\testing
\logtest1.txt].

If you include this argument, each time you do a compilation Silk Test Classic checks to
see if the file you named exists. If it does not already exist, Silk Test Classic creates and
opens it. If the file already exists, Silk Test Classic opens it and adds the information. The
number of errors is written in the format n error(s), for example 0 errors, 1 error,
or 50 errors. Compilation errors are written to the error log file as they are displayed in
the "Errors" window. The error log file is automatically saved and closed when Silk Test
Classic finishes writing errors to it.

Using Advanced Techniques with the Open Agent | 319

-m Specifies the target machine. The default is the current machine. Call the 4Test built-in
function Connect to connect to a different machine at runtime.

In order to use the -m switch, you need to have the Network setting of the Runtime
Options dialog box set to TCP/IP or NetBIOS. If this is set to '(disabled)', the target
machine is ignored. To set the Network setting, either set it interactively in the Runtime
Options dialog box before running from the command line, or save the setting in an option
set and add the '-opt <option set>' argument to the command line.

-opt Specifies an options set. Must be followed by the path of the .opt file you want to use.

-p Provided for use with a Windows shell program that is running Silk Test Classic as a batch
task. The option enables another Windows program to receive a message containing the
number of errors that resulted from the scripts run. Silk Test Classic broadcasts this
message using the Windows PostMessage function, with the following arguments:

• hWnd = HWND_BROADCAST

• uiMsg = RegisterWindowMessage (mess)

• wParam = 0

• lParam = number of errors

To take advantage of the -p option, the shell program that runs Silk Test Classic should
first register mess, and should look for mess while Silk Test Classic is running.

-proj Optional argument specifying the project file or archived project to load when starting Silk
Test Classic or Silk Test Classic Runtime. For example, partner –proj d:\temp
\testapp.vtp –r agent.pln.

-base is an optional argument to –proj. You use the base argument to specify the
location where you want to unpack the package contents. For example, partner –proj
d:\temp\testapp.stp –base c:\rel30\testapp unpacks the contents of the
package to the c:\rel30\testapp directory.

-q Quits Silk Test Classic after the script, suite, or test plan completes.

-query Specifies a query. Must be followed by the name of a saved query. Tells Silk Test Classic to
perform an Include > Open All, then Testplan > Mark By Named Query, then Run >
Marked Tests.

-quiet Starts Silk Test Classic in "quiet mode", which prevents any pop-up dialog boxes from
displaying when Silk Test Classic starts up.

The quiet option is particularly useful if you are doing unattended testing where a user is
not available to respond to any pop-up dialog boxes that may display.

-r Must be the last option specified, followed only by the name of a Silk Test Classic file to
open. This includes files such as script (and, optionally, arguments that the script takes), a
suite, test plan, or link file. If you specify a link file, tells Silk Test Classic to resolve the link
and attempt to open the link target. Otherwise, tells Silk Test Classic to run the specified
script, suite, or test plan, optionally passing args as arguments to a script file. For example,
partner –proj d:\temp\testapp.stp –base c:\rel30\testapp –r
Agent.pln unpacks the archive from the temp subdirectory into the c:\rel30\testapp
subdirectory and then loads and executes the Agent.pln file.

-resexport Tells Silk Test Classic to export a one line summary of the most recent results sets to .rex
files automatically. Specifying -resexport has the same effect as if each script run
invokes the ResExportOnClose function during its execution.

320 | Using Advanced Techniques with the Open Agent

-resextract Tells Silk Test Classic to extract all information from the most recent results sets to a .txt
file. Both the Silk Test Classic Extract menu command and the -resextract option
create UTF-8 files.

script.t/
suite.s/
plan.pln/
link.lnk

The name of the Silk Test Classic script, suite, test plan, or link file to load, run, or open.

Examples

To load Silk Test Classic, type: partner

To run the test.s suite, type: partner -r test.s on system "sys1"

To run the test.t script, type: partner -m sys1 -r test.t

To run the test.t script with arguments, type: partner -r test.t arg1 arg2

To run the tests marked by the query named query3 in tests.pln, type: partner -
query query3 -r tests.pln

To run tests.pln, and export the most recent results set from tests.res to tests.rex, type:
partner -q -resexport -r tests.pln

To edit the test.inc include file, type: partner test.inc

Recording a Test Frame
This section describes how you can record a test frame.

Overview of Object Files
Object files are the compiled versions of include (.inc) or script (.t) files. Object files are saved with an
"o" at the end of the extension, for example, .ino, or .to. Object files cannot be edited; the only way to
change compiled objects is to recompile the include or script file. When you save a script or include file, a
source file and an object file are saved. Object files are not platform-specific; you can use them on all
platforms that Silk Test Classic supports.

In order for Silk Test Classic to run a script or include file that is in source form, it must compile it, which
can be time-consuming. Object files, on the other hand, are ready to run.

Note: You cannot call objects that exist in the object file (.to) from a test plan; you must have the
script file (.t).

To disable saving object files during compilation, the AutoComplete options on the General Options
dialog box as well as the Save object files during compilation option on the Runtime Options dialog
box need to be unchecked.

Silk Test Classic always uses object files if they are available. When you open a script file or an include file,
Silk Test Classic loads the corresponding object file as well, if there is one. If the object file is not older than
the source file, Silk Test Classic does not recompile the source file. The script is ready to run. If the source
file is more recent, Silk Test Classic recompiles the source file before the script is run. If you then later save
the source file, Silk Test Classic automatically saves a new object file.

If a file is loaded during compilation, that is, if you include a file in another file that is being compiled, Silk
Test Classic loads only the object file, if it exists and is newer than the corresponding source file.

Using Advanced Techniques with the Open Agent | 321

Object files may not be backward-compatible, although sometimes they will be. Specifically, object files will
not work with versions of Silk Test Classic for which the list of GUI/browser types is different than for the
version used to compile the object file. The list is in 4Test.inc. For example, object files created before
'mswxp' was added as the GUI type for Windows XP cannot be used with ST5.5 SP3, which includes the
'mswxp' GUI type.

If you are using a .ino file, but during compilation Silk Test Classic displays a message that the
corresponding .inc file is missing, then you may be experiencing the object file version incompatibility
explained in the preceding paragraph.

Advantages of Object Files
Advantages of object files include:

• Because object files are ready to run, they do not need to be recompiled if the source file has not
changed. This can save you a lot of time. If your object file is more recent than your source file, the
source file does not need to be recompiled each time the file is first opened in a session; the object file
is used as is.

• You can distribute object files without having to distribute the source equivalents. So if you have built
some tests and include files that you want to distribute but don’t want others to see the sources, you can
distribute only the object files.

Since an object file cannot be run directly:

• Define the code you want to "hide" in an include file, which will be compiled into an .ino object file.
• Call those functions from an ordinary script file.
• Distribute the .t script file and the compiled .ino include file. Users can open and run the script file as

usual, through File > Run.

Here’s a simple example of how you might distribute object files so that others cannot see the code.

In file test.inc, place the definition of a function called TestFunction. When you save the file, the
entire include file is compiled into test.ino.

TestFunction ()
 ListPrint (Desktop.GetActive ())

In the file test.t use the test.inc include file. Silk Test Classic will load the .ino equivalent. Call
TestFunction, which was defined in the include file.

use "test.inc"

 main ()
 TestFunction () // call the function

Distribute test.t and test.ino. Users can open test.t and run it but do not have access to the actual
routine, which resides only in compiled form in test.ino.

Object File Locations
By default, an object file is read from and written to the same directory as its corresponding source file. But
you can specify different directories for object files.

Specifying d:\obj in the Objfile Path text box of the Runtime Options dialog box tells Silk Test Classic to
read and write all object files in the d:\obj directory, regardless of where the source files are located.

Specifying obj in the Objfile Path text box tells Silk Test Classic to read and write an object file in the
directory obj that is a subdirectory of the directory containing the source file. In this scenario, each
directory of source files will have a different directory of object files. For example, if a source file is in d:
\src, its corresponding object file would be read from and written to d:\src\obj.

322 | Using Advanced Techniques with the Open Agent

You can specify several directories in the Objfile Path text box. New files are written to the first directory
specified. Silk Test Classic searches the directories in the order in which you have specified them to find
existing files and will subsequently re-save existing files in the same directory where it found them.

Specifying where Object Files Should be Written To and Read From
By default, an object file is read from and written to the same directory as its corresponding source file. But
you can specify different directories for object files. To specify where object files are written to and read
from:

1. Click Options > Runtime.

2. Specify a directory in the Objfile Path text box.

• Leave the text box empty if you want to store object files in the same directory as their corresponding
source files.

• Specify an absolute path if you want to store all object files in the same directory.
• Specify a relative path if you want object files to be stored in a directory relative to the directory

containing the source files.

3. Click OK.

Object files are saved in the location you specify here. In addition, Silk Test Classic will try to find object
files in these locations. If it fails to find an object file, it will look in the directory containing the source file.

Declarations
This section describes declarations.

GUI Specifiers
Where Silk Test Classic can detect a difference from one platform to the next, it automatically inserts a
GUI-specifier in a window declaration to indicate the platform, for example msw.

For a complete list of the valid GUI specifiers, see GUITYPE data type.

Overview of Dialog Box Declarations
The declarations for the controls contained by a dialog box are nested within the declaration of the dialog
box to show the GUI hierarchy.

The declarations for menus are nested (indented) within the declaration for the main window, and the
declarations for the menu items are nested within their respective menus. This nesting denotes the
hierarchical structure of the GUI, that is, the parent-child relationships between GUI objects. Although a
dialog box is not physically contained by the main window, as is true for menus, the dialog box nevertheless
logically belongs to the main window. Therefore, a parent statement within each dialog box declaration is
used to indicate that it belongs to the main window of the application.

In the sample Text Editor application, MainWin is the parent of the File menu. The File menu is
considered a child of the MainWin. Similarly, all the menu items are child objects of their parent, the File
menu. A child object belongs to its parent object, which means that it is either logically associated with the
parent or physically contained by the parent.

Because child objects are nested within the declaration of their parent object, the declarations for the child
objects do not need to begin with the reserved word window.

Classic Agent Example

The following example from the Text Editor application shows the declarations for the
Find dialog box and its contained controls:

window DialogBox Find
 tag "Find"

Using Advanced Techniques with the Open Agent | 323

 parent TextEditor
 StaticText FindWhatText
 multitag "Find What:"
 "$65535"
 TextField FindWhat
 multitag "Find What:"
 "$1152"
 CheckBox CaseSensitive
 multitag "Case sensitive"
 "$1041"
 StaticText DirectionText
 multitag "Direction"
 "$1072"
 RadioList Direction
 multitag "Direction"
 "$1056"
 PushButton FindNext
 multitag "Find Next"
 "$1"
 PushButton Cancel
 multitag "Cancel"
 "$2"

Open Agent Example

The following example from the Text Editor application shows the declarations for the
Find dialog box and its contained controls:

window DialogBox Find
 locator "Find"
 parent TextEditor
 TextField FindWhat
 locator "@caption='Find What:' or @windowId='65535'"
 StaticText FindWhatText
 locator "@caption='Find What:' or @windowId='1152'"
 CheckBox CaseSensitive
 locator "@caption='Case sensitive' or @windowId='1041'"
 StaticText DirectionText
 locator "@caption='Direction' or @windowId='1072'"
 RadioList Direction
 locator "@caption='Direction' or @windowId='1056'"
 PushButton FindNext
 locator "@caption='Find Next' or @windowId='1'"
 PushButton Cancel
 locator "@caption='Cancel' or @windowId='2'"

Main Window and Menu Declarations

The main window declaration

The main window declaration begins with the 4Test reserved word window. The term window is historical,
borrowed from operating systems and window manager software, where every GUI object, for example
main windows, dialogs, menu items, and controls, is implemented as a window.

As is true for all window declarations, the declaration for the main window is composed of a class, identifier,
and tag or locator.

324 | Using Advanced Techniques with the Open Agent

Classic Agent Example

The following example shows the beginning of the default declaration for the main
window of the Text Editor application:

window MainWin TextEditor
 multitag "Text Editor"
 "$C:\PROGRAMFILES\<SilkTest install directory>\SILKTEST
\TEXTEDIT.EXE"

Part
of
Decl
arati
on

Value for TextEditor's main window.

Clas
s

MainWin

Ident
ifier

TextEditor

Tag Two components in the multiple tag:

• " Text Editor "—The application’s caption

• " executable path "—The full path of the executable file that
invoked the application

Open Agent Example

The following example shows the beginning of the default declaration for the main
window of the Text Editor application:

window MainWin TextEditor
 locator "Text Editor"

Part
of
Decl
arati
on

Value for TextEditor's main window.

Clas
s

MainWin

Ident
ifier

TextEditor

Loca
tor

" Text Editor "—The application’s caption

sCmdLine and wMainWindow constants

When you record the declaration for your application’s main window and menus, the sCmdLine and
wMainWindow constants are created. These constants allow your application to be started automatically
when you run your test cases.

Using Advanced Techniques with the Open Agent | 325

The sCmdLine constant specifies the path to your application’s executable. The following example shows
an sCmdLine constant for a Windows environment:

mswnt const sCmdLine = "c:\program files\<SilkTest install directory>\silktest
\textedit.exe"

The wMainWindow constant specifies the 4Test identifier for the main window of your application. For
example, here is the definition for the wMainWindow constant of the Text Editor application on all platforms:

const wMainWindow = TextEditor

Menu declarations

When you are working with the Classic Agent, the following example from the Text Editor application shows
the default main window declaration and a portion of the declarations for the File menu:

window MainWin TextEditor
 multitag "Text Editor"
 "$C:\PROGRAM FILES\<SilkTest install directory>\SILKTEST\TEXTEDIT.EXE"
 .
 .
 .
 Menu File
 tag "File"
 MenuItem New
 multitag "New"
 "$100"

Menus do not have window IDs, but menu items do, so by default menus are declared with the tag
statement while menu items are declared with the multitag statement.

When you are working with the Open Agent, the following example from the Text Editor application shows
the default main window declaration and a portion of the declarations for the File menu:

window MainWin TextEditor
 locator "Text Editor"
 .
 .
 .
 Menu File
 locator "File"
 MenuItem New
 locator "@caption='New' or windowId='100'"

Window Declarations
This section describes how you can use a window declaration to specify a cross-platform, logical name for
a GUI object, called the identifier, and map the identifier to the object's actual name, called the tag or
locator.

Overview of Window Declarations
A window declaration specifies a cross-platform, logical name for a GUI object, called the identifier,
and maps the identifier to the object’s actual name, called the tag or locator. Because your test cases
use logical names, if the object’s actual name changes on the current GUI, on another GUI, or in a
localized version of the application, you only need to change the tag in the window declarations. You do not
need to change any of your scripts.

You can add variables, functions, methods, and properties to the basic window declarations recorded by
Silk Test Classic. For example, you can add variables to a dialog box declaration that specify what the tab
sequence is, what the initial values are, and so on. You access the values of variables at runtime as you
would a field in a record.

After you record window declarations for the GUI objects in your application and insert them into a
declarations file, called an include file (*.inc), Silk Test Classic references the declarations in the include

326 | Using Advanced Techniques with the Open Agent

file to identify the objects named in your test scripts. You tell Silk Test Classic which include files to
reference through the Use Files field in the Runtime Options dialog box.

Improving Silk Test Classic Window Declarations
The current methodology for identifying window declarations in Microsoft Windows-based applications
during a recording session is usually successful. However, some applications may require an alternate
approach of obtaining their declarations because their window objects are invisible to the Silk Test
Recorder. You can try any of the following:

• Turning on Accessibility - use this if during a session started with the Recorder, Silk Test Classic is
unable to recognize objects within a Microsoft Windows-based application. This functionality is available
only for projects or scripts that use the Classic Agent.

• Defining a new window - use this if turning on Accessibility does not help Silk Test Classic to recognize
the objects. This functionality is available only for projects or scripts that use the Classic Agent.

• Creating a test case that uses dynamic object recognition - use this to create test cases that use XPath
queries to find and identify objects. Dynamic object recognition uses a Find or FindAll method to
identify an object in a test case. This functionality is available only for projects or scripts that use the
Open Agent.

Improving Object Recognition by Defining a New Window
If Silk Test Classic is having difficulty recognizing objects in Internet Explorer or Microsoft Office
applications, try enabling Accessibility. If that does not help improve recognition, try defining a new window.

How defined windows works

When you use Defined Window, you use the mouse pointer to draw a rectangle around the object that Silk
Test Classic cannot record and then assign a name to the object. When you save your work, Silk Test
Classic stores the name and the object’s coordinates in a test script. When you replay the script, Silk Test
Classic uses a Click() method on the center of the area you have specified.

Notes

• Defining a new window is only available for projects or scripts that use the Classic Agent.
• Defining a new window is not available for Java applications or applets.
• Defined Window does not support nesting of defined objects.
• Defined Window is location-based and uses pixel coordinates to locate the object in the parent window.

Thus, if the layout of your parent window changes and/or the object’s coordinates change frequently,
you may need to re-define the window in order for Silk Test Classic to correctly declare the object.

• If you draw a rectangle around an unrecognized object, but also include an object that Silk Test Classic
easily recognizes, Silk Test Classic records both and lists the easily recognized object first.

Recording Window Declarations for the Main Window and Menu
Hierarchy

1. Start your application.

2. Click File > New in Silk Test Classic.

3. Click Test Frame and then click OK. Silk Test Classic displays the New Test Frame dialog box.

4. If you are using the Open Agent, follow the appropriate wizard to select your application, depending on
whether you want to test an application that uses a Web browser or not. When you have stepped
through the wizard, the Choose name and folder of the new frame file dialog box opens.

5. In the Frame filename (Classic Agent) or the File name (Open Agent) text box, accept the default test
frame name (frame.inc), or type a new name.

By default, Silk Test Classic names the new test frame file frame.inc, denoting it is an include file that
contains declarations. If you change the default name of the file, make sure to include the file

Using Advanced Techniques with the Open Agent | 327

extension .inc in the new file name. If you do not, the file is not identified to Silk Test Classic as an
include file and Silk Test Classic will give it a .txt extension and report a compilation error when you click
OK to create the file.

6. If you are using the Classic Agent, select your application from the Application list box.

The Application list box displays all applications that are open and not minimized. If your test
application is not listed, click Cancel, open your application, and click File > New again.

7. Click OK (Classic Agent) or Save (Open Agent). Silk Test Classic creates the new test frame file.
Window declarations display in the test plan editor, which means that the declarations for individual GUI
objects can be expanded to show detail, collapsed to hide detail, and edited if necessary.

Use the member-of Operator to Access Data
Use the member-of operator (.) to reference the data defined in a window declaration. For example, if a
script needs to know which control should have focus when the Find dialog box is first displayed, it can
access this data from the window declaration with this expression:

Find.lwTabOrder[1]

Similarly, to set focus to the third control in the list:

Find.lwTabOrder[3].SetFocus ()

Overview of Identifiers
When you record test cases, Silk Test Classic uses the window declarations in the test frame file to
construct a unique identifier, called a fully qualified identifier, for each GUI object. The fully-qualified
identifier consists of the identifier of the object, combined with the identifiers of the object’s ancestors. In
this way, the 4Test commands that are recorded can manipulate the correct object when you run your test
cases.

If all identifiers were unique, this would not be necessary. However, because it is possible to have many
GUI objects with the same identifier, for example the OK button, a method call must specify as many of the
object’s ancestors as are required to uniquely identify it.

The following table shows how fully qualified identifiers are constructed:

GUI Object Fully-Qualified Identifier Example

Main Window The main window’s identifier TextEdit.SetActive ()

Dialog The dialog’s identifier Find.SetActive ()

Control The identifiers of the dialog and the
control

Find.Cancel.Click ()

Menu item The identifiers of the main window, the
menu, and the menu item

TextEditor.File.Open.Pick ()

The fully qualified identifier for main windows and dialog boxes does not need to include ancestors
because the declarations begin with the keyword window.

An identifier is the GUI object’s logical name. By default, Silk Test Classic derives the identifier from the
object’s actual label or caption, removing any embedded spaces or special characters (such as
accelerators). So, for example, the Save As label becomes the identifier SaveAs. Identifiers can contain
single-byte international characters, such as é and ñ.

If the object does not have a label or caption, Silk Test Classic constructs an identifier by combining the
class of the object with the object’s index. When you are using the Classic Agent, the index is the object’s
order of appearance, from top left to bottom right, in relation to its sibling objects of the same class. For
example, if a text box does not have a label or caption, and it is the first text box within its parent object, the
default identifier is TextField1. When you are using the Open Agent, the index depends on the underlying
technology of the application under test.

328 | Using Advanced Techniques with the Open Agent

Note: The identifier is arbitrary, and you can change the generated one to the unique name of your
choice.

Save the Test Frame
To save a test frame, click File > Save when the test frame is the active window. If it is a new file, it is
automatically named frame.inc. If you already have a frame.inc file, a number is appended to the file
name. You can click File > Save to select another name.

If you are working within a project, Silk Test Classic automatically adds the new test frame (.inc) to the
project.

When saving a file, Silk Test Classic does the following:

• Saves a source file, giving it the .inc extension. The source file is an ASCII text file, which you can
edit. For example: myframe.inc.

• Saves an object file, giving it the .ino extension. The object file is a binary file that is executable, but
not readable by you. For example: myframe.ino.

Specifying How a Dialog Box is Invoked
4Test provides two equivalent ways to invoke a dialog box:

• Use the Pick method to pick the menu item that invokes the dialog box. For example:
TextEditor.File.Open.Pick ()

• Use the Invoke method: Open.Invoke ()

While both are equivalent, using the Invoke method makes your test cases more maintainable. For
example, if the menu pick changes, you only have to change it in your window declarations, not in any of
your test cases.

The Invoke method

To use the Invoke method, you should specify the wInvoke variable of the dialog box. The variable
contains the identifier of the menu item or button that invokes the dialog box. For example:

window DialogBox Open
 tag "Open"
 parent TextEditor
WINDOW wInvoke = TextEditor.File.Open

Improving Object Recognition with Microsoft Accessibility
You can use Microsoft Accessibility (Accessibility) to ease the recognition of objects at the class level.
There are several objects in Internet Explorer and in Microsoft applications that Silk Test Classic can better
recognize if you enable Accessibility. For example, without enabling Accessibility Silk Test Classic records
only basic information about the menu bar in Microsoft Word and the tabs that appear. However, with
Accessibility enabled, Silk Test Classic fully recognizes those objects.

Example

Without using Accessibility, Silk Test Classic cannot fully recognize a DirectUIHwnd
control, because there is no public information about this control. Internet Explorer uses
two DirectUIHwnd controls, one of which is a popup at the bottom of the browser
window. This popup usually shows the following:

• The dialog box asking if you want to make Internet Explorer your default browser.
• The download options Open, Save, and Cancel.

Using Advanced Techniques with the Open Agent | 329

When you start a project in Silk Test Classic and record locators against the
DirectUIHwnd popup, with accessibility disabled, you will see only a single control. If
you enable Accessibility you will get full recognition of the DirectUIHwnd control.

Using Accessibility with the Open Agent
Win32 uses the Accessibility support for controls that are recognized as generic controls. When Win32
locates a control, it tries to get the accessible object along with all accessible children of the control.

Objects returned by Accessibility are either of the class AccessibleControl, Button or CheckBox.
Button and Checkbox are treated specifically because they support the normal set of methods and
properties defined for those classes. For all generic objects returned by Accessibility the class is
AccessibleControl.

Example

If an application has the following control hierarchy before Accessibility is enabled:

• Control

• Control
• Button

When Accessibility is enabled, the hierarchy changes to the following:

• Control

• Control

• Accessible Control
• Accessible Control

• Button
• Button

Enabling Accessibility for the Open Agent
If you are testing a Win32 application and Silk Test Classic cannot recognize objects, you should first
enable Accessibility. Accessibility is designed to enhance object recognition at the class level.

To enable Accessibility for the Open Agent:

1. Click Options > Agent. The Agent Options dialog box opens.

2. Click Advanced.

3. Select the Use Microsoft Accessibility option. Accessibility is turned on.

Calling Windows DLLs from 4Test
This section describes how you can call Windows DLLs from 4Test.

Note: The Open Agent supports DLL calling for both 32-bit and 64-bit DLL calls, while the Classic
Agent supports DLL calling only for 32-bit calls.

Silk Test Classic supports only the _stdcall calling convention.

Note: In some versions of Silk Test Classic, you can also use the _cdecl calling convention, although
it is not officially supported. Using the _cdecl calling convention might lead to unexpected failures of

330 | Using Advanced Techniques with the Open Agent

previously functioning DLL calls when migrating from the Classic Agent to the Open Agent or when
upgrading Silk Test Classic to a newer version in which _cdecl does not work. For example, the _cdecl
calling convention does not work with Silk Test 14.0, Silk Test 15.0, and Silk Test 15.5. If you are
facing such failing DLL calls, ensure that you are using the _stdcall calling convention with the _stdcall
naming decoration rules applied. For additional information on the DLL calling conventions, see /Gd, /
Gr, /Gv, /Gz (Calling Convention).

Aliasing a DLL Name
If a DLL function has the same name as a 4Test reserved word, or the function does not have a name but
an ordinal number, you need to rename the function within your 4Test declaration and use the 4Test alias
statement to map the declared name to the actual name.

For example, the exit statement is reserved by the 4Test compiler. Therefore, to call a function named
exit, you need to declare it with another name, and add an alias statement, as shown here:

dll "mydll.dll"
my_exit ()
alias "exit"

Calling a DLL from within a 4Test Script
A declaration for a DLL begins with the keyword dll. The general format is:

dll dllname.dll
prototype
[prototype]...

where dllname is the name of the dll file that contains the functions you want to call from your 4Test
scripts and prototype is a function prototype of a DLL function you want to call.

Environment variables in the DLL path are automatically resolved. You do not have to use double
backslashes (\\) in the code, single backslashes (\) are sufficient.

The Open Agent supports calling both 32bit and 64bit DLLs. You can specify which type of DLL the Open
Agent should call by using the SetDllCallPrecedence method of the AgentClass class. If you do not
know if the DLL is a 32bit DLL or a 64bit DLL, use the GetDllCallPrecedence function of the
AgentClass Class. The Classic Agent provides support for calling 32bit DLLs only.

Silk Test Classic supports only the _stdcall calling convention.

Note: In some versions of Silk Test Classic, you can also use the _cdecl calling convention, although
it is not officially supported. Using the _cdecl calling convention might lead to unexpected failures of
previously functioning DLL calls when migrating from the Classic Agent to the Open Agent or when
upgrading Silk Test Classic to a newer version in which _cdecl does not work. For example, the _cdecl
calling convention does not work with Silk Test 14.0, Silk Test 15.0, and Silk Test 15.5. If you are
facing such failing DLL calls, ensure that you are using the _stdcall calling convention with the _stdcall
naming decoration rules applied. For additional information on the DLL calling conventions, see /Gd, /
Gr, /Gv, /Gz (Calling Convention).

Prototype syntax

A function prototype has the following form:

return-type func-name ([arg-list])

where:

return-
type

The data type of the return value, if there is one.

func-name An identifier that specifies the name of the function.

Using Advanced Techniques with the Open Agent | 331

http://msdn.microsoft.com/en-us/library/46t77ak2.aspx
http://msdn.microsoft.com/en-us/library/46t77ak2.aspx
http://msdn.microsoft.com/en-us/library/46t77ak2.aspx
http://msdn.microsoft.com/en-us/library/46t77ak2.aspx

arg-list A list of the arguments passed to the function, specified as follows:

[pass-mode] data-type identifier

where:

pass-mode Specifies whether the argument is passed into the function (in), passed
out of the function (out), or both (inout). If omitted, in is the default.

To pass by value, make a function parameter an in parameter.

To pass by reference, use an out parameter if you only want to set the
parameter’s value; use an inout parameter if you want to get the
parameter’s value and have the function change the value and pass the
new value out.

data-type The data type of the argument.

identifier The name of the argument.

You can call DLL functions from 4Test scripts, but you cannot call member functions in a DLL.

Example

The following example writes the text hello world! into a field by calling the
SendMessage DLL function from the DLL user32.dll.

use "mswtype.inc"
use "mswmsg32.inc"

dll "user32.dll"
 inprocess ansicall INT SendMessage (HWND hWndParent, UINT
msg, WPARAM wParam, LPARAM lParam) alias "SendMessageA"

testcase SetTextViaDllCall()
 SendMessage(UntitledNotepad.TextField.GetHandle(),
WM_SETTEXT, 0, "hello world! ")

Passing Arguments to DLL Functions
Valid data types for arguments passed to DLL functions

Since DLL functions are written in C, the arguments you pass to these functions must have the appropriate
C data types. In addition to the standard 4Test data types, Silk Test Classic also supports the following C
data types:

• char, int, short, and long
• unsigned char, unsigned int, unsigned short, and unsigned long
• float and double

Note: Any argument you pass must have one of these data types (or be a record that contains fields
of these types).

Passing string arguments

The char* data type in C is represented by the 4Test STRING data type. The default string size is 256
bytes.

The following code fragments show how a char array declared in a C struct is declared as a STRING
variable in a 4Test record:

// C declaration
typedef struct

332 | Using Advanced Techniques with the Open Agent

{
...
char szName[32];
...
}

// 4Test declaration
type REC is record
...
STRING sName, size=32
...

To pass a NULL pointer to a STRING, use the NULL keyword in 4Test. If a DLL sets an out parameter of
type char* to a value larger than 256 bytes, you need to initialize it in your 4Test script before you pass it to
the DLL function. This will guarantee that the DLL does not corrupt memory when it writes to the
parameter. For example, to initialize an out parameter named my_parameter, include the following line of
4Test code before you pass my_parameter to a DLL:

my_parameter = space(1000)

If the user calls a DLL function with an output string buffer that is less then the minimum size of 256
characters, the original string buffer is resized to 256 characters and a warning is printed. This warning,
String buffer size was increased from x to 256 characters (where x is the length of the
given string plus one) alerts the user to a potential problem where the buffer used might be shorter than
necessary.

Passing arguments to functions that expect pointers

When passing pointers to C functions, use these conventions:

• Pass a 4Test string variable to a DLL that requires a pointer to a character (null terminated).
• Pass a 4Test array or list of the appropriate type to a DLL that requires a pointer to a numerical array.
• Pass a 4Test record to a DLL that requires a pointer to a record. 4Test records are always passed by

reference to a DLL.
• You cannot pass a pointer to a function to a DLL function.

Passing arguments that can be modified by the DLL function

An argument whose value will be modified by a DLL function needs to be declared using the out keyword.
If an argument is sometimes modified and sometimes not modified, then declare the argument as in and
then, in the actual call to the DLL, preface the argument with the out keyword, enclosed in brackets.

For example, the third argument (lParam) to the SendMessage DLL function can be either in or out.
Therefore, it is declared as follows:

// the lParam argument is by default an in argument
dll "user.dll"
LRESULT
SendMessage (HWND hWnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

Then, to call the DLL with an out argument, you use the keyword out, enclosed within brackets:

SendMessage (Open.hWnd, WM_GETTEXT, 256, [out] sText)

Passing window handles to a DLL function

If a parameter takes a window handle, use the hwnd property or the GetHandle method of the AnyWin
class to get the window handle you need.

Using Advanced Techniques with the Open Agent | 333

Using DLL Support Files Installed with Silk Test
Classic
Silk Test Classic is installed with the following include files that contain all the declarations, data types, and
constants necessary for you to call hundreds of functions within the Windows API from your scripts.

msw32.inc Contains use statements for the include files that apply to 32-bit Windows:
mswconst.inc, mswtype.inc, mswfun32.inc, mswmsg32.inc, and
mswutil.inc.

By including msw32.inc in your 4Test scripts, you have access to all the information in
the other include files.

Note: The DLL functions declared in the files included in msw32.inc are aliased
to the W (wide-character) functions.

mswconst.inc Declares constants you pass to DLL functions. These constants contain style bits,
message box flags, codes used by the GetSystemMetrics function, flags used by the
GetWindow function, window field offsets for the GetWindowLong and the
GetWindowWord functions, class field offsets for the GetClassLong and
GetClassWord functions, and menu function flags.

mswfun32.inc Contains 4Test declarations for 32-bit functions in the user32.dll and
kernel32.dll files. The mswfun32.inc file provides wide character support. This
means that you no longer have to edit mswfun32.inc in order to call Windows DLL
functions. See the description of mswfun32.inc in the Dll declaration section.

mswmsg32.inc Declares 32-bit Microsoft Window messages, control messages, and notification codes.

mswtype.inc Declares many data types commonly used in the Windows API.

mswutil.inc Contains the following utility functions:

• PrintWindowDetail

• GetStyleBitList

• PrintStyleBits

Extending the Class Hierarchy
This section describes how you can extend the class hierarchy.

Classes
This section describes the 4Test classes.

Overview of Classes
The class indicates the type, or kind, of GUI object being declared.

Note: This is the 4Test class, not the class that the GUI itself uses internally. For example, although
the class might be Label on one GUI and Text on another, 4Test uses the class name StaticText to
refer to text strings that cannot be edited.

A class defines data and behavior

The class also defines methods (actions) and properties (data) that are inherited by the GUI object. For
example, if you record a declaration for a pushbutton named OK, a test case can legally use a method like

334 | Using Advanced Techniques with the Open Agent

Click on the pushbutton because the Click method is defined at the class level. In other words, the
definition of what it means to click on a pushbutton is included within the definition of the 4Test class itself,
and this definition is inherited by each pushbutton in the GUI. If this were not true, you would have to define
within each GUI object’s window declaration all the methods you wanted to use on that object.

The class as recorded cannot be changed

The one exception is that if the recorded class is CustomWin, meaning that Silk Test Classic does not
recognize the object. You can, when appropriate, map the class to one that is recognized.

Custom classes

Enable an application to perform functions specific to the application and to enhance standard class
functionality. Custom classes are also easy to maintain and can be extended easily by developers. All
custom objects default to the built-in class, CustomWin.

Custom objects fall into two general categories:

Visible
objects

Objects that Silk Test Classic knows about, but cannot identify, for example, the icon in an
About dialog box. Two further categories of visible objects include:

• Common objects are those that look and behave like standard objects, for example, a
third-party object that looks and acts like a PushButton, but is recorded as a
CustomWin.

• Uncommon objects, on the other hand, have no relation to the existing standard objects.
For example, an Icon. there is no corresponding Icon class.

Invisible
objects

Objects that Silk Test Classic cannot recognize at all.

Polymorphism
If a class defines its own version of a method or property, that method or property overrides the one
inherited from an ancestor. This is referred to as polymorphism. For example, the ListBox class has its
own GetContents method, which overrides the GetContents method inherited from the AnyWin class.

CursorClass, ClipboardClass, and AgentClass
The following three classes are not part of the AnyWin class hierarchy, because they define methods for
objects that are not windows:

CursorClass Defines the three methods you can use on the cursor: GetPosition, GetType, and
Wait.

ClipboardClass Defines the two methods you can use on the system clipboard: GetText and
SetText.

AgentClass Defines the methods you can use to set options in the 4Test Agent. The 4Test Agent
is the component of Silk Test Classic that translates the method calls in your test
cases into the appropriate GUI- specific event streams.

Predefined identifiers for Cursor, Clipboard, and Agent

You do not record declarations for the cursor, the clipboard, or the Agent. Instead, you use predefined
identifiers for each of these objects when you want to use a method to act against the object. The
predefined methods for each are:

• 4Test Agent: Agent
• clipboard: Clipboard

Using Advanced Techniques with the Open Agent | 335

• cursor (mouse pointer): Cursor

For example, to set a 4Test Agent option, you use a call such as the following:

Agent.SetOption (OPT_VERIFY_COORD, TRUE)

Defining New Classes with the Open Agent
This functionality is supported only if you are using the Open Agent.

Consider the declarations for the Open and the Save As dialog boxes of the Text Editor application, which
each contain exactly the same child windows:

window DialogBox Open
 locator "Open"
 parent TextEditor
 StaticText FileNameText
 locator "File Name:"
 TextField FileName1
 locator "File Name:"
 ListBox FileName2
 locator "File Name:"
 StaticText DirectoriesText
 locator "Directories:"
 StaticText PathText
 locator "#3"
 ListBox Path
 locator "#2"
 StaticText ListFilesOfTypeText
 locator "List Files of Type:"
 PopupList ListFilesOfType
 locator "List Files of Type:"
 StaticText DrivesText
 locator "Drives:"
 PopupList Drives
 locator "Drives:"
 PushButton OK
 locator "OK"
 PushButton Cancel
 locator "Cancel"
 PushButton Network
 locator "Network"

window DialogBox SaveAs
 locator "Save As"
 parent TextEditor
 StaticText FileNameText
 locator "File Name:"
 TextField FileName1
 locator "File Name:"
 ListBox FileName2
 locator "File Name:"
 StaticText DirectoriesText
 locator "Directories:"
 StaticText PathText
 locator "#3"
 ListBox Path
 locator "#2"
 StaticText ListFilesOfTypeText
 locator "List Files of Type:"
 PopupList ListFilesOfType
 locator "List Files of Type:"
 StaticText DrivesText

336 | Using Advanced Techniques with the Open Agent

 locator "Drives:"
 PopupList Drives
 locator "Drives:"
 PushButton OK
 locator "OK"
 PushButton Cancel
 locator "Cancel"
 PushButton Network
 locator "Network"

It is not uncommon for an application to have multiple dialogs whose only difference is the caption: The
child windows are all identical or nearly identical. Rather than recording declarations that repeat the same
child objects, it is cleaner to create a new class that groups the common child objects.

For example, here is the class declaration for a new class called FileDialog, which is derived from the
DialogBox class and declares each of the children that will be inherited by the SaveAs and Open dialog
boxes:

winclass FileDialog : DialogBox
 parent TextEditor
 StaticText FileNameText
 locator "File Name:"
 TextField FileName1
 locator "File Name:"
 ListBox FileName2
 locator "File Name:"
 StaticText DirectoriesText
 locator "Directories:"
 StaticText PathText
 locator "#3"
 ListBox Path
 locator "#2"
 StaticText ListFilesOfTypeText
 locator "List Files of Type:"
 PopupList ListFilesOfType
 locator "List Files of Type:"
 StaticText DrivesText
 locator "Drives:"
 PopupList Drives
 locator "Drives:"
 PushButton OK
 locator "OK"
 PushButton Cancel
 locator "Cancel"
 PushButton Network
 locator "Network"

To make use of this new class, you must do the following:
1. Rewrite the declarations for the Open and Save As dialog boxes, changing the class to FileDialog.
2. Remove the declarations for the child objects inherited from the new class.
Here are the rewritten declarations for the Open and Save As dialog boxes:

window FileDialog SaveAs
 locator "Save As"
window FileDialog Open
 locator "Open"

For more information on the syntax used in declaring new classes, see the winclass declaration.

The default behavior of Silk Test Classic is to tag all instances of the parent class as the new class. So, if
you record a window declaration against a standard object from which you have defined a new class, Silk
Test Classic records that standard object’s class as the new class. To have all instances declared by
default as the original class, add the following statement to the declaration of your new class: setting
DontInheritClassTag = TRUE. For example, let’s say you define a new class called FileDialog and

Using Advanced Techniques with the Open Agent | 337

derive it from the DialogBox class. Then you record a window declaration against a dialog box. Silk Test
Classic records the dialog box to be of the new FileDialog class, instead of the DialogBox class. To
have Silk Test Classic declare the class of the dialog box as DialogBox, in the FileDialog definition,
set DontInheritClassTag to TRUE. For example:

winclass FileDialog : DialogBox
 setting DontInheritClassTag = TRUE

Defining New Class Properties
You can define new properties for existing classes using the property declaration. You use these class
properties to hold data about an object; you can use class properties anywhere in a script.

DesktopWin
Because the desktop is a GUI object, it derives from the AnyWin class. However, unlike other GUI objects,
you do not have to record a declaration for the desktop. Instead, you use the predefined identifier Desktop
when you want to use a method on the desktop.

For example, to call the GetActive method on the desktop, you use a call like the following:

wActive = Desktop.GetActive ()

Logical Classes
The AnyWin, Control, and MoveableWin classes are logical (virtual) classes that do not correspond to
any actual GUI objects, but instead define methods common to the classes that derive from them. This
means that Silk Test Classic never records a declaration that has one of these classes.

Furthermore, you cannot extend or override logical classes. If you try to extend a logical class, by adding a
method, property or data member to it, that method, property, or data member is not inherited by classes
derived from the class. You will get a compilation error saying that the method/property/data member is not
defined for the window that tries to call it. Nor can you override the class, by rewriting existing methods,
properties, or data members. Your modifications are not inherited by classes derived from the class.

Class Hierarchy (Open Agent)
You can define your own methods and properties, as well as define your own classes. You can also define
your own attributes, which are used in the verification stage in test cases.

The 4Test class hierarchy defines the methods and properties that enable you to query, manipulate, and
verify the data or state of any GUI object in your application. You can define your own methods and
properties, as well as define your own classes. You can also define your own attributes, which are used in
the verification stage in test cases. The following schema shows a listing of the built-in class hierarchy for
the core classes and the Open Agent:

• AgentClass

• AnyWin

• Control

• CheckBox

• ComboBox

• Group

• Link

• ListBox

• ListViewEx

• PageList

• PushButton

• RadioList

338 | Using Advanced Techniques with the Open Agent

• Scale

• StaticText

• StatusBar

• TableEx

• TextField

• ToggleButton

• ToolBar

• TreeView

• DesktopWinOA

• Item

• SeparatorItem

• ToolItem

• CheckBoxToolItem

• DropDownToolItem

• RadioListToolItem

• PushToolItem

• ScrollBar

• HorizontalScrollBar

• VerticalScrollBar

• TableColumn

• TableRow

• Menu

• MenuItem

• MoveableWin

• DialogBox

• MainWin

• WinPart

• ClipboardClass

• ConsoleClass

• CursorClass

Verifying Attributes and Properties
This section describes how you can use attributes and properties to verify test cases.

Attribute Definition and Verification
When you record a test case, you can verify the test case using attributes.

You can choose to verify using either attributes or properties. Generally you will verify using properties,
because property verification is more flexible.

For example, the attributes for the DialogBox class are Caption, Contents, Default button,
Enabled, and Focus. The following 4Test code implements the Default Button attribute in the
winclass.inc file:

attribute "Default button", VerifyDefaultButton, QueryDefaultButton

As this 4Test code shows, each attribute definition begins with the statement, followed by the following
three comma-delimited values:

1. The text that you want to display in the Attribute panel of the Verify Window dialog box. This text must
be a string.

Using Advanced Techniques with the Open Agent | 339

2. The method Silk Test Classic should use to verify the value of the attribute at runtime.
3. The method Silk Test Classic should use to get the actual value of the attribute at runtime.

Defining a New Attribute for an Existing Class
To add one or more attributes to an existing class, use the following syntax:

winclass ExistingClass : ExistingClass...
attribute_definitions

Each attribute definition begins with the attribute statement, followed by the following three comma-
delimited values:

1. The text that you want to display in the Attribute panel of the Verify Window dialog box. This text must
be a string.

2. The method Silk Test Classic should use to verify the value of the attribute at runtime.
3. The method Silk Test Classic should use to get the actual value of the attribute at runtime.

Each attribute definition must begin and end on its own line. When you define a new attribute, you usually
need to define two new methods (steps 2 and 3 above) if none of the built-in methods suffice.

Silk Test Classic allows you to add, delete, or edit the existing functionality of a class; this applies to both
functions and variables of a class. However, we recommend that you do not override a function or a
variable by declaring a function or variable of that same name. Furthermore, you should never override a
variable that has a tag associated with it. You cannot have two variables with the same name in the same
level of an object. If you do so, Silk Test Classic will display a compile error.

Defining New Verification Properties
You can perform verifications in your test cases using properties. These verification properties are different
from class properties, which are defined using the property declaration. Verification properties are used
only when verifying the state of your application in a test case. Silk Test Classic comes with built-in
verification properties for all classes of GUI objects.

You can define your own verification properties, which will be added to the built-in properties listed in the
Verify Window dialog box when you record a test case.

Syntax for Attributes
To add one or more attributes to an existing class, use the following syntax:

winclass ExistingClass : ExistingClass...
attribute_definitions

Each attribute definition must begin and end on its own line.

When you define a new attribute, you usually need to define two new methods if none of the built-in
methods suffices.

For example, to add a new attribute to the DialogBox class that verifies the number of children in the
dialog box, you add code like this to your test frame (or other include file):

winclass DialogBox:DialogBox

 attribute "Number of children", VerifyNumChild, GetNumChild

 integer GetNumChild()
 return ListCount (GetChildren ()) // return count of children of dialog

 hidecalls VerifyNumChild (integer iExpectedNum)
 Verify (GetNumChild (), iExpectedNum, "Child number test")

As this example shows, you use the hidecalls keyword when defining the verification method for the new
attribute.

340 | Using Advanced Techniques with the Open Agent

Hidecalls Keyword
The keyword hidecalls hides the method from the call stack listed in the results. Using hidecalls allows you
to update the expected value of the verification method from the results. If you do not use hidecalls in a
verification method, the results file will point to the frame file, where the method is defined, instead of to the
script. We recommend that you use hidecalls in all verification methods so that you can update the
expected values.

An Alternative to NumChildren as a Class Property
Instead of defining NumChildren as a class property, you could also define it as a variable, then initialize
the variable in a script. For example, in your include file, you would have:

winclass DialogBox : DialogBox
INTEGER NumChild2
 // list of custom verification properties
LIST OF STRING lsPropertyNames = {"NumChild2"}

And in your script, before you do the verification, you would initialize the value for the dialog box under test,
such as:

Find.NumChild2 = ListCount(Find.GetChildren ())

Defining Methods and Custom Properties
This section describes how you can define methods and custom verification properties.

Defining a New Method
To add a method to an existing class, you use the following syntax to begin the method definition:

winclass ExistingClass : ExistingClass

The syntax ExistingClass : ExistingClass means that the declaration that follows extends the
existing class definition, instead of replacing it.

Note: Adding a method to an existing class adds the method to all instances of the class.

Example

To add a SelectAll() method to the TextField class, add the following code to your
frame.inc file:

 winclass TextField : TextField
 SelectAll()
 TypeKeys("<Ctrl+a>")

In your test cases, you can then use the SelectAll method like any other method in
the TextField class.

UntitledNotepad.TextField.SelectAll()

Defining a New Method for a Single GUI Object
To define a new method to use on a single GUI object, not for an entire class of objects, you add the
method definition to the window declaration for the individual object, not to the class. The syntax is exactly
the same as when you define a method for a class.

Using Advanced Techniques with the Open Agent | 341

To add a method to a single GUI object, for example to add the SelectAll() method to a specific
TextField object, locate the GUI object in your frame.inc file, like described in the following code
sample:

window MainWin UntitledNotepad

 ...

 TextField TextField
 locator "//TextField"

In your test cases, you can then use the SelectAll method like any other method of the TextField
object:

window MainWin UntitledNotepad

 ...

 TextField TextField
 locator "//TextField"
 SelectAll()
 TypeKeys("<Ctrl+a>")

Note: Adding a method to a single GUI object adds the method only to the specific GUI object and
not to other instances of the class.

Classic Agent Example

For example, suppose you want to create a method named SetLineNum for a dialog
box named GotoLine, which performs the following actions:

• Invokes the dialog box.
• Enters a line number.
• Clicks OK.

The following 4Test code shows how to add the definition for the SetLineNum method
to the declaration of the GotoLine dialog box.

window DialogBox GotoLine
 tag "Goto Line"
 parent TextEditor
 const wInvoke = TextEditor.Search.GotoLine

 void SetLineNum (STRING sLine)
 Invoke () // open dialog
 Line.SetText (sLine) // populate text field
 // whose identifier is Line
 Accept () // close dialog, accept values

 //Then, to go to line 7 in the dialog, you use this method
call in your testcases:
 GotoLine.SetLineNum (7)

Recording a Method for a GUI Object
If you need to perform an action on an object, and the class does not provide a method for doing so, you
can define your own method in the window declaration for the object. Then, in your scripts, you can use the
method as though it were just another of the built-in methods of the class. You can hand-code methods or
record them.

Before you can record a method, you must have already recorded window declarations.

1. Position the insertion point on the declaration of the GUI object to which you want to add a method.

342 | Using Advanced Techniques with the Open Agent

2. Click Record > Method.

3. On the Record Method dialog box, name the method by typing the name or selecting one of the
predefined methods: BaseState, Close, Invoke, or Dismiss.

4. Click Start Recording. Silk Test Classic is minimized and your application and the SilkTest Record
Status dialog box open.

5. Perform and record the actions that you require.

6. On the SilkTest Record Status dialog box, click Done. The Record Method dialog box opens with the
actions you recorded translated into 4Test statements.

7. On the Record Method dialog box, click OK to paste the code into your include file.

8. Edit the 4Test statements that were recorded, if necessary.

Note: To add a method to a class which is using the Open Agent, you can also manually code the
new method into the script or copy the method into the script from a recorded test case.

Deriving a New Method from an Existing One
To derive a new method from an existing method, you can use the derived keyword followed by the scope
resolution operator (::).

Use the following syntax:

new method : existing method

The following example defines a GetCaption method for WPFNewTextBox that prints the string Caption
as is before calling the built-in GetCaption method (defined in the AnyWin class) and printing its return
value:

winclass WPFNewTextBox : WPFTextBox
GetCaption ()
Print ("Caption as is: ")
Print (derived::GetCaption ())

Defining Custom Verification Properties

1. In a class declaration or in the declaration for an individual object, define the variable
lsPropertyNames as follows:

LIST OF STRING lsPropertyNames

2. Specify each of your custom verification properties as elements of the list lsPropertyNames. Custom
verification properties can be either:

• Class properties, defined using the property statement.
• Variables of the class or individual object.

Any properties you define in lsPropertyNames will override built-in properties with the same name. With
your custom verification properties listed as elements in lsPropertyNames, when you record and run a
test case, those additional properties will be available during verification.

Redefining a Method
There may be some instances in which you want to redefine an existing method. For example, to redefine
the GetCaption method of the Anywin class, you use this 4Test code:

winclass AnyWin : AnyWin
 GetCaption ()
 // insert method definition here

Using Advanced Techniques with the Open Agent | 343

Confirming the Property List
You can use the GetPropertyList method to confirm the list of verification properties for an object. For
example, the following simple test case prints the list of all the verification properties of the Find dialog to
the results file:

testcase FindDialogPropertyConfirm ()
TextEditor.Search.Find.Pick ()
ListPrint (Find.GetPropertyList ())
Find.Cancel.Click ()

Examples
This section provides examples for defining methods and custom verification properties.

Example: Adding a Method to TextField Class
This example adds to the TextField class a method that selects all of the text in the text box.

winclass TextField : TextField
 SelectAll ()
 STRING sKey1, sKey2
 switch (GetGUIType ())
 case mswnt, msw2003
 sKey1 = "<Ctrl-Home>"
 sKey2 = "<Shift-Ctrl-End>"
 case mswvista
 sKey1 = "<Ctrl-Up>"
 sKey2 = "<Shift-Cmd-Down>"
 // return cursor to 1,1
 this.TypeKeys (sKey1)
 // highlight all text
 this.TypeKeys (sKey2)

The keyword this refers to the object the method is being called on.

The preceding method first decides which keys to press, based on the GUI. It then presses the key that
brings the cursor to the beginning of the field. It next presses the key that highlights (selects) all the text in
the field.

Example: Adding Tab Method to DialogBox Class
To add a Tab method to the DialogBox class, you could add the following 4Test code to your frame.inc
file (or other include file):

winclass DialogBox : DialogBox
Tab (INTEGER iTimes optional)
if (iTimes == NULL)
 iTimes = 1
this.TypeKeys ("<tab {iTimes}>")

Example: Defining a Custom Verification Property
Let's look at an example of defining a custom verification property. Say you want to test a dialog box.
Dialog boxes come with the following built-in verification properties:

• Caption
• Children
• DefaultButton
• Enabled
• Focus

344 | Using Advanced Techniques with the Open Agent

• Rect
• State

And let's say that you have defined a class property, NumChildren, that you want to make available to the
verification system.

Here is the class property definition:

property NumChildren
INTEGER Get ()
return ListCount (GetChildren ())

That property returns the number of children in the object, as follows:

• The built-in method GetChildren returns the children in the dialog box in a list.
• The built-in function ListCount returns the number of elements in the list returned by GetChildren.

To make the NumChildren class property available to the verification system (that is, to also make it a
verification property) you list it as an element in the variable lsPropertyNames. So here is part of the
extended DialogBox declaration that you would define in an include file:

winclass DialogBox : DialogBox
 // user-defined property
 property NumChildren
 INTEGER Get ()
 return ListCount (GetChildren ())
 // list of custom verification properties
 LIST OF STRING lsPropertyNames = {"NumChildren"}

Now when you verify a dialog box in a test case, you can verify your custom property since it will display in
the list of DialogBox properties to verify.

Note: As an alternative, instead of defining NumChildren as a class property, you could also define it
as a variable, then initialize the variable in a script. For example, in your include file, you would have:

winclass DialogBox : DialogBox
 INTEGER NumChild2
 // list of custom verification properties
 LIST OF STRING lsPropertyNames = {"NumChild2"}

And in your script-before you do the verification-you would initialize the value for the dialog box under
test, such as:

Find.NumChild2 = ListCount (Find.GetChildren ())

Porting Tests to Other GUIs
This section describes how you can port tests to other GUIs.

Handling Differences Among GUIs
This section describes how you can handle differences between GUIs when porting tests to other GUIs.

Conditionally Loading Include Files
If you are testing different versions of an application, such as versions that run on different platforms or
versions in different languages, you probably have different include files for the different versions. For
example, if your applications run under different languages, you might have text strings that display in
windows defined in different include files, one per language. You want Silk Test Classic to load the proper
include file for the version of the application you are currently testing.

Using Advanced Techniques with the Open Agent | 345

Load Different Include Files for Different Versions of the Test
Application

1. Define a compiler constant.

For example, you might define a constant named MyIncludeFile.

2. Insert the following statement into your 4Test file: use constant.

For example, if you defined a constant MyIncludeFile, insert the following statement: use
MyIncludeFile. In this example, constant can also be an expression that evaluates to a constant at
compile time.

3. When you are ready to compile your 4Test files, specify the file name of the include file you want loaded
as the value of the constant in the Compiler Constants dialog box.

Be sure to enclose the value in quotation marks if it is a string.

4. Compile your code.

Silk Test Classic evaluates all compiler constants and substitutes their values for the constants in your
code. In this case, the constant MyIncludeFile will be evaluated to a file, which will be loaded through
the use statement.

Different Error Messages
The VerifyErrorBox function, shown below, illustrates how to solve the problem of different error
messages on each GUI platform. For example, if a GUI platform always adds the prefix "Error:" to its
message, while the other platforms do not, you might use or create a GUI Specifier for that platform and
then use the VerifyErrorBox function as follows:

VerifyErrorBox (STRING sMsg)
 // verifies that the error box has the correct error
 // message, then dismisses the error box

 const ERROR_PREFIX = "ERROR: "
 const ERROR_PREFIX_LEN = Len (ERROR_PREFIX)
 STRING sActMsg = MessageBox.Message.GetText ()

 // strip prefix "ERROR: " from GUI Specifier for that platform error
messages
 if (GetGUIType () == GUI Specifier for that platform)
 sActMsg = SubStr (sActMsg, ERROR_PREFIX_LEN + 1)

 Verify (sActMsg, sMsg)
 MessageBox.Accept ()

One Logical Control can Have Two Implementations
Consider the case where the same logical control in your application is implemented using different classes
on different GUIs.

If the kinds of actions you can perform against the object classes are similar, and if Silk Test Classic uses
the same method names for the actions, then you do not have a portability problem to address.

For example, the methods for the RadioList and PopupList classes have identical names, because the
actions being performed by the methods are similar. Therefore, if a control in your application is a popup
list on one GUI and a radio list on another, your scripts are already portable.

If the two object classes do not have similar methods, or if the methods have different names, then you
need to port your scripts.

346 | Using Advanced Techniques with the Open Agent

Options Sets and Porting
Options sets save all current options except General Options. Options sets can be very useful when trying
to use the same scripts on different operating systems. The primary differences between the two may be
compiler constants.

For example, you might use the compiler constant sCmdLine. Usually, the command line to invoke an
application differs between the PC operating systems. You could create a compiler constant (note that
there is a string limit on compiler constants) for use in the sCmdLine constant to differentiate between the
platforms' command lines. You might also use a compiler constant for methods that work slightly differently
on the two operating systems, such as the Pick() methods.

Specifying Options Sets
In a test plan, you can specify options sets to be used with the test plan or parts of it. You use options sets
to automatically run different tests that require different options without having to manually open options
sets.

To ensure that everyone working on a project has the same options settings (such as class mapping), do
one of the following:

• Open an Options Set.
• Set these option values at runtime.
• Specify the following statement in the test plan: optionset: filename.opt.

Dependent test cases will run with the specified options set opened. The options set will be closed when it
passes out of scope. If you don't specify a full path name, the file is considered to be in a directory relative
to the directory containing the current test plan or sub-plan.

Remember:

• Options can also be set at runtime in a test script by using the Agent method, SetOption, and
passing in the name of the option and its value.

• Many Agent options and their values are found in the Agent Options dialog box.
• Agent options can be set in a testcase/ function.
• Class map settings, set at runtime, are best set before any tests are executed (for example, in

ScriptEnter) and after each test case (for example TestcaseExit) in case any have been changed in the
course of a test case.

• Class mappings set at runtime using the Agent method SetOption are only in effect during test
execution; these settings are not available to the recorders.

Supporting Differences in Application Behavior
Although you can account for differences in the appearance of your application in the window declarations,
if the application’s behavior is fundamentally different when ported, you need to modify your test cases
themselves. To modify your test cases, you write sections of 4Test code that are platform-specific, and then
branch to the correct section of code using the return value from the GetGUIType built-in function.

This topic shows how to use the GetGUIType function in conjunction with if statements and the switch
statements.

Switch statements

You can use GUI specifiers before an entire switch statement and before individual statements within a
case clause, but you cannot use GUI specifiers before entire case clauses.

testcase GUISwitchExample()
INTEGER i
FOR i=1 to 5
mswxp, mswnt switch(i)

Using Advanced Techniques with the Open Agent | 347

// legal:
mswxp, mswnt switch (i)
 case 1
 mswxp Print ("hello")
 mswnt Print ("goodbye")
 case 2
 mswxp raise 1, "error"
 mswnt Print ("continue")
 default
 mswxp Print ("ok")

// NOT legal:
switch (i)
 mswxp case 1
 Print ("hello")
 mswnt case 1
 Print ("goodbye")

If statements

You can use GUI specifiers in if statements, as long as GUI specifiers used within the statement are
subsets of any GUI specifiers that enclose the entire if statement.

// legal because no GUI specifier
// enclosing entire if statement:
if (i==j)
 msw32, mswnt Print ("hi")
 msw2000 Print ("bye")

// legal because msw is a subset of enclosing specifier:
msw32, msw2000 if (i==j)
 mswnt Print("hi")

// legal for the same reason as preceding example:
msw32, msw2000 if (i==j)
 Print ("hi")
mswnt else
 Print ("Not the same")

// NOT legal because msw2000 is not a subset
// of the enclosing GUI specifier msw:
msw32 if (i==j)
 msw2000 Print ("bye") // Invalid GUI type

If you are trying to test multiple conditions, then you should use a select or switch block. You could use
nested if.else statements, but if you have more than two or three conditions, the levels of indentation
will become cumbersome.

You should not use an if..else if..else block. Although if..else if..else will work, it will be
difficult to troubleshoot exceptions that occur because the results file will always point to the first if
statement even if it was actually a subsequent if statement that raised the exception.

For example, in the following test case, the third string, Not a date, will raise the exception:

*** Error: Incompatible types -- 'Not a date' is not a valid date

The exception actually occurs in the lines containing:

GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006

For the nested if..else and the select blocks, the results file points to those lines as the sources of
the exceptions. However, for the if..else if..else block, the results file points to the first if
statement, in other words to the line:

[-] if IsNull (sVal)

348 | Using Advanced Techniques with the Open Agent

even though that line clearly is not the source of the exception because it does not concern DATETIME
values.

[+] testcase IfElseIfElse ()
[-] LIST OF STRING lsVals = {...}
[] "2006-05-20"
[] "2006-11-07"
[] "Not a date"
[] STRING sVal
[]
[-] for each sVal in lsVals
[-] do
[-] if IsNull (sVal)
[] Print ("No date given")
[-] else if sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] else if GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] else
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]
[-] do
[-] if IsNull (sVal)
[] Print ("No date given")
[-] else
[-] if sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] else
[-] if GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] else
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]
[-] do
[-] select
[-] case IsNull (sVal)
[] Print ("No date given")
[-] case sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] case GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] default
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]

Text Box Requires Return Keystroke
On some GUIs, the Enter/Return key must be pressed after data is entered into a text box. Suppose you
want to create a test case that enters invalid data into the text box, and then checks if the application
detects the error. After the test case enters the invalid data, it needs to use the GetGUIType function to
determine the GUI, and then press the Return key if the GUI requires it.

For example:

// code to enter an invalid string into field
if (GetGUIType () == mswnt)
 MyTextField.TypeKeys ("<Return>")
// code to verify that application detected error

Using Advanced Techniques with the Open Agent | 349

Using Cross-Platform Methods in Your Scripts
In scripts, you can use your cross-platform method names. The window declarations map the cross-
platform method names you use in your scripts to the actual methods required to carry out the actions you
want on each of the GUIs.

Continuing the example from Creating a Class that Maps to Several Silk Test Classic Classes, you use the
Select method in your code to select the control named Direction.

testcase SearchBackward ()

 LISTITEM Item
 Item = "Up"
 Find.Invoke ()
 Find.Direction.Select (Item)
 .
 .
 .
 Find.Dismiss ()

Note: The script does not indicate that anything unusual is happening. All of the steps necessary to
make the Select method work properly, regardless of the class of the object, are encapsulated in the
class and window declarations.

About GUI Specifiers
This section describes GUI specifiers.

Class Declarations
Be careful using GUI specifiers before class declarations; they can be ambiguous. Any ambiguities must be
resolvable at compile-time.

// bad style:
msw winclass myclass
mswnt winclass myclass
window myclass inst // Ambiguous. Is it an instance of
 // the msw class or the mswnt class?

The preceding example’s ambiguity can be resolved by specifying a GUI target with conditional compilation
(so that, for example, only code for msw gets compiled, in which case inst would be an instance of the msw
class or by explicitly using a GUI specifier for the window, as follows:

// good style:
msw winclass myclass
mswnt winclass myclass
msw window myclass inst

Conditional Compilation
If you have GUI-specific code in your scripts and declarations, you can have Silk Test Classic conditionally
compile your code based on the values of the GUI specifiers - only code specific to a particular GUI is
compiled (as well, of course, as all code that is not GUI-specific). This has the following two advantages:

• The compilation is faster.
• The resulting code is smaller and requires less memory to run.

You can also cause conditional compilation by using constants, which are evaluated at compile time.

Constants are not restricted to conditional compilation. You can use constants for any value that you want
resolved at compile time.

350 | Using Advanced Techniques with the Open Agent

Conditionally Compile Code

1. Prefix any 4Test statements that are GUI-specific with the appropriate GUI specifier.

2. Specify the platforms that you want to compile for by entering the appropriate GUI specifiers in the GUI
Targets field in the Runtime Options dialog box. You can specify as many GUI targets as you want;
separate each GUI specifier by a comma.

Setting a GUI target affects which classes are listed in the Library Browser.

3. To conditionalize code based on the value of constants you define, do the following:

1. Click Compiler Constants in the Runtime Options dialog box.
2. The Compiler Constants dialog box is displayed.
3. Define a constant and specify its value.
4. Use the constant in your code anywhere you can specify an expression.

4. Click OK to close the Runtime Options dialog box.

GUI with Inheritance
When using GUI specifiers for parent classes, you must explicitly use the GUI specifiers with the
descendants:

mswxp winclass newclass
mswxp winclass subclass : newclass
mswxp window subclass inst

GUI with Global Variables
Be careful when using GUI specifiers with global variables, because Silk Test Classic initializes global
variables before connecting to an Agent. This might not give you the results you want if you are doing
distributed testing.

Let’s say that you are running tests on a remote machine that is listed in the Runtime Options dialog box.
Because Silk Test Classic initializes all global variables before connecting to an Agent, any GUI specifier at
the global level will initialize to the host machine, not the target machine you want to test against.

For example, say the host machine is running a different operating system than the target machine.
Consider the following script:

mswxp STRING sVar1 = SYS_GetEnv("UserName")

mswxp STRING sVar1 = SYS_GetRegistryValue
 (HKEY_LOCAL_MACHINE, "System\CurrentControlSet\Control", "Current
User")

main()
 print(sVar1)

This script fails, with the error message:

*** Error: Registry entry 'Current User' not found

because sVar1 is initialized to the value for the host system, not the target system.

Constants behave similarly to global variables if you use a GUI specifier to initialize the variable (or
constant). It is a good idea to use GUI specifiers in the main function, under Options > Runtime or
another function that is called after the Agent is contacted.

Marking 4Test Code as GUI Specific
Using Silk Test Classic, you can create portable test cases that will test your application on any of the
supported GUIs. The reason for this is that your test cases use logical names, called identifiers, to refer to

Using Advanced Techniques with the Open Agent | 351

the GUI objects, and not actual names, called tags. Therefore, if there are differences in the ported
application’s appearance, you need only change the window declarations, not the test cases themselves.

The porting scenarios described section use 4Test keywords called GUI specifiers to indicate that portions
of include files or script files are specific to a particular GUI. Before studying these scenarios, you should
understand which GUI specifiers are available and how to use them in your include files and script files.

4Test includes a long list of GUI specifiers.

Syntax of a GUI Specifier
A GUI specifier has this syntax:

[[gui-type [,gui-type]] | [!gui-type]]

gui-type is the GUI. You can express this in one of two mutually exclusive ways. For example, you can
specify one or more GUIs separated by commas, as in:

mswxp, mswin7

Or you can specify all but one GUI, as in the following, which indicates that what follows applies to all
environments except Windows NT-based operating systems:

! mswnt

What Happens when the Code is Compiled
Only code relevant to the GUI environments specified in the GUI Targets field (plus all common code) will
be compiled. If you do not list any GUI specifiers in the GUI Targets field, all code will be compiled; at
runtime, code not relevant to the platform the application is running on will be skipped.

The constants you have defined are evaluated and used to compile the code. You can use this feature to
conditionally load include files.

Where You Use GUI Specifiers
A GUI specifier can be located before any 4Test declaration or statement except the use statement, which
must be evaluated at compile time, with the following exceptions:

• Switch statements
• If statements
• Type statements
• Do… except statements
• Class declarations
• GUI with inheritance
• GUI with global variables

If you try to use a browser specifier instead of a GUI specifier to specify a window, Silk Test Classic will
generate an error. The primary use of browser specifiers is to address differences in window declarations
between different browsers. Each Agent connection maintains its own browser type, allowing different
threads to interact with different browsers.

do...except Statements
You can use GUI specifiers to enclose an entire do...except statement before individual statements, but
you cannot use GUI specifiers before the except clause.

// legal:
do
 mswxp Verify (expr1,expr2)
 mswin7 Verify (expr3,expr4)
except
 mswin7 reraise
 mswxp if (ExceptNum () == 1)

352 | Using Advanced Techniques with the Open Agent

 Print ("err, etc.")
// NOT legal:
mswin7 do
 Verify (expr,expr)
mswxp except
 reraise

Type Statements
You can use a GUI specifier before a type type ... is enum or type ... is set statement, but not
before an individual value within the type declaration.

Supporting GUI-Specific Objects
This section describes how Silk Test Classic supports testing GUI-specific objects.

Supporting GUI-Specific Captions

Classic Agent

When you are using the Classic Agent, by default Silk Test Classic bases the tag for an object on the actual
caption or label of the object. If the captions or labels change when the application is ported to a different
GUI, you have two options:

• You can have multiple tags, each based on the platform-specific caption or label.
• You can have a single tag, using the index form of the tag, as long the relative position of the object is

the same in the ported versions of the application.

Then, in your test cases, you can use the same identifier to refer to the object regardless of what the
object’s actual label or caption is.

Open Agent

When you are using the Open Agent, Silk Test Classic creates locator keywords in an INC file to create
scripts that use dynamic object recognition and window declarations. The locator is the actual name of the
object, as opposed to the identifier, which is the logical name. Silk Test Classic uses the locator to identify
objects in the application when executing test cases. Test cases never use the locator to refer to an object;
they always use the identifier.

The advantages of using locators with an INC file include:

• You combine the advantages of INC files with the advantages of dynamic object recognition. For
example, scripts can use window names in the same manner as traditional, Silk Test Classic tag-based
scripts and leverage the power of XPath queries.

• Enhancing legacy INC files with locators facilitates a smooth transition from using hierarchical object
recognition to new scripts that use dynamic object recognition. You use dynamic object recognition but
your scripts look and feel like traditional, Silk Test Classic tag-based scripts that use hierarchical object
recognition.

• You can use AutoComplete to assist in script creation. AutoComplete requires an INC file.

Supporting GUI-Specific Executables
The command to start the application will almost always be different on each GUI. The Invoke method of
Silk Test Classic expects to find the command in the constant sCmdLine, which is defined in the main
window declaration of your application. You should declare as many sCmdLine variables as there are GUIs
on which your application runs, beginning each declaration with the appropriate GUI specifier.

Using Advanced Techniques with the Open Agent | 353

For example, the following constants specify how Silk Test Classic should start the Text Editor application
on Windows and Windows Vista:

msw32 const sCmdLine = "c:\program files\<SilkTest install directory>\silktest
\textedit.exe"
mswvista const sCmdLine = "{SYS_GetEnv(‘SEGUE_APPS’)}/SilkTest/demo/textedit"

Supporting GUI-Specific Menu Hierarchies
When an application is ported, there are two common structural differences in the menu hierarchy:

• The menu bar contains a platform-specific menu.
• A menu contains different menu items.

To illustrate the case of the platform-specific menu, consider the Microsoft Windows system menu or a
Vista menu (for example). Silk Test Classic recognizes these kinds of standard GUI- specific menus and
includes the appropriate GUI specifier for them when you record declarations.

For menus that Silk Test Classic does not recognize as platform-specific, you should preface the window
declaration with the appropriate GUI specifier.

Different menu items - example

To illustrate the case of different menu items, suppose that the Edit menu for the Text Editor application
has a menu item named Clear which displays on the Windows version only. The declaration for the Edit
menu should look like the following:

Classic Agent Open Agent

Menu Edit
 tag "Edit"
 msw32 MenuItem Clear
 tag "Clear"
 MenuItem Undo
 tag "Undo"

Menu Edit
 locator "Edit"
 msw32 MenuItem Clear
 locator "Clear"
 MenuItem Undo
 locator "Undo"

Supporting Custom Controls
This sections describes how Silk Test Classic supports custom controls.

Why Silk Test Classic Sees Controls as Custom
Controls
A control is defined by the following:

• The actual class name of the control.
• The underlying software code that creates and manipulates the control.

Whenever the definition of a control varies from the standard, Silk Test Classic defines the control as a
custom control. During recording, Silk Test Classic attempts to identify the class of each control in your GUI
and to assign the appropriate class from the built-in class hierarchy. If a control does not correspond to one
of the built-in classes, Silk Test Classic designates the control as a custom control.

• When you are using the Classic Agent, Silk Test Classic assigns custom controls to the CustomWin
class.

• When you are using the Open Agent, Silk Test Classic assigns custom controls to the Control class or
another class.

354 | Using Advanced Techniques with the Open Agent

Classic Agent Example

For example, Silk Test Classic supports the standard MFC library, which is a library of
functions that allow for the creation of controls and the mechanism of interaction with
them. In supporting these libraries, Silk Test Classic contains algorithms to interrogate
the controls based upon the standard libraries. When these algorithms do not work, Silk
Test Classic reports the control as a CustomWin.

Suppose that you see a text box in a window in your application under test. It looks like
a normal text field, but Silk Test Classic calls it a control of the class CustomWin.

Reasons Why Silk Test Classic Sees the Control as a
Custom Control
For the following reasons Silk Test Classic might recognize a control as a custom control:

• The control is not named with the standard name upon the definition of the control in the application
under test. For example, when a TextField is named EnterTextRegion. If this is the only reason why
Silk Test Classic recognizes the control as a custom control, then you can class map the control to the
standard name.

The class mapping might not work. The class mapping will work if the control is not really a custom
control, but rather a standard control with a non-standard name. Try this as your first attempt at dealing
with a custom control.

• If the class mapping does not work the control truly is a custom control. The software in the application
under test that creates and manipulates the control is not from the standard library. That means that the
Silk Test Classic algorithms written to interrogate this kind of control will not work, and other approaches
will have to be used to manipulate the control.

When you are using the Classic Agent, the support for custom controls depends on whether the control is a
graphical control, such as a tool bar, or a non-graphical control, such as a text box.

Supporting Graphical Controls
If an application contains a graphical area, for example a tool bar, which is actually composed of a discrete
number of graphical controls, Silk Test Classic records a single declaration for the entire graphical area; it
does not understand that the area contains individual controls.

Custom Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides the following features to support you when you are working with custom controls:

• The dynamic invoke functionality of Silk Test Classic enables you to directly call methods, retrieve
properties, or set properties on an actual instance of a control in the application under test (AUT).

• The class mapping functionality enables you to map the name of a custom control class to the name of
a standard Silk Test class. You can then use the functionality that is supported for the standard Silk Test
class in your test.

Silk Test Classic supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing

Using Advanced Techniques with the Open Agent | 355

• Java SWT
• The Manage Custom Controls dialog box enables you to specify a name for a custom control that can

be used in a locator and also enables you to write reusable code for the interaction with the custom
control.

Note: For custom controls, you can only record methods like Click,TextClick, and TypeKeys with
Silk Test Classic. You cannot record custom methods for custom controls except when you are testing
Apache Flex applications.

Dynamic Invoke
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Note: You cannot dynamically invoke methods for DOM elements.

Frequently Asked Questions About Dynamic Invoke

This functionality is supported only if you are using the Open Agent.

This section includes a collection of questions that you might encounter when you are dynamically invoking
methods to test custom controls.

Which Methods Can I Call With the DynamicInvoke Method?

This functionality is supported only if you are using the Open Agent.

To get a list of all the methods that you can call with the DynamicInvoke method for a specific test object,
you can use the GetDynamicMethodList. To view the list, you can for example print it to the console or
view it in the debugger.

Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?

This functionality is supported only if you are using the Open Agent.

The DynamicInvoke method can only return simple data types. Complex types are returned as string.
Silk Test Classic uses the ToString method to retrieve the string representation of the return value. To
call the individual methods and read properties of the complex object that is returned by the first method
invocation, use DynamicInvokeMethods instead of DynamicInvoke.

356 | Using Advanced Techniques with the Open Agent

How Can I Simplify My Scripts When I Use Many Calls To DynamicInvokeMethods?

This functionality is supported only if you are using the Open Agent.

When you extensively use DynamicInvokeMethods in your scripts, the scripts might become complex
because you have to pass all method names as strings and all parameters as lists. To simplify such
complex scripts, create a static method that interacts with the actual control in the AUT instead of
interacting with the control through DynamicInvokeMethods.

Testing Apache Flex Custom Controls
Silk Test Classic supports testing Apache Flex custom controls. However, by default, Silk Test Classic
cannot record and playback the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

• Basic support

With basic support, you use dynamic invoke to interact with the custom control during replay. Use this
low-effort approach when you want to access properties and methods of the custom control in the test
application that Silk Test Classic does not expose. The developer of the custom control can also add
methods and properties to the custom control specifically for making the control easier to test. A user
can then call those methods or properties using the dynamic invoke feature.

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

• No specific class name is included in the locator, for example Silk Test Classic records //FlexBox
rather than //FlexSpinner.

• Only limited recording support.
• Silk Test Classic cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking Apache Flex
Methods.

• Advanced support

With advanced support, you create specific automation support for the custom control. This additional
automation support provides recording support and more powerful play-back support. The advantages
of advanced support include:

• High-level recording and playback support, including the recording and replaying of events.
• Silk Test Classic treats the custom control exactly the same as any other built-in Apache Flex control.
• Seamless integration into Silk Test Classic API
• Silk Test Classic uses the specific class name in the locator, for example Silk Test Classic records //

FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open Agent must be
extended.

Managing Custom Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

You can create custom classes for custom controls for which Silk Test Classic does not offer any dedicated
support. Creating custom classes offers the following advantages:

• Better locators for scripts.

Using Advanced Techniques with the Open Agent | 357

• An easy way to write reusable code for the interaction with the custom control.

Example: Testing the tabControl Infragistics control

Suppose that a custom tab control is recognized by Silk Test Classic as the generic
class Control. Using the custom control support of Silk Test Classic has the following
advantages:

Better object
recognition
because the
custom control
class name
can be used in
a locator.

Many objects might be recognized as Control.
The locator requires an index to identify the
specific object. For example, the object might be
identified by the locator //Control[13]. When
you create a custom class for this control, for
example the class UltraTabControl, you can
use the locator //UltraTabControl. By
creating the custom class, you do not require the
high index, which would be a fragile object
identifier if the application under test changed.

You can
implement
reusable
playback
actions for the
control in
scripts.

When you are using custom classes, you can
encapsulate the behavior for getting the contents
of a grid into a method by adding the following
code to your custom class, which is the class that
gets generated when you specify the custom
control in the user interface.

Typically, you can implement the methods in a
custom control class in one of the following ways:

• You can use methods like Click, TypeKeys,
TextClick, and TextCapture. In this
example the TextClick method is used.

• You can dynamically invoke methods on the
object in the AUT.

Without using the custom classes, when you want
to select a tab in your custom tab controls, you
can write code like the following:

UltraTabControl.TextClick("<TabName>
")

When you are using custom classes, you can
encapsulate the behavior for selecting a tab into a
method by adding the following code to your
custom class, which is the class that gets
generated when you specify the custom control in
the user interface:

void SelectTab(string tabText)
 TextClick(tabText)

The custom class looks like the following:

winclass UltraTabControl : Control
 tag "[UltraTabControl]"

 void SelectTab(string tabText)
 TextClick(tabText)

358 | Using Advanced Techniques with the Open Agent

You can now use the newly created method
SelectTab in a script like the following:

UltraTabControl.SelectTab("<TabName>
")

When you define a class as a custom control, you
can use the class in the same way in which you
can use any built-in class, for example the
Dialog class.

Supporting a Custom Control

This functionality is supported only if you are using the Open Agent.

Silk Test Classic supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

To create a custom class for a custom control for which Silk Test Classic does not offer any dedicated
support.

1. Click Options > Manage Custom Controls. The Manage Custom Controls dialog box opens.

2. In the Frame file for custom class declarations field, type in a name or click Browse to select the
frame file that will contain the custom control.

3. Click on the tab of the technology domain for which you want to create a new custom class.

4. Click Add.

5. Click one of the following:

• Click Identify new custom control to directly select a custom control in your application with the
Identify Object dialog box.

• Click Add new custom control to manually add a custom control to the list.

A new row is added to the list of custom controls.

6. If you have chosen to manually add a custom control to the list:

a) In the Silk Test base class column, select an existing base class from which your class will derive.

This class should be the closest match to your type of custom control.
b) In the Silk Test class column, enter the name to use to refer to the class.

This is what will be seen in locators. For example: //UltraGrid instead of //Control[13].

Note: After you add a valid class, it will become available in the Silk Test base class list. You
can then reuse it as a base class.

c) In the Custom control class name column, enter the fully qualified class name of the class that is
being mapped.

For example: Infragistics.Win.UltraWinGrid.UltraGrid. For Win32 applications, you can
use the wildcards ? and * in the class name.

7. Only for Win32 applications: In the Use class declaration column, set the value to False to simply map
the name of a custom control class to the name of a standard Silk Test class.

When you map the custom control class to the standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. Set the value to True to additionally use the class
declaration of the custom control class.

Using Advanced Techniques with the Open Agent | 359

8. Click OK.

9. Only for scripts:

a) Add custom methods and properties to your class for the custom control.
b) Use the custom methods and properties of your new class in your script.

Note: The custom methods and properties are not recorded.

Note: Do not rename the custom class or the base class in the script file. Changing the generated
classes in the script might result in unexpected behavior. Use the script only to add properties and
methods to your custom classes. Use the Manage Custom Controls dialog box to make any other
changes to the custom classes.

Custom Controls Dialog Box

This functionality is supported only if you are using the Open Agent.

Options > Manage Custom Controls.

Silk Test Classic supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

In the Frame file for custom class declarations, define the frame file into which the new custom classes
should be generated.

When you map a custom control class to a standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. The following Custom Controls options are
available:

Option Description

Silk Test base class Select an existing base class to use that your class will derive from. This class
should be the closest match to your type of custom control.

Silk Test class Enter the name to use to refer to the class. This is what will be seen in locators.

Custom control class
name

Enter the fully qualified class name of the class that is being mapped. You can
use the wildcards ? and * in the class name.

Use class
declaration

This option is available only for Win32 applications. By default False, which
means the name of the custom control class is mapped to the name of the
standard Silk Test class. Set this setting to True to additionally use the class
declaration of the custom control class.

Note: After you add a valid class, it will become available in the Silk Test base class list. You can
then reuse it as a base class.

Example: Setting the options for the UltraGrid Infragistics control

To support the UltraGrid Infragistics control, use the following values:

Option Value

Silk Test base class Control

Silk Test class UltraGrid

360 | Using Advanced Techniques with the Open Agent

Option Value

Custom control class name Infragistics.Win.UltraWi
nGrid.UltraGrid

Using Clipboard Methods
If you are having trouble getting or setting information with a custom object that contains text, you might
want to try the 4Test Clipboard methods. For example, assume you have a class, CustomTextBuffer,
which is similar to a TextField, but using the GetText and SetText methods of the TextField does
not work with the CustomTextBuffer. In such a case, you can use the GetText and SetText methods
of the ClipboardClass.

Get and Set Text Sample Code
The following sample code retrieves the contents of the CustomTextBuffer by placing it on the
Clipboard, then printing the Clipboard contents:

// Go to beginning of text field
CustomTextBuffer.TypeKeys ("<Ctrl-Home>")
// Highlight it
CustomTextBuffer.TypeKeys ("<Ctrl-Shift-End>")
// Copy it to the Clipboard
CustomTextBuffer.TypeKeys ("<Ctrl-Insert>")
// Print the contents of the Clipboard
Print (Clipboard.GetText())

Setting text

Similarly, the following sample code inserts text into the custom object by pasting it from the Clipboard:

// Go to beginning of text field
CustomTextBuffer.TypeKeys ("<Ctrl-Home>")
// Highlight it
CustomTextBuffer.TypeKeys ("<Ctrl-Shift-End>")
// Paste the Clipboard contents into the text field
CustomTextBuffer.TypeKeys ("<Shift-Insert>")

You can wrap this functionality in GetText and SetText methods you define for your custom class,
similar to what was shown in supporting custom text boxes.

Using the Modified Declaration
Once you create window declarations like these for the graphical objects in your application, you can
manipulate them as you would any other object. For example, if the tool bar was contained in an
application named MyApp, to click on the FileOpen icon in the tool bar, you use the following command:

MyApp.FileOpen.Click()

You need to write this statement, and others that access the objects declared above, such as Save and
Printer, by hand. Record > Testcase and Record > Actions will not use these identifiers.

Filtering Custom Classes
This section describes how you can filter custom classes.

Using Advanced Techniques with the Open Agent | 361

Invisible Containers
Sometimes a window contains an invisible dialog box that contains controls. You can set these "dialog box
containers" to Ignore using class mapping and style-bits in order to avoid making all of the dialog boxes
disappear.

See the following examples for details.

Example: WordPad with No Class Mappings

[-] window MainWin WordPad
[+] multitag "*WordPad"
[+] Menu File
[+] Menu Edit
[+] Menu View
[+] Menu Insert
[+] Menu Format
[+] Menu Help
// toolbars seen, but are nested
[+] CustomWin BottomStatusBar
[-] CustomWin Frame
[+] CustomWin FormatBar
[+] ComboBox ComboBox1
[+] ComboBox ComboBox2
[+] CustomWin StandardBar
[+] CustomWin Ruler
[-] main ()
WordPad.Frame.FormatBar.ComboBox1.Select ("Arial")

Example: WordPad with AfxControlBar Ignored

[-] window MainWin WordPad
[+] multitag "*WordPad"
[+] Menu File
[+] Menu Edit
[+] Menu View
[+] Menu Insert
[+] Menu Format
[+] Menu Help
// toolbars, ruler, and statusbar not seen
[+] ComboBox ComboBox1
[+] ComboBox ComboBox2
[+] TextField Document
[-] main ()
WordPad.ComboBox1.Select ("Arial")

Supporting Internationalized Objects
This section describes how you can work with internationalized objects.

Overview of Silk Test Classic Support of Unicode
Content
Silk Test Classic is Unicode-enabled, which means that Silk Test Classic is able to recognize double-byte
(wide) languages. We have enabled components within the application to deal with Unicode content. The
Silk Test Classic GUI supports the display and input of wide text. The 4Test language processor has been

362 | Using Advanced Techniques with the Open Agent

enhanced to support wide text. All 4Test library functions have been widened. The extensions have been
enhanced to support the input and output of wide text.

We have added and modified 4Test functions to deal with internationalization issues. With Silk Test Classic
you can test applications that contain content in double-byte languages such as Chinese, Korean, or
Japanese (Kanji) characters, or any combination of these. You can also name Silk Test Classic files using
internationalized characters. Silk Test Classic supports three text file formats: ANSI, Unicode and UTF-8.

Silk Test Classic supports the following:

• Localized versions of Windows.
• International keyboards and native language Input Method Editors (IME).
• Passing international strings as parameters to test cases, methods, and so on, and comparing strings.
• Accessing databases through direct ODBC standard access.
• Reading and writing text files in multiple formats: ANSI, Unicode, and UTF-8.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Before testing double-byte characters with Silk Test Classic

Testing an internationalized application, particularly one that contains double-byte characters, is more
complicated than testing an application that contains strictly English single-byte characters. Testing an
internationalized application requires that you understand a variety of issues, from operating system
support, to language packs, to fonts, to working with IMEs and complex languages.

Before you begin testing your application using Silk Test Classic, you must do the following:

• Meet the needs of your application under test (AUT) for any necessary localized OS, regional settings,
and required language packs.

• Install the fonts necessary to display your AUT.
• If you are testing an application that requires an IME for data input, install the appropriate IME.

Using DB Tester with Unicode Content
To use DB Tester with Unicode characters:

• You must have a Unicode-capable driver (ODBC version 3.5 or higher) associated with the data source
name you are using in your test plan.

• The database must be Unicode capable (SQL Server 7 and 2000, Oracle 8 and higher).

Issues Displaying Double-Byte Characters
When you are dealing with internationalized content, being able to display the content of your application is
critical. Carefully consider the following:

Operating
system

Your operating system needs to be capable of displaying double-byte characters in
the system dialog boxes and menus used by your application.

Silk Test Classic You need to be concerned about displaying your content in the Silk Test Editor and
the Silk Test Classic dialog boxes.

Application
under test

You need to have a font installed that is capable of displaying the content of your
application. If you have multiple languages represented in your application, you will
need a font that spans these languages.

Browser If your application is web-based, make sure that you are using a browser that
supports your content, that the browser is configured to display your content, and that
you have the necessary fonts installed to display your application.

Using Advanced Techniques with the Open Agent | 363

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Complex scripts
(languages)

Silk Test Classic does not support complex scripts such as the bi-directional
languages Hebrew and Arabic. These are languages that require special processing
to display and edit because the characters are not laid out in a simple linear
progression from left to right, as are most western European characters.

Learning More About Internationalization
There are a variety of online sites that provide general information about internationalization issues. You
may find the following Web sites useful if you are learning about internationalization, localization or
Unicode. They include:

• Microsoft’s Professional Developer’s Site for Software Globalization Information (http://
www.microsoft.com/globaldev/default.asp)

• The definitive word on the W3C’s Web site (http://www.w3.org/international)
• The Unicode Consortium, a non-profit organization founded to develop, extend and promote use of the

Unicode Standard (http://www.unicode.org)
• IBM’s International Components for Unicode (http://oss.software.ibm.com/icu/userguide/index.html)
• A tutorial from Sun on how to internationalize Java applications (http://java.sun.com/docs/books/tutorial/

i18n)

Silk Test Classic File Formats
Silk Test Classic gives you the ability to specify the file format of text files and .ini files. Before Silk Test
Classic 5.5, all files were in the ANSI file format. You can create the following formats:

ANSI For Silk Test Classic purposes, ANSI is defined as the Microsoft Windows ANSI character set
from Code Page 1252 Windows Latin 1.

Unicode Is an extended form of ASCII that provides the ability to represent data in a uniform plaintext
format that can be sorted and processed efficiently. Unicode encompasses nearly all
characters used in computers today.

UTF-8 Unicode Transformation Format (UTF) Is a multi-byte encoding that can handle all Unicode
characters. It is used to compress Unicode, minimize storage consumption and maximize
transmission.

You have the ability to save text files in any of three file formats: ANSI, UTF-8, and Unicode. By default all
files are saved in UTF-8 format. The Save As dialog boxes throughout include a list box from which you
can select the file format in which you want to save your file.

• ANSI files cannot contain non ANSI characters
• The file formats available will depend on the content of your text file. If your file contains characters not

available on code page 1252, ANSI will not display in the list box. If you are working with an existing
ANSI file and add non-ANSI characters, the Save As dialog box will open when you attempt to save the
file. In order to save the changes you will need to change the file format and click Save.

• The title bar indicates the file format: When you have a file open, the format of that file is indicated on
the title bar.

• Silk Test Classic uses the Microsoft standard Byte Order Marked (BOM) to determine the file type for
UTF-8 and Unicode files. If a Unicode file does not have the BOM marker then Silk Test Classic sees
the file as an ANSI file, and the Unicode characters cannot be displayed.

Reusing Silk Test Classic Single-Byte Files as Double-Byte
If you have existing single-byte Silk Test Classic text files, such as *.pln, *.inc or *.t, that you want to
use in double-byte testing, the files must:

• Be compatible with Silk Test Classic, such as files created using the IE 5.x DOM extension for testing a
Web application.

364 | Using Advanced Techniques with the Open Agent

http://www.microsoft.com/globaldev/default.asp
http://www.microsoft.com/globaldev/default.asp
http://www.w3.org/international
http://www.unicode.org
http://oss.software.ibm.com/icu/userguide/index.html
http://java.sun.com/docs/books/tutorial/i18n
http://java.sun.com/docs/books/tutorial/i18n

• Be recompiled in Silk Test Classic because the object files, *.ino and *.to, are not compatible.

Opening an existing Silk Test Classic file as a double-byte file

Choose one of the following:

• Copy the file you want to re-use to a new directory. Do not copy the associated object (*.ino or *.to)
files. In Silk Test Classic, open this new file.

• In the existing directory, delete the object files associated with the file you want to re-use. In Silk Test
Classic, open the desired file.

When the Silk Test Classic file is compiled, new objects files are created. If you enter double-byte content
into the file, when you try to close the file you will be prompted to save the file in a compatible file format,
Unicode or UTF-8.

Specifying File Formats for Existing Files with Unicode Content
If you want to save an existing file in a different file format, choose one of the following:

Overwriting the file

If the file is already referenced from other files, you may want to change the format without changing the
name or its location. As you cannot have two files with the same name saved in the same directory, even in
different formats, the only option is to overwrite the file.

1. Make sure the file is the active window. Click File > Save As and select the file from the list.
2. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
3. Click Save. A dialog box displays asking if you want to overwrite the file.
4. Click Yes.

Saving in the same directory

If you want to have versions of a file in various formats within the same directory, you must save each file
with a different name.

1. Make sure the file is the active window. Click File > Save As.
2. In the File name text box, enter the new name of the file.
3. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
4. Click Save.

Saving in a different directory

If you would like to keep the name of the file but change the format, you must save the file in a different
directory.

1. Make sure the file is the active window. Click File > Save As and select the file from the list.
2. Navigate to the directory in which you want to save the file.
3. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
4. Click Save.

If you modify an ANSI text file and the modifications include characters outside of the ANSI characters set,
when you try to save your changes, the Save As dialog box will open and you need to either overwrite the
ANSI file with a file of the same name but in a different format, or rename the file and save in Unicode or
UTF-8 format .

Using Advanced Techniques with the Open Agent | 365

Specifying File Formats for New Files with Unicode content
This topic contains instructions on specifying the file format for:

With the exception of test frames, to specify the file format of a new file:

1. Click File > New.
2. On the New dialog box, select the file type.
3. Click OK. The untitled file opens.
4. Click File > Save As. The Save As dialog box opens.
5. Navigate to where you want to store the file and enter the name of the file in the File name text box.
6. Select a file format (UTF-8 is the default) from the Save as format list box. ANSI is not available if the

file contains characters outside of the ANSI character set.
7. Click Save.

To specify the file format for a new test frame:

1. Click File > New.
2. On the New dialog box, select the file type Test Frame and click OK. The New Test Frame dialog box

opens.
3. To select a file format, click Browse. The Save As dialog box opens. The default file format for test

frames is UTF-8. If you simply type the path and file name in the File name text box of the New Test
Frame dialog box and click OK, the file is saved in UTF-8.

4. Navigate to where you want to store the file and enter the name the file in the File name text box.
5. Select the file format from the Save as format list box. If you select ANSI and if the file contains

characters outside of the ANSI character set, when you try to save the file you will need to change the
file format to a compatible format, Unicode or UTF-8.

6. Click Save. The New Test Frame dialog box regains focus.
7. On the New Test Frame dialog box, select the application and proceed as normal.

If you modify an ANSI text file and the modifications include characters outside of the ANSI characters set,
when you try to save your changes, the Save As dialog box will open and you need to either overwrite the
ANSI file with a file of the same name but in a different format, or rename the file and save in Unicode or
UTF-8 format .

Working with Bi-Directional Languages
Silk Test Classic supports bi-directional languages to the extent that the operating system does. Silk Test
Classic captures static text in all Unicode languages. However, scripting, playback and many string
functions are not fully supported for complex languages, the most common of these being the bi-directional
languages Hebrew and Arabic. The problems you may encounter are discussed below.

Silk Test Classic with bi-directional languages on Windows XP

Windows XP is a multi-lingual operating system and is capable of handling bi-directional languages when
configured properly.

On Windows XP if you input characters from RIGHT to LEFT (CBA) provided that the default system
locale is set for a bi-directional language, Silk Test Classic will correctly record and playback the characters
as they were entered and display, from RIGHT to LEFT. When you use a 4Test string function such as
StrPos (string position) to return the third element, 4Test correctly counts from right to left and returns
"C"

Once you have set a default system locale, the operating system continues to be able to read and write
that language properly, even after another locale has been set as the default. This works only if the
language is not unchecked from the Language Settings area after another default is set. Once a language
is unchecked, the ability to read and write in that language will be gone when you reboot your system. You
would need to reset it as the default to restore the capability.

366 | Using Advanced Techniques with the Open Agent

Configuring Your Environment
This section describes how you can configure your environment for internationalized objects.

Configuring Your Microsoft Windows XP PC for Unicode Content
If you have already configured your Windows XP PC to run your internationalized application, you may be
able to disregard this topic and see Recording Identifiers for International Applications.

On Microsoft Windows XP you may need to do all or some of the following:

• Install language support required by your application through modifications in the Regional and
Language Options dialog box.

• If your application contains content that is in a large-character-set language, such as simplified Chinese,
you may need to install an Input Method Editor (IME) if you want to input data in this language. For
additional information about IMEs, refer to the Microsoft support site.

Fonts

To display the content of your application in Silk Test Classic you will need to have an appropriate font
installed and specify this font in the system registry and in the Silk Test Classic Options/Editor Font.

Installing Language Support

You must have administrator privileges to install language packs or set the system default locale.

Microsoft Windows XP provides built-in support for many double-byte languages. Enabling this support can
be done at the time of install or after setup through the Regional and Language Options dialog box. If
you enable language support after setup, you may need files from the Microsoft Windows XP installation
CD. Configurations will vary depending on your needs and how your system has been configured
previously. The following instructions are intended only to be general information to get you started:

1. Click Start > Settings > Control Panel > Regional and Language Options.

2. If you are testing East Asian languages, select the Languages tab, and then check the Install files for
East Asian languages check box.

You may be prompted to insert the Microsoft Windows XP CD for the necessary files.

3. Click the Advanced tab on the Regional and Language Options dialog box.

4. Select the language that matches the language of the non-Unicode programs you want to use.

For example Chinese (PRC).

5. Click OK.

6. Reboot your computer for the changes to take effect.

After you restart your computer, if you want to input data in a language other than the default language,
you must click the Language bar icon in your system tray and select the language from the multi-lingual
indicator.

Setting Up Your Input Method Editor

If you want to use an Input Method Editor (IME) to input data in the language you selected, you may need
to set up your IME.

1. Click Start > Settings > Control Panel > Regional and Language Options.

2. Click the Languages tab.

3. Click Details in the Text Services and Input Language area.

4. In the Settings tab on the Text Services and Input Language dialog box, select the language you
want to use as your default input language.

Using Advanced Techniques with the Open Agent | 367

5. In the Preferences section of the Settings tab, click Language Bar, make sure the Show the
Language Bar on the desktop check box is checked, and then click OK on the Settings tab.

This default will enable your system to display this language in dialog boxes and menus. We
recommend setting the default to the language of the AUT.

Displaying Double-Byte Characters
While Silk Test Classic can process Unicode, displaying double-byte characters is not automatic. Keep the
following in mind:

• Is your operating system configured to display your content?
• Is Silk Test Classic configured to display double-byte content in its dialog boxes?
• Do you have the right font set to display your content in the Editor?

Displaying Double-Byte Characters in Dialog Boxes

If Silk Test Classic is rendering squares or pipes in dialog boxes where you expect double-byte characters,
you may need to make a simple modification to Silk Test Classic using a script we have provided. This
script is located in <SilkTest Installation directory>\Tools.

1. In Silk Test Classic, click File > Open.

2. In the Tools directory, open font.t.

3. Click Run > Testcase. The Run Testcase dialog box opens.

4. In the arguments area, type the name of the font in quotes.

For example, Arial Unicode MS. It is not necessary to include the type of font, for example Arial
Unicode MS (True Type).

5. Click Run.

6. Reboot your computer for the changes to take effect.

Displaying Double-Byte Characters in the Editor

In order for the Editor to display double-byte characters, such as those captured in your test frame, you
must select a font that is able to display these characters.

1. In Silk Test Classic, click Options > Editor Font.

2. From the available fonts, select one that is able to display the language of your application.

If your application contains multiple languages, make sure that you have a font installed that is capable of
rendering all the languages, as the Editor does not display multiple fonts. Licensed Microsoft Office 2000
users can freely download the Arial Unicode MS font from Microsoft.

Using an IME with Silk Test Classic
Silk Test Classic supports IMEs. The IME is enabled only after you have installed an Asian language
package. The IME will work once you have installed it, enabled it, and are in an application with IME
support. In Silk Test Classic, the IME is only available when a file, such as an include or script, is active.

For additional information about IMEs and for downloads, see the Microsoft support site.

Troubleshooting Unicode Content
This section contains topics to help troubleshoot unicode content.

Display Issues
This section describes how you can troubleshoot display issues in Unicode contents.

368 | Using Advanced Techniques with the Open Agent

Why Are My Window Declarations Recording Only Pipes?

If your window declarations record only pipes (|), You’ve probably forgotten to set the Options > Font
Editor to a font that can display the language of your AUT.

What Are Pipes and Squares Anyway?

The pipes and squares, or even question marks (?), display in place of characters which the system has
not yet been configured to display. A font that does not support the language is being used in the dialog
boxes and menus. Whether or not you see pipes or squares depends on what font is used and what
language you are trying to display.

Why Can I Only Enter Pipes Into a Silk Test Classic File?

If you can only enter pipes into a file, for example a frame file or an include file, the Silk Test Classic Editor
font is not set to display the language of your AUT.

Why Do I See Pipes and Squares in the Project Tab?

Pipes, squares, and questions marks (?) display in place of characters which the system has not yet been
configured to display. A font that does not support the language is being used in the dialog boxes and
menus. Whether or not you see pipes or squares depends on what font is used and what language you are
trying to display.

You must configure your system and make sure that you have set the regional settings.

Why Cannot My System Dialog Boxes Display Multiple Languages?

If you are testing an application whose content contains multiple languages, meaning that it has several
character sets represented, you may need to:

• Make sure that you have a font installed on your machine that can display all the languages.
• Configure Silk Test Classic to use a font that can display your content.

Why Do I See Pipes and Squares in My Win32 AUT?

If you start up your application under test and see pipes and squares in the title bar, menus, or dialog
boxes, it may mean that the operating system cannot support your application or that your system is not
properly configured to display your content.

Why Do the Fonts on My System Look so Different?

Fonts that display in your menus, title bars and so on, are controlled by the registry settings and the
Display Properties > Appearance settings of your computer.

If your fonts display too large or too small, you may have incorrectly set the appearance for an item:

1. Navigate to Start > Settings > Control Panel > Display.
2. Navigate to the Appearance tab and select Windows standard in the Scheme field.
3. Click OK.

Your desktop should now display normal.

Why Do Unicode Characters Not Display in the Silk Test Project Explorer

To view Unicode characters in the Silk Test Project Explorer, you must have installed a language pack with
Unicode characters.

Using Advanced Techniques with the Open Agent | 369

Why Is My Web Application Not Displaying Characters Properly?

If your Web application is not displaying the characters properly, or strange symbols or character are mixed
in with your content, you may need to change a setting in your browser.

Internet Explorer Users

Check the settings for Encoding:

1. In Internet Explorer, click View > Encoding.
2. Select one of the following:

• From the listed encodings, select one that meets the requirements of your application.
• Click More, then select an encoding that meets the requirements of your application.
• Click Auto-Select.

Mozilla Firefox Users

Check the settings for Character Coding:

1. In Mozilla Firefox, click Settings > Content.
2. In the Fonts & Colors section, click Advanced.
3. Select a character coding that meets the requirements of your application.

If you still have problems, ensure that your system locale is set for the language of your application under
test.

File Formats
This section describes how you can troubleshoot issues with file formats in Unicode contents.

Why Am I Getting Compile Errors?

You may be trying to compile a file with an incompatible file format. Silk Test Classic supports three file
formats: ANSI, UTF-8, and Unicode. If you try to compile files in Silk Test Classic that are in other formats,
such as DBCS, you will get compile errors.

Workaround: In a Unicode-enabled text editor, save the file in one of the Silk Test Classic supported file
formats: ANSI, UTF-8 or Unicode.

Why Does Silk Test Classic Open Up the Save As Dialog Box when I Try to Save an Existing File?

You have likely added content to the file that is incompatible with the file’s existing file format. For example,
you could have added Japanese characters to a frame file that was previously saved in ANSI format.

You must save the existing file in a compatible format.

Working with Input Method Editors
This section describes how you can troubleshoot issues when working with Input Method Editors (IMEs).

Why is English the Only Language Listed when I Click the Language Bar Icon?

You must be running an application, or area within the application, that supports an IME for a language
other than English to be displayed in the Language bar icon. Applications that support IME include
elements of Silk Test Classic such as include files and script files, Outlook, and Internet Explorer.

Why Does This IME Look so Different from Other IMEs I Have Used

IMEs can look different, depending on the operating system you are using and the particular IME you have
accessed. For more information about IMEs, see Microsoft’s support site.

370 | Using Advanced Techniques with the Open Agent

Using Autocomplete
This section describes how you can automatically complete functions, members, application states, and
data types.

Overview of AutoComplete
AutoComplete makes it easier to work with 4Test, significantly reducing scripting errors and decreasing the
need to type text into your 4Test files by automatically completing functions, members, application states,
and data types. There are four AutoComplete options:

Option Description

Function Tip Provides the function signature in a tooltip.

MemberList Displays window children, properties, methods, and variables available to your 4Test file.

AppStateList Displays a list of the currently defined application states.

DataTypeList Displays a list of built-in and user-defined data types.

AutoComplete works with both Silk Test Classic-defined and user-defined 4Test files.

If you create a new 4Test file, you must name and save it as either a .t , .g.t, or .inc file in order for
AutoComplete to work. After a 4Test file is saved, AutoComplete recognizes any changes you make to this
file in the 4Test Editor and includes files that you reference through a 4Test use statement or the Use Files
text box on the Runtime Options dialog box. When working with an existing 4Test file, you do not need to
save or compile in order to access newly defined functions, methods, or members.

AutoComplete only works with 4Test files, which are .t, .g.t, and .inc files, that use hierarchical object
recognition or dynamic object recognition with locator keywords.

AutoComplete does not work on comment lines or within plan, suite, or text files. AutoComplete does not
support global variables of type window. However, AutoComplete supports Unicode content.

AutoComplete does not distinguish between Silk Test Classic Agents. As a result, AutoComplete displays
all methods, properties, variables, and data types regardless of the Silk Test Classic Agent that you are
using. For example, if you are using the Open Agent, functions and data types that work only with the
Classic Agent are also displayed when you use AutoComplete. For details about which methods are
supported for each Silk Test Classic Agent, review the corresponding .inc file, such as the winclass.inc
file.

Customizing your MemberList
The members that you see in the MemberList depend on the MemberList options that you select. You can
specify which members display in your MemberList. The members are window children, methods,
properties, and variables. You can also determine how much detail is displayed in the MemberList by
specifying the inheritance level and deciding whether you want to view class, data type, and function return
type for methods in your MemberList.

All member options are enabled by default and the default inheritance level is below AnyWin class,
meaning that methods for any class derived from the AnyWin class display in the MemberList. For
additional information about the inheritance level, see the General Options Dialog Box.

Note: Methods that are defined in and above the AnyWin class, such as Click and Exist, which
are defined in the Winclass, will not display in the MemberList. You can type these methods into
your script, but they will not display in the MemberList unless you change the inheritance level to All.

To customize your MemberList:

Using Advanced Techniques with the Open Agent | 371

1. Open Silk Test Classic and choose Options > General.

2. In the AutoComplete area of the General Options dialog box, make sure MemberList is selected.

3. In the MemberList Options area, select the members that you want to display in your MemberList. For
example, if you want to view only properties and variables, uncheck the Methods and Window
Children check boxes.

4. Select the appropriate Inheritance Level for the selected methods.

You can choose one of the following:

Below AnyWin
Class

Displays methods for any class derived from the AnyWin class. Below AnyWin
Class is the default.

All Displays the complete inheritance for members all the way up through AnyWin and
the control classes, including the Winclass.

None Displays only those members defined in the class of the current object and window
declaration.

5. If you want to view attributes for the selected members, such as the class for window children, the data
type for properties and variables, and the return type for method functions in your MemberList, check
the Member Type check box.

Member Type is not checked by default. The following is a sample MemberList with and without
Member Type checked.

Default MemberList MemberList with Member Type Selected

6. Click OK on the General Options dialog box to save your changes.

Frequently Asked Questions about AutoComplete

Why isn’t AutoComplete working?

AutoComplete only works with 4Test files with extension .t, .g.t, and .inc. If (untitled) is displayed in the title
bar of your 4Test file, the file has not been saved yet. Save the file as .t, .g.t, or .inc.

After a 4Test file is saved, AutoComplete recognizes any changes you make to this file in the 4Test Editor
and include files that you reference through a 4Test use statement or the Use Files text box on the
SilkTest Runtime Options dialog box. Once you save a new file as a .t, .g.t, or .inc, you do not need to
save or compile in order to access newly defined functions, methods, or members.

AutoComplete does not work on comment lines or within plan, suite, or text files.

Why doesn't a member display in my MemberList?

There a few reasons you may not see a member in your MemberList. Here's what you should do:

1. On the General Options dialog box, make sure that you chose to show members of this type in the
MemberList Options section. For additional information, see Customizing your MemberList.

372 | Using Advanced Techniques with the Open Agent

2. Make sure the member you want to see is included in the inheritance level you selected. Below AnyWin
class is the default; you might need to change your inheritance level to All. For additional information,
see Customizing your MemberList.

3. Name and save your file with a .t, .g.t, or .inc extension.
4. Compile your file and fix any scripting errors. Anything following a compile error is not displayed in the

MemberList or FunctionTip.

What happens if there is a syntax error in the current file?

Everything, based on the AutoComplete options you have selected, prior to the syntax error will display in
your MemberList and/or FunctionTip. Anything following the syntax error will not display in your MemberList
and/or FunctionTip. For additional information, see Customizing your MemberList.

What if I type something and AutoComplete does not find a match?

AutoComplete might not find a match for a number of reasons, for example because of the AutoComplete
options you have specified or because of a compile error in your file. For information about fixing some of
these issues, see Customizing your MemberList and Turning AutoComplete Options Off.

When AutoComplete does not find a match in the MemberList, focus remains on the first item in the list.

Note: If you perform any of the selection methods, which means if you press Return, Tab, or click, the
item will be pasted to the Editor.

You can simply type any function, method, or member in your 4Test files; AutoComplete does not restrict
you in any way from typing in 4Test files.

Note: You must dismiss the MemberList or FunctionTip before you can type in the Editor.

If you plan to use AutoComplete extensively, we recommend that you rename your identifiers in your
window declarations. Knowing your identifier names helps, especially when working with long lists.

Why doesn’t list of record type display in the FunctionTip?

This is a known limitation. FunctionTip does not support list of record types.

Why does AutoComplete show methods that are not valid for a 4Test class?

When using AutoComplete, the member list occasionally may reveal methods that are not valid for the
4Test class. The compiler will not catch these usage problems, but at Runtime the following exception is
raised when the script is played back: Error: Function <invalid method> is not defined
for <window class>.

Why does AutoComplete show methods, properties, variables, and data types that are not
supported for the Silk Test Agent that I am using?

AutoComplete does not distinguish between Silk Test Agents. As a result, AutoComplete displays all
methods, properties, variables, and data types regardless of the Silk Test Agent that you are using. For
example, if you are using the Open Agent, functions and data types that work only with the Classic Agent
are also displayed when you use AutoComplete. For detailed information about which methods are
supported for each Silk Test Agent, review the corresponding .inc file, such as the winclass.inc file.

Turning AutoComplete Options Off
This topic contains instructions on how to disable AppStateList, DataTypeList, FunctionTip, and
MemberList.

To turn off AutoComplete options:

Using Advanced Techniques with the Open Agent | 373

1. Open Silk Test Classic and click Options > General.

2. In the AutoComplete area of the General Options dialog box, uncheck the check box for each of the
AutoComplete options that you want to disable, and then click OK.

Using AppStateList
To display a list of currently defined application states:

1. Within your script, .t or .g.t, or within the include file, type your test case declaration, followed by the
keyword appstate and then press space.

For example testcase foo () appstate .

A list of currently defined application states displays. You can also type the keyword basedon followed
by a space. For example appstate MyAppState () basedon .

2. Use one of the following methods to select the appropriate member and paste it to the Editor.

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.
• Scroll through the list and click on a member to select it.

Using DataTypeList
To display a list of built-in and user-defined data types:

1. Within your script, .t or .g.t, or include file, type array or varargs, as appropriate, followed by the of
keyword and a space.

For example, list of.

The current list of built-in and user-defined data types appears. You can also view the list of data types
by pressing F11.

2. Use one of the following methods to select the appropriate member and paste it to the Editor:

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.
• Scroll through the list and click on a member to select it.

Using FunctionTip
To display the function signature for a function, test case, or method.

1. Within your script, .t or .g.t, or include file, type the function, test case, or method name, followed by an
open parenthesis " (".

For example SetUpMachine(. The function signature displays in a tooltip with the first argument, if
any, in bold text. The function signature includes the return argument type, pass-mode, data type, name
of the argument, and null and optional attributes, as they are defined.

2. Type the argument.

The FunctionTip containing the function signature remains on top and highlights the argument you are
expected to enter in bold text. As you enter each argument and then type a comma, the next argument
that you are expected to type is highlighted. The expected argument is always indicated with bold text; if
you backspace or delete an argument within your function, the expected argument is updated
accordingly in the FunctionTip. The FunctionTip disappears when you type the close parenthesis ") " to
complete the function call.

If you want to dismiss the FunctionTip, press Escape. FunctionTip is enabled by default. See Turning
AutoComplete Options Off if you want to disable FunctionTip.

374 | Using Advanced Techniques with the Open Agent

Using MemberList
This topic contains instructions on how to use MemberList to view and select a list of members.

To view a list of members:

1. Customize the member list so that it displays the information you require.

You can choose to display any or all of the following members:

Member Description

Window
children

Displays all window objects of type WINDOW that are defined in window
declarations in the referenced .t, .g.t, and .inc files. Indicated in the MemberList with
a yellow icon.

Methods Displays all methods defined in the referenced .t, .g.t, and .inc files. Indicated in the
MemberList with a blue icon.

Properties Displays all properties defined in the referenced .t, .g.t, and .inc files. Indicated in
the MemberList with a red icon.

Variables Displays all defined variables in the referenced .t, .g.t, and .inc files, including native
data types, data, and records. Fields defined for records and nested records also
display in the list. Indicated in the MemberList with a red icon.

2. Within your script or include file, type the member name and then type a period (.).

For example Find..

The MemberList displays. Depending on the MemberList Options and the Inheritance Level you select,
the types of members that display in the MemberList will vary.

3. Use one of the following methods to select the appropriate member and paste it to the Editor:

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.
• Scroll through the list and click on a member to select it.

The MemberList is case sensitive. If you type the correct case of the member, it is automatically highlighted
in the MemberList; press Enter or Tab once to paste it to the Editor. If you do not type the correct case, the
member has focus, but is not highlighted; press Enter or Tab twice to select the member and paste it to the
Editor. To dismiss the MemberList, press Escape.

Overview of the Library Browser
Click Help > Library Browser to access the Library Browser. It provides online documentation for:

• Built-in 4Test methods, properties, and functions: the Library Browser shows the name and class of
the method, one line of descriptive text, syntax, and a list of parameters, including a description.

• User-defined methods: the Library Browser shows the name and class of the method, syntax, and a
list of parameters. It displays User defined as the method description and displays the data type for
each parameter.

• User-defined Properties: As with user-defined methods, the description for user-defined properties by
default is User defined.

The Library Browser does not, by default, provide documentation for your user-defined functions. You can
add to the contents of the Library Browser to provide descriptive text for your user-defined methods,
properties, and functions.

Using Advanced Techniques with the Open Agent | 375

Library Browser Source File
The core contents of the Library Browser are based on a standard Silk Test Classic text file, 4test.txt,
which contains information for the built-in methods, properties, and functions.

You can edit 4test.txt to include your user-defined information, or define your site-specific information in
one or more separate files, and then have Silk Test Classic compile the file (creating 4test.hlp) to make
it available to the Library Browser. Information about methods in 4test.hlp is also used in the Verify
Window dialog box for methods.

Silk Test Classic does not update 4test.txt with user-defined information; instead it populates the
Library Browser from information it receives when include files are compiled in memory. You modify
4test.txt to override the default information displayed for user-defined objects.

Simply looking through 4test.txt should give you all the help you need about how to structure the
information in the file. The following table lists all the keywords and describes how they are used in
4test.txt. You should edit a copy of 4test.txt to add the information you want.

Keywords

Keywords are followed by a colon and one or more spaces.

class Name of the class.

function Name of the function.

Specify the full syntax. If the function returns a value, specify: return_value =
function_name (parameters)

Otherwise, specify: function_name (parameters)

group Name of the function category.

method Description of the method.

Specify the full syntax. If the method returns a value, specify: return_value =
method_name (parameters)

Otherwise, specify: method_name (parameters)

notes Description of the method, property, or function, up to 240 characters. Do not split the
description into multiple notes fields, since only the first one is displayed.

parameter Name and description of a method or function parameter. Each parameter is listed on its own
line.

Specify the name, followed by a colon, followed by the description of the parameter.

property Name of the property.

returns Type and description of the return value of the method or function.

Specify the name, followed by a colon, followed by the description of the return value.

Comment.

Adding Information to the Library Browser
1. Make a backup copy of the default 4test.txt file, which is in the directory where you installed Silk

Test Classic, and store your backup copy in a different directory.
2. In an ASCII text editor, open 4test.txt in your Silk Test Classic installation directory and edit the file.

See examples for methods, properties, and functions, if necessary.

376 | Using Advanced Techniques with the Open Agent

3. Quit Silk Test Classic.

4. Place your modified 4test.txt file in the Silk Test Classic installation directory.

5. Restart Silk Test Classic. Silk Test Classic sees that your source file is more recent than 4test.hlp
and automatically compiles 4test.txt, creating an updated 4test.hlp. If there are errors, Silk Test
Classic opens a window listing them and continues to use the previous 4test.hlp file for the Library
Browser. If there were errors, fix them in 4test.txt and restart Silk Test Classic. Your new definitions
are displayed in the Library Browser (assuming that the files containing the declarations for your
custom classes, methods, properties, and functions are loaded in memory).

There is another approach to updating the Library Browser: maintain information in different source files.

If the Library Browser isn’t displaying your user-defined objects, close the Library Browser, recompile
the include files that contain your user-defined objects, then reopen the Library Browser.

Add User-Defined Files to the Library Browser with Silk
Test Classic
1. Create a text file that includes information for all your custom classes and functions, using the formats

described in the Library Browser source file. If you have added methods or properties to built-in
classes, you should add that information in the appropriate places in 4test.txt, as described above.
Only document your custom classes and functions in your own help file.

2. Click Options > General and add your help file to the list in the Help Files For Library Browser field.
Separate the files in this list with commas.

3. Click OK. Silk Test Classic recompiles 4test.hlp to include the information in all the files listed in the
Help Files For Library Browser field. If there are errors, Silk Test Classic opens a window listing them
and continues to use the previous 4test.hlp file for the Library Browser. If you had errors, fix them
in your source file, then quit and restart Silk Test Classic. Silk Test Classic recompiles 4test.hlp
using your modified source file.

Viewing Functions in the Library Browser
To view information about built-in 4Test functions in the Library Browser:

1. Click Help > Library Browser, and then click the Functions tab.

2. Select the category of functions you want in the Groups list box. To see all built-in 4Test functions,
check the Include all check box.

Functions are listed in the Functions list box.

3. Select the function for which you want information.

Viewing Methods for a Class in the Library Browser
4Test classes have methods and properties. When you select the Methods or Properties tabs in the
Library Browser, you see a list of all the built-in and user-defined classes in hierarchical form.

To see the methods or properties for a class:

1. Click Help > Library Browser, and then click the Methods or Properties tab.

2. Select the class in the Classes list box.

Double-click a + box to expand the hierarchy. Double-click a – box to collapse the hierarchy. The
methods or properties for the selected class are displayed. By default, only those methods or properties
that are defined by the class are displayed. To see all methods or properties that are available to the
class (that is, methods or properties also defined by an ancestor of the class), select the Include
inherited check box. To see all methods or properties (even those not available to the selected class),
select the Include all check box.

Using Advanced Techniques with the Open Agent | 377

3. Select a method or property. Information about the selected method or property is displayed.

If the Library Browser is not displaying your user-defined objects, close the Library Browser, recompile
the include files that contain your user-defined objects (Run > Compile), and then re-open the Library
Browser.

Examples of Documenting User-Defined Methods
This topic contains examples of adding user-defined methods, properties, and functions to the Library
Browser.
#**
class: DialogBox
...
#** custom method
method: VerifyNumChild (iExpectedNum)
parameter: iExpectedNum: The expected number of child objects (INTEGER).
notes: Verifies the number of child objects in a dialog box.

Documenting user-defined properties: Add the property descriptions to the
appropriate class section in 4test.txt, such as:
#***
class: DialogBox
...

#** custom property
property: iNumChild
notes: The number of child objects in the dialog box.

Documenting user-defined functions: Create a group called User-defined
functions and document your functions, such as:
group: User-defined functions

function: FileOpen (sFileName)
parameter: sFileName = "myFile": The name of the file to open.
notes: Opens a file from the application.

function: FileSave (sFileName)
parameter: sFileName = "myFile": The name of the file to save.
notes: Saves a file from the application.

Web Classes Not Displayed in Library Browser
This functionality is supported only if you are using the Classic Agent.

Problem

The class hierarchy in the Library Browser does not include the Web classes, which are BrowserChild,
HtmlText, and so on.

Possible Causes and Solutions

No browser extension is
enabled.

Make sure that at least one browser extension is enabled.

Enhanced support for Visual
Basic is enabled.

Disable Visual Basic by un-checking the ActiveX check box for the
Visual Basic application in the Extension Enabler and Extensions
dialog boxes.

378 | Using Advanced Techniques with the Open Agent

Text Recognition Support
Text recognition methods enable you to conveniently interact with test applications that contain highly
customized controls, which cannot be identified using object recognition. You can use text clicks instead of
coordinate-based clicks to click on a specified text string within a control.

For example, you can simulate selecting the first cell in the second row of the following table:

Specifying the text of the cell results in the following code line:

table.TextClick("Brian Miller")

Text recognition methods are supported for the following technology domains:

• Win32.
• WPF.
• Windows Forms.
• Java SWT and Eclipse.
• Java AWT/Swing.

Note: For Java Applets, and for Swing applications with Java versions prior to version 1.6.10, text
recognition is supported out-of-the-box. For Swing applications with Java version 1.6.10 or later,
you have to add the following command-line element when starting the application:

-Dsun.java2d.d3d=false

For example:

javaw.exe -Dsun.java2d.d3d=false -jar mySwingApplication.jar

• xBrowser.

Text recognition methods

The following methods enable you to interact with the text of a control:

TextCapture Returns the text that is within a control. Also returns text from child controls.

TextClick Clicks on a specified text within a control. Waits until the text is found or the Object
resolve timeout, which you can define in the synchronization options, is over.

TextRectangle Returns the rectangle of a certain text within a control or a region of a control.

TextExists Determines whether a given text exists within a control or a region of a control.

Text click recording

Text click recording is enabled by default. To disable text click recording, click Options > Recorder >
Recording and uncheck the OPT_RECORD_TEXT_CLICK check box.

When text click recording is enabled, Silk Test Classic records TextClick methods instead of clicks with
relative coordinates. Use this approach for controls where TextClick recording produces better results
than normal coordinate-based clicks. You can insert text clicks in your script for any control, even if the text
clicks are not recorded.

Using Advanced Techniques with the Open Agent | 379

If you do not whish to record a TextClick action, you can turn off text click recording and record normal
clicks.

The text recognition methods prefer whole word matches over partially matched words. Silk Test Classic
recognizes occurrences of whole words previously than partially matched words, even if the partially
matched words are displayed before the whole word matches on the screen. If there is no whole word
found, the partly matched words will be used in the order in which they are displayed on the screen.

Example

The user interface displays the text the hostname is the name of the host. The following
code clicks on host instead of hostname, although hostname is displayed before host on
the screen:

control.TextClick("host")

The following code clicks on the substring host in the word hostname by specifying the
second occurrence:

control.TextClick("host", 2)

380 | Using Advanced Techniques with the Open Agent

Running Tests and Interpreting Results
This section describes how you can run your tests and interpret the generated results.

Running Tests
This section describes how you can run your tests with Silk Test Classic.

Creating a suite
After you have created a number of script files, you might want to collect them into a test suite. A suite is a
file that names any number of scripts. Instead of running each script individually, you run the suite, which
executes in turn each of your scripts and all the testcases they contain. Suite files have a .s extension.

1. Click File > New.

2. Select the Suite radio button and click OK. An untitled suite file is displayed.

3. Enter the names of the script files in the order you want them executed. For example, the following suite
file executes the find.t script first, the goto.t script second, and the open.t script third:

find.t
goto.t
open.t

4. Click File > Save to save the file.

5. If you are working within a project, you are prompted to add the file to the project. Click Yes if you want
to add the file to the open project, or No if you do not want to add this file to the project.

Passing Arguments To a Script
You can pass arguments to a script. For example, you might want to pass in the number of iterations to
perform or the name of a data file. All functions and test cases in the script have access to the arguments.

How to pass arguments to a script

All arguments are passed in as strings, separated by spaces, such as: Bob Emily Craig

If an argument is more than one word, enclose it with quotation marks. For example, the following passes
in three arguments: "Bob H" "Emily M" "Craig J"

You can pass arguments to a script using the following methods:

• Specify them in the Arguments field in the Runtime Options dialog box(Options > Runtime from the
menu bar).

• The Arguments field in the Run Testcase dialog box is used to pass arguments to a testcase, not to
an entire script.

• Specify them in a suite file after a script name, such as: find.t arg1 arg2
• Provide arguments when you invoke Silk Test Classic from the command line.
• If you pass arguments in the command line, the arguments provided in the command line are used and

any arguments specified in the currently loaded options set are not used. To use the arguments in the
currently loaded options set, do not specify arguments in the command line.

Running Tests and Interpreting Results | 381

Processing arguments passed into a test script

You use the GetArgs function to process arguments passed into a script. GetArgs returns a list of strings
with each string being one of the passed arguments. Any testcase or function in a script can call GetArgs
to access the arguments.

Example: passed arguments

The following testcase prints a list of all the passed arguments:

testcase ProcessArgs ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
ListPrint (lsArgs)

//You can also process the arguments individually. The following test case
prints the second argument passed:
testcase ProcessSecondArg ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
Print (lsArgs[2])

//The following testcase adds the first two arguments:
testcase AddArgs ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
NUMBER nArgSum

nArgSum = Val (lsArgs[1]) + Val (lsArgs[2])
Print (nArgSum)

You can use the Val function to convert the arguments (which are always passed as strings) into numbers.

The Val function was used to specifying arguments 10 20 30 results in the following:

Script scr_args.t (10, 20, 30) - Passed
Passed: 1 test (100%)
Failed: 0 tests (0%)
Totals: 1 test, 0 errors, 0 warnings

Testcase AddArgs - Passed

30

Running a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.

Remember to separate multiple arguments with commas.

382 | Running Tests and Interpreting Results

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag
Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can click both Shift keys at the same time to stop the execution of the test.

Running a Test Plan
Before running a test plan, make sure that the window declarations file for the test plan is correctly
specified in the Runtime Options dialog box and that the test plan is in the active window.

• To run the entire test plan, click Run > Run All Tests. Silk Test Classic runs each test case in the plan
and generates a results file.

• To run only tests that are marked, click Run > Run Marked Tests. Silk Test Classic runs each marked
test and generates a results file.

You can also run a single test case without marking it.

If your test plan is structured as a master plan and associated sub-plans, Silk Test Classic automatically
opens any closed sub-plans before running. Silk Test Classic always saves the suite, script, or test plan
before running it if you made any changes to it since the last time you saved it. By default, Silk Test Classic
also saves all other open modified files whenever you run a script, suite, or test plan. To prevent this
automatic saving of other open modified files, uncheck the Save Files Before Running check box in the
General Options dialog box.

To stop the execution of a test plan, press both Shift keys at the same time.

Running the currently active script or suite
1. Make sure the script or suite you want to run is in the active window.
2. Choose Run > Run. Silk Test Classic runs all the testcases in the script or suite and generates a results

file.

Running Tests and Interpreting Results | 383

Stopping a Running Testcase Before it Completes
To stop running a testcase before it completes:

• If your test application is on a target machine other than the host machine, click Run > Abort.
• If your test application is running on your host machine, press Shift+Shift.

Setting a Test Case to Use Animation Mode
To slow down a test case during playback so that it can be observed, set the test case to use animation
mode. For instance, if you want to demonstrate a test case to someone else, you might want to use
animation mode.

You can specify the animation mode when you run a test case, or you can specify the animation mode in
the Runtime Options dialog.

To specify the animation mode using the Runtime Options dialog:

1. From the main menu, click Options > Runtime.

2. In the Runtime Options dialog, check the Animated Run Mode (Slow-Motion) check box.

3. Click OK.

Interpreting Results
This section describes how you can use the Difference Viewer, the results file, and the reports to interpret
the results of your tests.

Overview of the Results File
A results file provides information about the execution of the test case, script, suite, or test plan. By default,
the results file has the same name as the executed script, suite, or test plan, but with a .res extension (for
example, find.res).

Whenever you run tests, Silk Test Classic generates a results file, which indicates how many tests passed
and how many failed, describes why tests failed, and provides summary information. You can invoke
comparison tools from within the results file that pinpoint exactly how the runtime results differ from your
known baselines. Test-plan results files offer additional features, such as the ability to generate a Pass/Fail
report or compare different runs of the test plan. When Silk Test Classic displays a results file, on the menu
bar it includes the Results menu, which allows you to manipulate the results file and locate errors. The
Results menu appears only when the active window displays a results file.

TrueLog Explorer

Silk Test Classic also provides the TrueLog Explorer to help you analyze test results files. You must
configure Silk Test Classic to use the TrueLog Explorer and specify what you want to capture.

Multiple User Environments

A .res file can be opened by multiple users, as long as no test is in process. This means you cannot have
two users run tests at the same time and write to the same results file. You can run a test on the machine
while the file is open on the other machine. However, you must not add comments to the file on the other
machine, or you will corrupt the .res file and will not be able to report the results of the test. If you add
comments to the file on both machines, the comments will be saved only for the file that is closed (and
therefore saved) first.

384 | Running Tests and Interpreting Results

Default Settings

By default, the results file displays an overall summary at the top of the file, including the name of the
script, suite, or testplan; the machine the tests were run on; the number of tests run; the number of errors
and warnings; actual errors; and timing information. To hide the overall summary, click the summary and
click Results > Hide Summary. For a script or suite results file, the individual test summaries contain
timing information and errors or warnings. For a testplan results file, the individual test summaries contain
the same information as in the overall summary plus the name of the testcase and script file.

While Silk Test Classic displays the most current version of the script, suite, or testplan, by default Silk Test
Classic saves the last five sets of results for each script, suite, or testplan executed. (To change the default
number, use the Runtime Options dialog.) As results files grow after repeated testing, a lot of unused
space can accumulate in the files. You can reduce a results file’s size with the Compact menu option.

The format for the rest of a testplan results file follows the hierarchy of test descriptions that were present in
the testplan. Test statements in the testplan that are preceded by a pound sign (#) as well as comments
(using the comment statement) are also printed in the results file, in context with the test descriptions.

To change the default name and directory of the results file, edit the Runtime Options dialog.

Note: If you provide a local or remote path when you specify the name of a Results file in the
Directory/Field field on the Runtime Options dialog, the path cannot be validated until script
execution time.

Viewing Test Results
Whenever you run tests, a results file is generated which indicates how many tests passed and how many
failed, describes why tests failed, and provides summary information.

1. Click Explore Results on the Basic Workflow or the Data Driven Workflow bars.

2. On the Results Files dialog box, navigate to the file name that you want to review and click Open.

By default, the results file has the same name as the executed script, suite, or test plan. To review a file in
the TrueLog Explorer, open a .xlg file. To review a results file, open a .res file.

Difference Viewer Overview
To evaluate application logic errors, use the Difference Viewer, which you can invoke by clicking the box
icon following an error message relating to an application’s behavior.

Some expanded error messages are preceded by a box icon and three asterisks. What happens when you
click the box icon depends on the error message.

If the error message relates to an application’s:

• Appearance, as in bitmaps have different sizes, Silk Test Classic opens the Bitmap Tool for your
platform. The Bitmap Tool compares baseline and results bitmaps.

• Behavior, as in Verify selected text failed, Silk Test Classic opens the Difference Viewer. The
Difference Viewer compares actual and expected values for a given test case. It lists every expected
(baseline) value in the left pane and the corresponding actual value in the right pane. Differences are
marked with red, blue, or green lines, which denote different types of differences, for example deleted,
changed, and added items.

You can use Results > Next Result Difference to find the next difference and update the values using
Results > Update Expected Value.

Note: The Difference Viewer does not work for remote agent tests, because the compared values
must be available on the local machine.

Running Tests and Interpreting Results | 385

Errors And the Results File
You can expand the text of an error message or have Silk Test Classic find the error messages for you. To
navigate from a test plan test description in a results file to the actual test in the test plan, click the test
description and select Results > Goto Source.

Navigating to errors in the script

There are several ways to move from the results file to the actual error in the script:

• Double-click in the margin next to an error line to go to the script file that contains the 4Test statement
that failed.

• Click an error message and select Results > Goto Source.
• Click an error message and press Enter.

What the box icon means

Some expanded error messages are preceded by a box icon and three asterisks.

If the error message relates to an application’s behavior, as in Verify selected text failed, Silk
Test Classic opens the Difference Viewer. The Difference Viewer compares actual and expected values
for a given test case.

Application appearance errors

When you click a box icon followed by a bitmap-related error message, the bitmap tool starts, reads in the
baseline and result bitmaps, and opens a Differences window and Zoom window.

Bitmap tool

In the Bitmap Tool:

• The baseline bitmap is the bitmap that is expected, which means the baseline for comparison.
• The results bitmap is the actual bitmap that is captured.
• The Differences window shows the differences between the baseline and result bitmap.

The Bitmap Tool supports several comparison commands, which let you closely inspect the differences
between the baseline and results bitmaps.

Finding application logic errors

To evaluate application logic errors, use the Difference Viewer, which you can open by clicking the box
icon following an error message relating to an application’s behavior.

The Difference viewer

Clicking the box icon opens the Difference Viewer’s double-pane display-only window. It lists every
expected (baseline) value in the left pane and the corresponding actual value in the right pane.

All occurrences are highlighted where expected and actual values differ. On color monitors, differences are
marked with red, blue, or green lines, which denote different types of differences, for example, deleted,
changed, and added items.

When you have more than one screen of values or are using a black-and-white monitor, use Results >
Next Result Difference to find the next difference. Use Update Expected Values, described next, to
resolve the differences.

386 | Running Tests and Interpreting Results

Updating expected values

You might notice upon inspecting the Difference Viewer or an error message in a results file that the
expected values are not correct. For example, when the caption of a dialog changes and you forget to
update a script that verifies that caption, errors are logged when you run the test case. To have your test
case run cleanly the next time, you can modify the expected values with the Update Expected Value
command.

Note: The Update Expected Value command updates data within a test case, not data passed in
from the test plan.

Debugging tools

You might need to use the debugger to explore and fix errors in your script. In the debugger, you can use
the special commands available on the Breakpoint, Debug, and View menus.

Marking failed test cases

When a test plan results file shows test case failures, you might choose to fix and then rerun them one at a
time. You might also choose to rerun the failed test cases at a slower pace, without debugging them, simply
to watch their execution more carefully.

To identify the failed test cases, make the results file active and select Results > Mark Failures in Plan.
All failed test cases are marked and test plan file is made the active file.

Testplan Pass/Fail Report and Chart
A Pass/Fail report lists the number and percentage of tests that have passed during a given execution of
the testplan. The report can be subtotaled by an attribute, for example, by Developer.

After you generate a Pass/Fail report, you can take these actions:

• Print the report.
• Export the report to a comma-delimited ASCII file.
• Chart a generated Pass/Fail report—that is, produce report information as a graph—or you can directly

graph the testplan results information without a preexisting report.

You can mark manual tests as having passed or failed in the Update Manual Tests dialog. The Pass/Fail
report includes in its statistics the manual tests that you have documented as having passed or failed.

Merging testplan results overview
Results files consist of a series of results sets, one set for each testplan run. You can merge different
results sets in a results file. Merging results sets is useful when:

• Sections of the testplan are run separately (either by one person or by several people) and you need to
create a single report on the testing process. That is, you want one results set that includes the different
runs.

• The testplan is updated with new tests or subplans and you want a single results set to reflect the
execution of the additional tests or subplans.

the two results sets are combined by merging the results set you selected in the Merge Results dialog into
the currently open results set. The open results set is altered. No additional results set is created. The date
and time of the altered results set reflect the more recent test run.

For example, let’s say that yesterday you ran a section of the testplan consisting of 20 tests and today you
ran a different section of the testplan consisting of 10 tests. The merged results set would have today's
date and would consist of the results of 30 tests.

Running Tests and Interpreting Results | 387

Analyzing Results with the Silk TrueLog Explorer
This section describes how you can analyze results with the Silk TrueLog Explorer (TrueLog Explorer).

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer User Guide, located in
Start > Programs > Silk > Silk Test > Documentation.

TrueLog Explorer
The TrueLog Explorer helps you analyze test results files and can capture screenshots before and after
each action, and when an error occurs. TrueLog Explorer writes the test result files and screenshots into a
TrueLog file.

You can additionally use the Difference Viewer to analyze results for test cases that use the Open Agent.

You can enable or disable TrueLog Explorer:

• For all test cases using the TrueLog Options dialog box.
• Each time you run a specific test case using the Run Testcase dialog box.
• At runtime using the test script.

When you enable or disable TrueLog Explorer in the Run Testcase dialog box, Silk Test Classic makes the
same change in the TrueLog Options dialog box. Likewise, when you enable or disable TrueLog Explorer
in the TrueLog Options dialog box, Silk Test Classic makes the same change in the Run Testcase dialog
box.

Note: By default, TrueLog Explorer is enabled when you are using the Open Agent, and disabled
when you are using the Classic Agent. When TrueLog Explorer is enabled, the default setting is that
screenshots are only created when an error occurs in the script and only test cases with errors are
logged.

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer User Guide, located in
Start > Programs > Silk > Silk Test > Documentation.

TrueLog Limitations and Prerequisites
When you are using TrueLog with Silk Test Classic, the following limitations and prerequisites apply:

Remote agents When you are using a remote agent, the TrueLog file is also written on the remote
machine.

Suites TrueLog is not supported when you are executing suites.

Mixed-agent
scripts

TrueLog is not supported when you are executing mixed-agent scripts, which are
scripts that are using both agents.

Multiple-agent
scripts

TrueLog is supported only for one local or remote agent in a script. When you are
using a remote agent, the TrueLog file is also written on the remote machine.

Open Agent
scripts

To use TrueLog Explorer with Open Agent scripts, set the default agent in the
toolbar to the Open Agent.

Classic Agent
scripts

To use TrueLog Explorer with Classic Agent scripts, set the default agent in the
toolbar to the Classic Agent.

Why is TrueLog Not Displaying Non-ASCII Characters Correctly?
TrueLog Explorer is a MBCS-based application, meaning that to be displayed correctly, every string must
be encoded in MBCS format. When TrueLog Explorer visualizes and customizes data, many string
conversion operations may be involved before the data is displayed.

388 | Running Tests and Interpreting Results

Sometimes when testing UTF-8 encoded Web sites, data containing characters cannot be converted to the
active Windows system code page. In such cases, TrueLog Explorer will replace the non-convertible
characters, which are the non-ASCII characters, with a configurable replacement character, which usually
is '?'.

To enable TrueLog Explorer to accurately display non-ASCII characters, set the system code page to the
appropriate language, for example Japanese.

Opening the TrueLog Options Dialog Box
Use the TrueLog options to enable the TrueLog Explorer and to customize the test result information that
TrueLog collects.

• To open the TrueLog Options dialog box from the main menu, click Options > TrueLog.
• To open the TrueLog Options dialog box from a test case, click Run Testcase on the Basic Workflow

bar. If the workflow bar is not visible, click Workflows > Basic to enable it. In the Run Testcase dialog
box, check the Enable TrueLog check box and then click TrueLog Options.

Setting TrueLog Options
Use the TrueLog options to enable TrueLog and to customize the test result information that the TrueLog
collects.

Logging bitmaps and controls in a TrueLog may adversely affect performance. Because capturing bitmaps
and logging information can result in large TrueLog files, you may want to log test cases with errors only
and then adjust the TrueLog options for test cases where more information is needed.

1. Click Options > TrueLog to open the TrueLog Options dialog box.

2. To capture TrueLog data and activate logging settings, check the Enable TrueLog check box and then
choose to capture data for:

All Testcases Logs activity for all test cases, both successful and failed. This setting may
result in large TrueLog files.

Testcases with errors Logs activity only for test cases with errors. This is the default setting.

3. In the TrueLog File field, specify the location and name of the TrueLog file.

This path is relative to the machine on which the Silk Test Classic Agent is running. The name defaults
to the name used for the results file, with an .xlg extension. The location defaults to the same folder as
the test case .res file.

Note: If you provide a local or remote path in this field, the path cannot be validated until script
execution time.

4. Only when you are using the Classic Agent, choose one of the following to set pre-determined logging
levels in the TrueLog Presets section:

Minimal Enables bitmap capture of desktop on error; does not log any actions.

Default Enables bitmap capture of window on error; logs data for Select and SetText actions;
enables bitmap capture for Select and SetText actions.

Full Logs all control information; logs all events for browsers except for MouseMove events;
enables bitmap capture of the window on error; captures bitmaps for all actions.

If you enable Full logs and encounter a Window Not Found error, you may need to manually edit your
script.

5. Only when you are using the Classic Agent, in the Log the following for controls section, specify the
types of information about the controls on the active window or page to log.

6. Only when you are using the Classic Agent, in the Log the following for browsers section, specify the
browser events that you want to capture.

Running Tests and Interpreting Results | 389

7. Specify the amount of time you want to allow Windows to draw the application window before a bitmap
is taken.

• When you are using the Classic Agent, specify the delay in the TrueLog Delay field.
• When you are using the Open Agent, specify the delay in the Delay field in the Screenshot mode

section.

The delay can be used for browser testing. You can insert a Browser.WaitForReady call in your
script to ensure that the DocumentComplete events are seen and processed. If WindowActive nodes
are missing from the TrueLog, you need to add a Browser.WaitForReady call. You can also use the
delay to optimize script performance. Set the delay as small as possible to get the correct behavior and
have the smallest impact on script execution time. The default setting is 0.

8. To capture screenshots of the application under test:

• When you are using the Classic Agent, check the Enable Bitmap Capture check box and then
choose to capture bitmaps.

• When you are using the Open Agent, determine how Silk Test Classic captures screenshots in the
Screenshot mode section.

9. Only when you are using the Classic Agent, click the Action Settings tab to select the scripted actions
you want to include in the TrueLog.

When enabled, these actions appear as nodes in the Tree List view of the TrueLog.

10.Only when you are using the Classic Agent, in the Select Actions to Log section, check the Enable
check box to include the corresponding 4Test action in the log. Each action corresponds to a 4Test
method, except for Click and Select.

11.Only when you are using the Classic Agent, in the Select Actions to Log section, from the Bitmap list
box, select the point in time that you want bitmaps to be captured.

12.Click OK.

Toggle TrueLog at Runtime Using a Script
This functionality is supported only if you are using the Classic Agent.

Toggle the TrueLog Explorer at runtime to analyze test results, capture screen-shots before and after each
action, and capture screen-shots when an error occurs.

Use the test script to toggle TrueLog Explorer multiple times during the execution of a test case. For
example, if you run a single test case to test multiple user interface menus, you can turn TrueLog on and
off several times during the script to capture bitmaps for only a portion of the menus.

1. Set the TrueLog Explorer options to define what you want the TrueLog Explorer to capture.

2. Create or open the script that you want to modify.

3. Navigate to the portion of the script that you want to turn on or off.

4. To turn TrueLog off, type: SetOption(OPT_PAUSE_TRUELOG, TRUE).

5. To turn TrueLog on, type: SetOption(OPT_PAUSE_TRUELOG, FALSE).

6. Click File > Save to save the script.

Viewing Results Using the TrueLog Explorer
Use the TrueLog Explorer to analyze test results files, capture screenshots before and after each action,
and capture screenshots upon error.

1. Set the TrueLog Explorer options.

2. Run a test case.

3. Choose one of the following:

390 | Running Tests and Interpreting Results

• Click Results > Launch TrueLog Explorer.
• Click the Explore Results button on the Basic Workflow or the Data Driven Workflow bars.

4. On the Results Files dialog box navigate to the file name that you want to review and click Open.

By default, the results file has the same name as the executed script, suite, or testplan. To review a file in
the TrueLog Explorer, open a .xlg file. To review a Silk Test Classic results file in Silk Test Classic, open
a .res file.

Modifying Your Script to Resolve Window Not Found
Exceptions When Using TrueLog
This functionality is supported only if you are using the Classic Agent.

When you run a script and get a Window 'name' was not found error, you can modify your script to
resolve the issue. Use this procedure if all of the following options are set in the TrueLog Options -
Classic Agent dialog box:

• The action PressKeys is enabled.
• Bitmaps are captured after or before and after the PressKeys action.
• PressKeys actions are logged.

The preceding settings are set by default if you select Full as the TrueLog preset.

To resolve this error, in your test case, use FlushEvents() after a PressKeys() and ReleaseKeys()
pair. Or, you can use TypeKeys() instead.

There is no need to add sleep() calls in the script or to change timeouts.

testcase one()
 Browser.SetActive()
 // Google.PressKeys("<ALT-T>")
 // Google.ReleaseKeys("<ALT-T>")
 Google.TypeKeys("<ALT-T>")
 Agent.FlushEvents ()
 Google.TypeKeys("O")
 Agent.FlushEvents ()

 //recording
 IE_Options.SetActive ()
 IE_Options.PageList.Select ("Security")
 IE_Options.Security.SecurityLevelIndicator.SetPosition (2)
 BrowserMessage.SetActive ()
 BrowserMessage.OK.Click ()
 IE_Options.SetActive ()
 IE_Options.OK.Click()

Analyzing Bitmaps
This section describes how you can analyze bitmaps with the Bitmap Tool.

Overview of the Bitmap Tool
This topic contains a brief overview of the Bitmap Tool. To access more information about the Bitmap
Tool, launch it and press F1 or choose Help > Help Topics.

The Bitmap Tool is an application that allows you to test and correct your Windows application’s
appearance by comparing two or more bitmaps and identifying the differences between them. It is
especially useful for testing inherently graphical applications, like drawing programs, but you can also
check the graphical elements of other applications. For example, you might want to compare the fonts you

Running Tests and Interpreting Results | 391

expect to see in a dialog with the fonts actually displayed, or you might want to verify that the pictures in
toolbar buttons have not changed.

It can be used as a stand-alone product, in which you create and compare bitmaps of entire windows,
client areas, the desktop, or selected areas of the screen. More commonly, however, you use the tool in
conjunction with Silk Test Classic. Bitmaps captured can be opened in the Bitmap Tool where you can
compare them using the tool’s comparison features. Conversely, bitmaps captured by the bitmap tool can
be compared by Silk Test Classic bitmap functions.

You can compare a baseline bitmap captured in the Bitmap Tool with one captured in a Silk Test Classic
test case of your application.

• If you write test cases by hand, you can use Silk Test Classic built-in bitmap functions.
• If you prefer to record test cases through Record > Testcase, the Verify Window dialog box allows you

to record a bitmap-related verification statement.

The Bitmap Tool can only recognize an operating system's native windows. In the case of the Abstract
Windowing Toolkit (AWT), included with Sun Microsystems Java Development Kit (JDK), each control has
its own window, since AWT controls are native Microsoft windows. As a result, the Bitmap Tool will only
see the top level dialog box.

When to use the Bitmap Tool
You might want to use the Bitmap Tool in these situations:

• To compare a baseline bitmap against a bitmap generated during testing.
• To compare two bitmaps from a failed test.

For example, suppose during your first round of testing you create a bitmap using one of Silk Test Classic’s
built-in bitmap functions, CaptureBItmap. Assume that a second round of testing generates another
bitmap, which your test script compares to the first. If the testcase fails, Silk Test Classic raises an
exception but cannot specifically identify the ways in which the two images differ. At this point, you can
open the Bitmap Tool from the results file to inspect both bitmaps.

Capturing Bitmaps with the Bitmap Tool
You can capture bitmaps by embedding bitmap functions and methods in a test case or by using the
Bitmap Tool. This section explains how to capture bitmaps in the Bitmap Tool.

Use the Capture menu to capture a bitmap for any of the following in your application:

• A window.
• The client area of a window, which means the working area, without borders or controls.
• A selected rectangular area of the screen. This is especially useful for capturing controls within a

window.
• The desktop.

Capturing a Bitmap with the Bitmap Tool

1. Start the application in which you want to capture bitmaps and set up the window or area to capture.

2. Start the Bitmap Tool.

3. If you want to change the current behavior of the tool window, click Capture > Hide Window on
Capture.

By default, the tool window is hidden during capture.

4. Choose a window or screen area to capture:

Window Choose Capture > Window. Click the window you want to capture.

392 | Running Tests and Interpreting Results

Client area Choose Capture > Client Area. Click the client area you want to capture.

Selected
rectangular area

Choose Capture > Rectangle.

1. Move the mouse cursor to desired location to begin capture.
2. While pressing and holding the left mouse button, drag the mouse to outline a

rectangle, and then release the mouse button to capture it. During outlining,
the size of the rectangle is shown in pixels.

Desktop Click Capture > Desktop.

The Bitmap Tool creates a new MDI child window containing the newly captured bitmap. The title bar
reads Bitmap - (Untitled) and the status line at the bottom right of the window gives the dimensions of
the bitmap (height by width), and the number of colors.

5. Repeat steps 3 and 4 to capture another bitmap. Alternatively, open an existing bitmap file.

6. Save the bitmap.

Now you are ready to compare the two bitmaps or create a mask for the baseline bitmap.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Capturing a Bitmap During Recording

1. Open the dialog box by pointing at the object you want to capture and pressing Ctrl+Alt.

2. Click the Bitmap tab.

3. Enter a file name in the Bitmap File Name field. Use the Browse button to select a directory name.

The default path is based on the current directory. The default file name for the first bitmap is
bitmap.bmp. Click Browse if you need help choosing a new path or name.

4. Choose whether to copy the Entire Window, Client Area of Window, or Portion of Window, and click
OK.

To capture a portion of the window, move the mouse cursor to the location where you want to begin.
While pressing the left mouse button, drag the mouse to outline a rectangle, and then release the
mouse button to capture the bitmap.

Silk Test Classic always adds a bitmap footer to the bitmap file. This means that the physical size of the
bitmap will be slightly bigger than if you capture the bitmap in the Bitmap Tool. The bitmap footer always
contains the window tag for a given bitmap.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Capturing All or Part of the Zoom Window in Scan Mode

1. Make sure the Capture > Hide Window is unchecked.

If necessary, select the item to uncheck the check mark.

Running Tests and Interpreting Results | 393

2. Click Next or Previous until the Zoom window contains the difference you want to capture.

3. Perform one of the following actions to capture the desired part of the Zoom window:

Entire Zoom window Press Ctrl+W and select the Zoom window.

Client area of Zoom
window

Press Ctrl+A and select the Zoom window.

Selected area of Zoom
window

Press Ctrl+R. Move the mouse cursor to desired location to begin
capture. While pressing and holding the left mouse button, drag the mouse
to the screen location to end capture, and release the mouse button.

4. Optionally, you can fit the bitmap in its window, resize it, and save it.

Saving Captured Bitmaps
You can, if you want, save the bitmaps you have captured in the Bitmap Tool. You should adopt a naming
convention that helps you distinguish between the first bitmap in the comparison, called the baseline
bitmap, and the second bitmap, called the result bitmap. You can make the distinction in the file name itself,
for example, by appending or prefixing a b or r to the name and using the same file extension for all bitmap
files. Or you might use the same file name for both baseline and result bitmaps and add a unique file
extension.

Example

You save baseline and result bitmaps of the Open dialog box as open.bmp and
open.rmp. Alternatively, you might name them openbase.bmp and openres.bmp,
respectively.

The following table lists the file extensions supported by the Bitmap Tool. We recommend that you
use .bmp for baseline bitmaps and .rmp for result bitmaps.

If you are saving And you want the file name to be Then use this extension

Baseline bitmap Identical to the result bitmap’s .bmp

Result bitmap Identical to the baseline bitmap’s .rmp

Either baseline or
result bitmap

Unique .bmp or .dib (Device Independent
Bitmap)

Note: Silk Test Classic uses .rmp for bitmaps that are captured within a test case and fail verification.

Comparing Bitmaps
The Bitmap Tool can create and graphically locate the differences between two bitmaps. You can use all
Windows functionality to resize, save, and otherwise manipulate bitmaps, in addition to the special
comparison features included in the tool.

Using the Bitmap Tool, you can:

• Show the areas of difference.
• Zoom in on the differences.
• Jump from one zoomed difference to the next.
• View on-line statistics about the bitmaps.
• Edit (copy and paste), print, and save bitmaps.
• Create masks.

The Bitmap Tool has the following major comparison commands:

394 | Running Tests and Interpreting Results

Command Description

Show Creates a Differences window, which is a child window containing a black-and-white
bitmap. Black represents areas with no differences and white represents areas with
differences.

Zoom Creates a special, not sizable, Zoom window with three panes and resizes and stacks
the Baseline, Differences, and Result windows.

• The top pane of the Zoom window contains a zoomed portion of the Baseline
window.

• The middle pane shows a zoomed portion of the Differences window.
• The bottom pane shows a zoomed portion of the Result window.

All three zoomed portions show the same part of the bitmap. When you move the
mouse within any of the three windows, the Bitmap Tool generates a simultaneous and
synchronized real-time display in all three panes of the Zoom window.

While in scan mode, you can capture the Zoom window to examine a specific bitmap
difference.

Scan The tool indicates the location of the first difference it finds by placing a square in the
same relative location of the Baseline, Result, and Differences windows. The three
panes of the Zoom window also show the difference.

Comparison
Statistics

Provides statistics about the bitmaps.

You can also compare bitmaps by creating and applying masks.

Rules for Using Comparison Commands
You should be familiar with the following rules before using the commands:

• If you are comparing two new bitmaps captured in the tool, designate one bitmap as the baseline, the
other as the result bitmap.

• If you are comparing two existing, saved bitmaps, open first the bitmap that you consider the baseline.
The tool automatically designates the first bitmap you open as the baseline, and the second as the
result.

• The commands must be used in this order: Show, Zoom, and Scan.

Bitmap Functions
CaptureBitmap, SYS_CompareBitmap, WaitBitmap, and VerifyBitmap are built-in bitmap-related
4Test functions. In particular, VerifyBitmap is useful for comparing a screen image during the execution
of a test case to a baseline bitmap created in the Bitmap Tool. If the comparison fails, Silk Test Classic
saves the actual bitmap in a file. In the following example, the code compares the test case bitmap (the
baseline) against the bitmap of TestApp captured by VerifyBitmap:

TestApp.VerifyBitmap ("c:\sample\testbase.bmp")

Baseline and Result Bitmaps
To compare two bitmaps, you must designate one bitmap in the comparison as the baseline and the
second bitmap as the result. While you may have many bitmap files open in the Bitmap Tool, at any one
time only one bitmap can be set as the baseline and one as the result. If you want to set new baseline and
result bitmaps, you must first un-set the current assignments.

These designations are temporary and at any time you can set and reset a bitmap as a baseline, result, or
neither.

Running Tests and Interpreting Results | 395

Designating a Bitmap as a Baseline
To designate a bitmap as a baseline:

In the Bitmap Tool, click Bitmap > Set Baseline. The Set Baseline menu item is checked. The title
bar of the child window changes to Baseline Bitmap -- filename.bmp.

Designating a Bitmap as a Results File
To designate a bitmap as a results file:

In the Bitmap Tool, click Bitmap > Set Result. The Set Result menu item is checked. The title bar of
the child window changes to Result Bitmap -- filename.rmp.

Un-Setting a Designated Bitmap
Uncheck the menu item. For example, to un-set a baseline bitmap, uncheck Bitmap > Set Baseline. The
check mark is removed.

Uncheck the menu item.

For example, to un-set a baseline bitmap, uncheck Bitmap > Set Baseline.

The check mark is removed.

Zooming the Baseline Bitmap, Result Bitmap, and
Differences Window
Choose Differences > Show and then Differences > Zoom.

The tool arranges the Baseline Bitmap on top, the Result Bitmap on the bottom, and the Differences
window in the middle. To the right of these, the tool creates a Zoom window with three panes, arranged like
the bitmap windows

Looking at Statistics
The Differences > Comparison Statistics command displays information about the baseline and result
bitmaps, with respect to width, height, colors, bits per pixel, number of pixels, and the number and
percentage of differences (in pixels).

Viewing Statistics by Comparing the Baseline Bitmap and the Result
Bitmap
To view statistics by comparing the baseline bitmap and the result bitmap:

Click Differences > Comparison Statistics. The Bitmap Comparison Statistics window opens.

Note: The number of colors is derived from the following formula: number of colors = 2 ^ (bits per
pixel).

Exiting from Scan Mode
To exit from the scan mode:

Click Differences > Scan. Exiting scan leaves the tool in zoom mode.

396 | Running Tests and Interpreting Results

Starting the Bitmap Tool
This section lists the locations from which you can start the Bitmap Tool.

Starting the Bitmap Tool from its Icon and Opening Bitmap Files
1. Click Start > Programs > Silk > Silk Test > Tools > Silk Test Bitmap Tool. The Bitmap Tool window

displays.
2. Do one of the following:

Open an existing bitmap
file

Click File > Open and specify a file in the Open dialog box. See
Overview of Comparing Bitmaps.

Capture a new bitmap See Capturing a Bitmap in the Bitmap Tool.

Starting the Bitmap Tool from the Results File
When the verification of a bitmap fails in a test case, Silk Test Classic saves the actual result in a bitmap
file with the same name as the baseline bitmap but with the extension .rmp. So, if the bitmap file
testbase.bmp fails the comparison, Silk Test Classic names the result bitmap file testbase.rmp. It also
logs an error message in the results file.

Note: In some cases this error message does not reflect an actual error. In particular, when Silk Test
Classic compares a bitmap it captured with one captured in the Bitmap Tool, the comparison fails
because Silk Test Classic stores footer information in its bitmap. The bitmaps might in fact be identical
in all ways except for this information.

To compare the actual bitmap generated by the test case against the baseline bitmap generated by the
bitmap tool or one of Silk Test Classic’s built-in functions, click the box icon preceding the error message.

Silk Test Classic opens the bitmap tool, opens both the baseline bitmap, which is the expected bitmap as
a .bmp file, and the result bitmap, which is the actual bitmap as a .rmp file, creates a Results/View
Differences and places it in between the baseline bitmap and the result bitmap. The right portion of the
tool displays a three-paned Zoom window.

Starting the Bitmap Tool from the Run Dialog Box
1. Click Start > Run. The Run dialog box displays.
2. Type the pathname of the tool’s executable file and any parameters in the Command Line field and

click OK. The Bitmap Tool starts. Any bitmaps you specified on the command line are opened.
3. See Overview of Comparing bitmaps.
4. If you did not specify any files in the command line, go to the next step.

You can now open existing bitmaps created in Silk Test Classic or in the tool, or you can capture new
bitmaps.

5. Do one of the following:

Open an existing bitmap
file

Click File > Open and specify a file in the Open dialog box. See
Overview of Comparing Bitmaps.

Capture a new bitmap See Capturing a Bitmap in the Bitmap Tool.

Using Masks
A mask is a bitmap that you apply to the baseline and result bitmaps in order to exclude any part of a
bitmap from comparison by the Bitmap Tool. For example, if you are testing a custom object that is
painted on the screen and one part of the object is variable, you might want to create a mask to filter out
the variable part from the bitmap comparison.

Running Tests and Interpreting Results | 397

You might consider masking any differences that you decide are insignificant or that you know will vary in
an effort to avoid test case failure. For example, suppose a test case fails because one bitmap includes a
flashing area of a dialog box. In the Bitmap Tool you can block the flashing area from the two bitmaps by
creating and applying a mask to them. Once a mask is applied and the masked bitmaps are saved, the
mask becomes a permanent part of the baseline bitmaps you are comparing. Masks can also be saved in
separate files and used in test cases.

You can create a mask in two ways:

• By converting the Differences window to a mask. A mask created this way filters out all differences.
• By opening a new mask window and specifying rectangular areas to mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Prerequisites for the Masking Feature
Before using the masking feature, you must:

• Capture or open two bitmaps to compare. Set baselinesetbaseline and resultsetresult
bitmaps, if currently un-set.

• Determine which sections you need to mask. Use one or more comparison
featurescomparisoncmds, if necessary, to locate bitmap differences.

Applying a Mask
1. Open the mask bitmap file and click Bitmap > Set Mask.

2. Click Edit > Apply Mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Editing an Applied Mask
You can edit a mask after it has been applied:

• To add to the mask, place the mouse cursor in the baseline bitmap window at the position where you
want to begin adding to the mask. Click and drag the mouse cursor to outline a rectangle. Then release
the left mouse button.

• To delete part of the mask, place the mouse cursor in the baseline bitmap window at the position where
you want to begin deleting part of the mask. While pressing and holding the Shift key, drag the mouse
cursor over the area of the existing map that you want to delete, and then release the Shift key and the
left mouse button.

Creating and Applying a Mask that Excludes Some Differences or Just
Selected Areas
1. Click Edit > New Mask. The bitmap tool creates an empty Mask Bitmap child window that is the same

size as the baseline bitmap.

398 | Running Tests and Interpreting Results

2. Using the Differences window to help you locate differences, place the mouse cursor in the baseline
bitmap window at the position where you want to begin creating the mask. As you press and hold the
left mouse button, drag the mouse cursor to outline a rectangle. Then release the left mouse button.
The rectangular outline in the baseline map changes to a filled-in rectangle. The mask bitmap window
also contains a like-sized rectangle in the same relative location.

3. Repeat step the previous step until you have completed the mask.

4. If you want to delete a portion of the mask, place the mouse cursor in the baseline bitmap window at the
position where you want to begin editing. While pressing the Shift key and then the left mouse button,
drag the mouse cursor over the area of the existing map that you want to delete, and then release the
Shift key and the left mouse button.

The area of the mask overlapped by the rectangle outline disappears in both the baseline and mask
bitmap window.

5. Choose Edit > Apply Mask. The bitmap tool applies the mask to the result bitmap and closes the
Differences window.

6. Choose one of the following actions:

Keep the baseline and result
bitmaps with the mask applied

Save the bitmap files. The mask is now a permanent part of the
bitmap files.

Unapply the mask Close the mask bitmap window. Saving is optional.

Keep the mask as it is Save the mask file.

Edit the mask Choose File > Save and close the mask bitmap window. This
un-applies the mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Creating and Applying a Mask that Excludes All Differences

1. Click Differences > Show to open a Differences window, if one is not already open.

2. Click Differences > Convert to Mask. A message is displayed: Bitmaps are now identical on
screen.

3. Click OK.

The bitmap tool creates an untitled mask bitmap from the Differences window, swapping black and
white, and applies the mask to the baseline and result bitmaps.

4. Choose one of the following actions:

Keep the baseline and result
bitmaps with the mask applied

Save the bitmap files. The mask is now a permanent part of the
bitmap files.

Unapply the mask Close the mask bitmap window. Saving is optional.

Keep the mask as it is Save the mask file.

Edit the mask Choose File > Save and close the mask bitmap window. This
un-applies the mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you

Running Tests and Interpreting Results | 399

capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Saving a Mask
Masks can be saved in a file, applied to the baseline and result bitmaps for you to examine on screen only,
or applied to and saved in the baseline and result bitmap files. Once masks are applied and saved, they
become a permanent part of the baseline and result bitmaps. The advantage of saving the mask alone is
that later you can read in the mask file and apply it to the bitmap on screen, thus allowing you to keep the
bitmap in its original state.

You can supply the name of a mask bitmap file (as well as its associated baseline bitmap file) as an
argument to bitmap functions.

The Bitmap Tool supports the .msk file extension for mask files. Alternatively, you can designate a mask
in the file name and use the generic .bmp extension. We recommend, however, that you use the .msk
extension.

The following bitmap-related functions accept mask files as arguments:

• GetBitmapCRC

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Analyzing Bitmaps for Differences
This section describes how you can analyze bitmaps for differences.

Scanning Bitmap Differences
To scan the differences between the baseline and result bitmaps:

Click Differences > Scan or Differences > Next. The tool indicates the location of the first difference it
finds by placing a square in the same relative location of the Baseline, Result, and Differences
windows. The three panes of the Zoom window also show the difference.

Showing Areas of Difference
The Show command creates a Differences window which is a child window containing a black-and-white
bitmap. Black represents areas with no differences and white represents areas with differences.

Graphically Show Areas of Difference Between a Baseline and a Result
Bitmap
To graphically show the differences between a baseline and a result bitmap:

Click Differences > Show. The Bitmap Tool displays a Differences window along with the source
baseline and result bitmaps from which it was derived.

400 | Running Tests and Interpreting Results

Moving to the Next or Previous Difference
You must first create a Differences window and a Zoom window using Differences > Show and
Differences > Zoom.

The Scan command on the Differences menu automates zoom mode and causes the bitmap tool to scan
for differences from left to right and top to bottom. When the first difference is found, a small square, 32 x
32 pixels, is shown in the Baseline Bitmap, Result Bitmap, and Differences Bitmap windows in the
same relative location. In addition, that location is shown in all three panes in the Zoom window.

Click Differences > Next or Differences > Previous.

Zooming in on the Differences
The Zoom command creates a special, not sizable, Zoom window with three panes and resizes and
stacks the Baseline, Differences, and Result windows.

• The top pane of the Zoom window contains a zoomed portion of the Baseline Bitmap window.
• The middle pane shows a zoomed portion of the Differences window.
• The bottom pane shows a zoomed portion of the Result Bitmap window.

All three zoomed portions show the same part of the bitmap. When you move the mouse within any of the
three windows, the bitmap tool generates a simultaneous and synchronized real-time display in all three
panes of the Zoom window.

While in scan mode, you can capture the Zoom window to examine a specific bitmap difference.

Working with Result Files
This section describes how you can use result files to interpret the results of your tests.

Attaching a comment to a result set
You can attach comments to individual results sets to record useful information about the test run:

1. Open the results file.

2. Click Results > Select to display the Select Results dialog.

3. Select the results set to which you want to attach a comment.

4. Type the comment in the Comment text field at the bottom of the dialog. The comment appears in the
Comment column in the Select Results dialog.

5. Click OK.

Silk Test Classic displays the comments in the various dialogs that list results sets, such as the Extract
Results and Delete Results dialogs.

Comparing Result Files
The Compare Two Results command allows you to quickly note only the results that have changed from a
prior run without having to look at the same errors over again. The command identifies differences based
on the following criteria:

• A test passes in one test plan run and fails in the other.
• A test fails in both runs but the error is different.
• A test is executed in one test plan run but not in the other.

Running Tests and Interpreting Results | 401

Silk Test Classic uses the test descriptions as well as the test statements to identify and locate the various
cases in the test plan. Therefore, if you change the descriptions or statements between runs, Silk Test
Classic will not be able to find the test when you run Compare Two Results.

1. Open two results files.

2. Make the results set you want to compare to another results set the active window.

3. Choose Results > Compare Two Results.

4. On the Compare Two Results dialog, select a results set from the list box and click OK.

5. When the results set is displayed again, a colored arrow is positioned in the left margin for every test
that is different.

A red arrow indicates that the difference is due to the pass/fail state of the test changing.

A magenta arrow indicates that the difference is due to the addition or removal of the test in the
compared test run.

6. Click Results > Next Result Difference to search for the next difference or choose Results > Next
Error Difference to search for the next difference that is due to the change in a pass/fail state of a test.

Silk Test Classic uses the test descriptions as well as the script, testcase, and testdata statements to
identify and locate the various cases in the test plan and in the results set. When test results overlap in the
two results set that were merged, the more recent run is used. If you change a test description between
runs or modify the statements, Silk Test Classic might be unable to find the test when you try to merge
results. Silk Test Classic places these orphaned tests at the top of the results set.

Customizing results
You can modify the way that results appear in the results file as follows:

• Change the colors of elements in the results file
• Change the default number of results sets
• Display a different set of results
• Remove the unused space in a results file

You can also view an individual summary.

Deleting a results set
1. Click Results > Delete. Silk Test Classic displays the Delete Results dialog with the most current

results set displayed first.

2. Select the set of results you want to delete and click OK.

Change the default number of results sets
1. Click Options > Runtime. The Runtime Options dialog box displays.

2. In the History Size field, change the number to the number of results files you want.

Note: By default, five result sets are kept.

Changing the Colors of Elements In the Results File
1. In Silk Test Classic, click Options > Editor Colors to display the Editor Colors dialog.

2. Select an element from the Editor Item list box.

402 | Running Tests and Interpreting Results

3. Select one of the 16 colors from the palette or modify the RGB values of the selected color. To modify
RGB value, select the color. Slide the bar to the left or right, click the spin buttons, or type specific RGB
values until you get the color you want.

4. When you are satisfied with the color, click OK.

To revert to the default colors, click Reset. By default, these results file elements are displayed in the
following colors:

Results file element Default color/icon

Error messages and
warnings

Red plus sign (bold on black-and-white monitor)

Warnings only Purple plus sign

Test descriptions of
executed tests

Dark blue

Test descriptions of
unexecuted tests

Grayed out

Other descriptive lines Black

Fix incorrect values in a script
1. Make the results file active.

2. Click Results > Update Expected Value.

3. Optionally, select Run > Testcase in order to run the test and confirm that it now passes. The expected
values in the script are replaced with the actual values found at runtime.

Marking Failed Testcases
When a testplan results file shows testcase failures, you might choose to fix and then rerun them one at a
time. You might also choose to rerun the failed testcases at a slower pace without debugging them to watch
their execution more carefully.

Make the results file active and click Results > Mark Failures in Plan.

All failed testcases are marked and the testplan is made the active file.

Merging results
You can merge results in two different ways:

• Merging two results sets in a results file.
• Merging results of manual tests.

Navigating to errors
To find and expand the next error or warning message in the results file, choose Edit > Find Error. To skip
warning messages and find error messages only, in the Runtime Options dialog, uncheck the check box
labeled Find Error stops at warnings.

You can also use the Find, Find Next, and Go to Line commands on the Edit menu to navigate through a
results file.

To expand an error message to reveal the cause of an error, click the red plus sign preceding the message.
In addition to the cause, you can see the call stack which is the list of 4Test functions executing at the time
the error occurred.

Running Tests and Interpreting Results | 403

There are several ways to move from the results file to the actual error in the script:

• Double-click the margin next to an error line to go to the script file that contains the 4Test statement that
failed.

• Click an error message and choose Results > Goto Source.
• Click an error message and press Enter.

To navigate from a testplan test description in a results file to the actual test in the testplan, click the test
description and click Results > Goto Source.

Viewing an individual summary
1. Click a testcase line in a suite or script results file, or click a test description in a testplan results file.

2. Click Results > Show Summary.

Storing and Exporting Results
You can store and export results in a variety of ways:

• Store results in an unstructured ASCII format.
• Exporting results to a structured file for further manipulation.
• Sending the results directly to Issue Manager.

Storing results
Silk Test Classic allows you to extract the information you want in an unstructured ASCII text format and
send it to a printer, store it in a file, or look at it in an editor window.

To store results in an unstructured ASCII format

1. Click Results > Extract.
2. In the Extract To group box on the Extract Results dialog, select the radio button for the destination of

the extracted output: Window (default), File, or Printer.
3. In the Include group box, check one or more check boxes indicating which optional text, if any, to

extract. (This optional text is in addition to the output selected in the Expand group box.) The choices
are:

4. Select a radio button in the Expand group box indicating which units to extract information about. Select
Scripts, Scripts and Testcases (default), or Anything with Errors.

5. Select one or more results sets from the Results to Extract group box.

6. Click OK.

Exporting Results to a Structured File for Further
Manipulation
1. Click Results > Export. The Export Results dialog displays.

2. Specify the file name. By default, the name results file.rex is suggested (for results export).

3. Specify which fields you want to export to the file.

4. Specify how you want the fields delimited in the file. The default is to comma delimit the fields and put
quotations marks around strings.

You can pick another built-in delimited style listed in the Export format list box or select Custom and
specify your own delimiters.

5. To include header information in the file, check the Write header check box. Header information
contains the name of the results file, which fields were exported, and how the fields were delimited.

404 | Running Tests and Interpreting Results

6. To include the directory and file that stores the results file in the file, check the Write paths relative to
the results file check box.

7. Specify which results sets you want to export. The default is the results set that is currently displayed in
the results window.

8. Click OK. The information is saved in a delimited text file. You can import that file into an application that
can process delimited files, such as a spreadsheet.

Removing the unused space in a results file
1. Open a results file.

2. Click Results > Compact. The file size is reduced.

Sending Results Directly to Issue Manager
Silk Central Issue Manager is the defect-tracking product that you can use to create and manage bug
reports, enhancement requests, and documentation issues for your application. Issue Manager is
integrated with Silk Test Classic. You can associate individual Silk Test Classic tests with defects stored in
Silk Central Issue Manager and have Silk Central Issue Manager process the defects based on the results
of the tests.

You can pass your test results to Silk Central Issue Manager in two ways:

Sending results directly to Silk
Central Issue Manager

This is the easiest way to pass the results if you are running both
Silk Central Issue Manager and Silk Test Classic.

Exporting the results to a .rex
file for importing later in Silk
Central Issue Manager.

.rex files can be read correctly by Silk Central Issue Manager 3.2
(and above). While you can export a .rex file to previous versions
of SilkRadar, syntax/data errors occur.

Logging Elapsed Time Thread and Machine
Information
Using the Runtime Options dialog, you can specify that you want to log elapsed time, thread number, and
current machine information. This information is then written to the results file where you can display and
sort it. For example, if you encounter nested testcases in the results files because you use multi-threading,
check this check box to record thread number information in your results file. Then, you can sort the lines in
your results file by thread number to better navigate within the nested testcases.

1. Click Options > Runtime to open the Runtime Options dialog.

2. In the Results area, check the Log elapsed time, thread, and machine for each output line check
box.

3. Click OK.

Presenting Results
This section describes how you can use charts and reports to present the results of your tests.

Fully customize a chart
1. Generate the Pass > Fail report and click the Chart tab.

2. Click the area of the chart that you want to customize, for example, the text that appears for the title and
footnote.

Running Tests and Interpreting Results | 405

3. Double-click the selected area. A dialog displays showing the properties for the selected area. (You can
also right-click anywhere on a chart and select the area you want to modify from a popup menu.)

4. Make your changes.

5. Click OK.

Generate a Pass/Fail Report on the Active Test Plan
Results File

Note: You can only generate pass/fail reports for the results of test plans, not for the results of
individual tests.

1. Make sure the test plan results file you want to report on is active, and then click Results > Pass/Fail
Report.

2. On the Results Pass/Fail Report dialog box, select an attribute to report on from the Subtotal by
Attribute list.

3. Click Generate.

4. Take one of the following actions:

Subtotal the report by a
different attribute

Select a different attribute in the Subtotal By Attribute list, then click
Generate.

Print the report Click Print. You can set the margins, headers and footers, print quality, and
fonts for the report. To change the font, click Font. To change the printer
setup, click Setup.

When you have finished setting these options, click OK to print the report.

Chart the report Display the Chart tab.

Write the report to a
comma-delimited ASCII
file

Click Export, specify the full path of the file and click OK.

You can open the file in a spreadsheet application that accepts comma-
delimited data.

Producing a Pass/Fail Chart
You can create a chart out of a generated Pass/Fail report, or you can directly create a graph of the test
plan results information without a preexisting report.

Note: You can only generate pass/fail reports for the results of test plans, not for the results of
individual tests.

1. Open the result file of a test plan execution in Silk Test Classic.

2. In the Silk Test Classic menu, click Results > Pass/Fail Report. The Pass/Fail Report dialog box
opens.

3. Click the Chart tab.

If you have already generated a report, Silk Test Classic displays a chart of the generated report. You
might need to resize the window so there is enough room to display the chart well. If you have not
generated a report, Silk Test Classic displays a default chart, which allows you to modify chart
parameters before you actually generate the chart.

4. Perform one of the following actions:

Change basic
charting
properties

1. Click Setup. The Chart Settings dialog is displayed.
2. To change the chart type, select an option from the Chart Type list. Silk Test

Classic provides bar charts, line charts, and area charts.

406 | Running Tests and Interpreting Results

3. Click Apply to update the chart and leave the Chart Settings dialog open. You
can also choose whether the chart is three- dimensional, is stacked (for bar
charts), and displays a legend, which describes the data being charted. Silk
Test Classic displays a model that represents how the chart will look based on
current settings.

Add the results
from another
execution of the
test plan to the
chart

1. Click Select. The Select Results dialog is displayed, listing recent runs of the
current test plan. Silk Test Classic keeps a history of results for each test plan.
The number of results it keeps is determined by the value for History Size in
the Runtime Options dialog.

2. Select the results you want to add to the chart. The results from the selected
execution of the test plan will be added to the results currently charted. You can
use this feature to compare two different runs of the same tests to spot problem
areas. You can chart today's results, then click Setup and select yesterday's
results to have both appear on one chart.

Move a part of
the chart

1. Click the part you want to move, such as the title, legend, or footnote (the text
that displays below the chart). The area is selected.

2. Drag it with the mouse.

Print the chart 1. Click Print. The Print Pass/Fail Chart dialog displays. You can specify a
header or footer.

2. Click OK to print the chart.

Copy the chart
to the clipboard

1. Right-click anywhere on the displayed chart, and then click Copy.
2. The chart is placed on the clipboard. You can paste it into another application.

Change
advanced
charting
properties

Usually you can get the chart you want using the default and basic charting
properties. But if you want more customization, you can modify just about any
property in the chart, including:

• text that appears for the title and footnote
• font used for any text in the chart
• location for the title, legend, and footnote
• colors used for the data
• size and spacing of the bars in bar charts
• borders and shading to the background (backdrop) of any area
• See Customizing a chart.

Generate the
chart

Once you are satisfied with the chart parameters, click Generate. The Pass/Fail
chart is displayed.

Displaying a different set of results
1. Click Results > Select. Silk Test Classic displays the Select Results dialog with the most current

results set displayed first.

2. Select the set of results you want to see and click OK.

Running Tests and Interpreting Results | 407

Debugging Test Scripts
This section describes how you can debug your test scripts with Silk Test Classic.

Designing and testing with debugging in mind
Here are some suggestions for designing and testing a script that will facilitate debugging it later:

• Plan for debugging (and robustness) when you’re designing the script, by having your functions check
for valid input and output, and perform some operation that informs you if problems occur.

• Test each function as you write it, by building it into a small script that calls the function with test
arguments and performs some operation that lets you know it works. Or use the debugger to step
through the execution of each function individually after you have coded all (or part) of the script.

• Test each routine with the full range of valid data values, including the highest and lowest valid values.
This is a good way to find errors in control loops.

• Test each routine with invalid values; it should reject them without crashing.
• Test each routine with null (empty) values. Depending on the purpose of the script, it might be useful if a

reasonable default value were provided when input is incomplete.

Overview of the Debugger
You will find out about many of the errors or inconsistencies in your scripts when Silk Test automatically
raises an exception in response to them. Some problems, however, cause a script to work in unexpected
ways, but do not generate exceptions. You can use the debugger to solve these kinds of problems.

Using the debugger, you can step through a script a line at a time and stop at specified breakpoints, as well
as examine local and global variables and enter expressions to evaluate.

But the debugger is more than just a tool for fixing scripts. You can also use it to help find problems in your
application using the debugging facilities to step through the application slowly so you can determine just
where a problem occurs.

The debugger allows you to view the results of your testing in the following ways:

• View the debugging transcript when you debug a script. See Viewing the debugging transcript. Silk Test
records error information and output from the print statements in a transcript, not in a results file.

• Examine the debugging variables while you are debugging a test script. See View variables.
• View the call stack. The call stack is a description of all the function calls that are currently active in the

script you are debugging. By viewing the call stack, you can trace the flow of execution, possibly
uncovering errors that result when a script's flow of control is not what you intended. To view the current
call stack, choose View > Call Stack. Silk Test Classic displays the call stack in a new window. To
return to the script being debugged, press F6 or choose View > Module and select the script from the
list.

You cannot use the debugger from plan (*.pln) files, however, you could call test cases from a main()
function and debug it from there.

You may not modify files when you are using the debugger. If you want to fix a problem in a file, you must
first stop the debugger, and then make the fix.

Executing a script in the debugger
Once you have set one or more breakpoints, you can start executing your script.

408 | Debugging Test Scripts

1. Click Debug > Run. Silk Test Classic runs the script until it hits the first breakpoint, an error occurs, or
the script ends. Silk Test Classic displays a blue triangle next to the line where it stopped running the
script.

2. Click Debug > Continue. Silk Test Classic runs the script until it hits the next breakpoint, an error
occurs, or the script ends.

3. Click Debug > Step Into, Debug > Step Over, or Debug > Finish Function to run a smaller chunk of
your script.

Starting the debugger
There are several ways to enter the debugger:

Script in active
window

Click Run > Debug.

Silk Test Classic enters the debugger and pauses. It does not set a breakpoint.

Another script Click File > Debug and select the script file from the Debug dialog.

Silk Test Classic enters the debugger and pauses. It does not set a breakpoint.

A testcase With a script active, click Run > Testcase, select a testcase from the Run Testcase
dialog, and click Debug.

Silk Test Classic enters the debugger and sets a breakpoint at the first line of the
testcase.

An application
state

Click Run > Apllication State, select an application state from the Run Application
State dialog, and click Debug.

Silk Test Classic enters the debugger and sets a breakpoint at the first line of the
application state definition.

A plan file You cannot use the debugger from plan files (*.pln) , however, you can call
testcases from a main() function and debug it from there.

When you enter the debugger, you can execute the script under your control.

You cannot edit a script when you are in the debugger.

Debugger menus
In debugging mode, the menu bar includes three additional menus:

• Debug menu commands allow you to control the script’s flow.
• Breakpoint menu commands add or remove a breakpoint.
• View menu commands display different elements of the running script (for example, local and global

variables, the call stack, and breakpoints) and evaluate expressions.

Stepping into and over functions
Sometimes the key to locating a bug in your code is to divide the script up into discrete functions, and
debug each function separately. One good way to do this is with the Step Into, Step Over, and Finish
Function commands on the Debug menu. These commands let you run and test functions individually:

Step Into Step through the function one line at a time, executing each line in turn as you go.

Step Over Speed up debugging if you know a particular function is bug-free.

Debugging Test Scripts | 409

Finish Function Execute the script until the current function returns. Silk Test Classic sets the focus at
the line where the function returns. Try using Finish Function in combination with
Step Into to step into a function and then run it.

Working with scripts
To run the script you are
debugging

Click Debug > Run. The script runs until a breakpoint is hit, an error occurs,
or it terminates.

To reset a script Click Debug > Reset. This frees memory, frees all variables, and clears the
call stack. The focus will be at the first line of the script.

To stop execution of a
running script

Press Shift+Shift when running a script on the same machine or
choose Debug > Abort when running a script on a different machine.

Exiting the debugger
You can leave the debugger whenever execution is stopped.

To exit the debugger, click Debug > Exit.

Breakpoints
A breakpoint is a line in the script where execution stops so that you can check the script’s status. The
debugger lets you stop execution on any line by setting a breakpoint. A breakpoint is denoted as a large
red bullet.

One useful way to debug a script is to pause it with breakpoints, observe its behavior and check its state,
then restart it. This is useful when you are not sure what lines of code are causing a problem.

During debugging, you can:

• Set breakpoints on any executable line where you want to check the call stack.
• Examine the values in one or more variables.
• See what a script has done so far.

You cannot set breakpoints on blank lines or comment lines.

Setting Breakpoints
You can set breakpoints on most lines in the script except for blank lines or comment lines.

The First Line of a Function (or testcase)

1. Click Breakpoint > Add.
2. Double-click a module name to have the functions declared in that module listed in the Function list

box.
3. Double-click a function name to set a breakpoint on the first line of that function.

Any Line in a Function (or testcase)

Place the cursor on the line where you want to set a breakpoint and choose Breakpoint > Toggle.

or

Double-click in the left margin of the line.

410 | Debugging Test Scripts

A Specific Line in a Script

1. Click Breakpoint > Add.
2. In the Breakpoint field, type the number of the line on which you want to set a breakpoint. (For

example, entering 8 sets a breakpoint on the eighth line of the script.)
3. Click OK.

Temporary Breakpoints

Click Debug > Run To Cursor to set a temporary breakpoint (indicated by a hollow red circle in the
margin) on the line containing the cursor. The script runs immediately stopping at the current line. The
breakpoint is cleared after it is hit.

Viewing Breakpoints
To view a list of all the breakpoints in a script, click View > Breakpoints.

Deleting Breakpoints
You can delete breakpoints in any of the following ways:

All breakpoints

1. Click Breakpoint > Delete All.
2. Click Yes.

An individual breakpoint

Place the cursor on the line where the breakpoint is set and click Breakpoint > Toggle .

or

Double-click in the left margin of the line

One or more breakpoints

1. Click Breakpoint > Delete.
2. Select one or more breakpoints from the list box and click OK.

Variables
This section describes how you can use variables.

Viewing variables
To view a list of all the local variables that are in scope (accessible) from the current line, including their
values, choose View > Local Variables.

To view a list of global variables, choose View > Global Variables. The variables and their values are listed
in a new window.

If a variable is uninitialized, it is labelled <unset>.

If a variable has a complex value, like an array, Silk Test Classic might need to display its result in collapsed
form. Use View > Expand Data and View > Collapse Data (or double-click the plus icon) to manipulate
the display.

Debugging Test Scripts | 411

To return to the script being debugged, press F6 or choose View/Module and select the script from the
displayed list.

Changing the value of variables
To change the value of an active variable, select the variable and type its new value in the Set Value field.

While viewing variables, you can also change their values to test various scenarios.

When you resume execution, Silk Test Classic uses the new values.

Expressions
This section describes how you can use expressions.

Overview of Expressions
If you type an identifier name, the result is the value that variable currently has in the running script. If you
type a function name, the result is the value the function returns. Any function you specify must return a
value, and must be in scope at the current line.

Properties and methods for a class are valid in expressions, as long as the declaration for the class they
belong to is included in one of the modules used by the script being debugged.

If an expression evaluates to a complex value, like an array, Silk Test Classic may display its result in
collapsed form. Use View > Expand Data or View > Collapse Data (or double-click on the plus icon) to
manipulate the display.

When a script reaches a breakpoint, you can evaluate expressions.

Evaluate expressions
1. Click View > Expression.

2. Type an expression into the input area and press Enter to view the result.

If you type an identifier name, the result is the value that variable currently has in the running script. If you
type a function name, the result is the value the function returns. Any function you specify must return a
value, and must be in scope at the current line.

Properties and methods for a class are valid in expressions, as long as the declaration for the class they
belong to is included in one of the modules used by the script being debugged.

If an expression evaluates to a complex value, like an array, Silk Test Classic may display its result in
collapsed form. Use View > Expand Data or View > Collapse Data (or double-click the plus icon) to
manipulate the display.

Enabling View Trace Listing
When you run a script, Silk Test Classic can record all the methods that the script invoked in a transcript.
Each entry in the transcript includes the method name and the arguments passed into the method. You can
use this information to debug the script, because you can see exactly which functions were actually called
by the running script.

1. Click Options > Runtime to display the Runtime Options dialog box.

2. Check the Print Agent Calls and the Print Tags with Agent Calls check boxes.

412 | Debugging Test Scripts

3. Run the script.
The transcript contains error information and the output from print statements, and additionally lists all
methods that are called by the script.

4. To check the agent trace during debugging, when execution pauses, click View > Transcript.

Viewing a list of modules
1. Click View > Module. Silk Test Classic displays a list of modules in the View Module dialog. The list

includes all the modules loaded at startup (that is, the modules loaded by startup.inc, including
winclass.inc), so you can set breakpoints in functions, window class declarations, and so forth.

2. Double-click a module's name to view it in a debug window.

View the debugging transcripts
Choose View > Transcript when execution is stopped.

Silk Test Classic displays the transcript in a new window. To save its contents to a text file, choose File >
Save.

The Transcript window has an Execute field that you can use to send commands to the application you
are testing. You can type in any command that would be valid in a script and click Execute. For example,
you might want to print the value of a variable or the contents of a window.

Debugging Tips
This section provides tips that might help you in debugging your tests.

Checking the precedence of operators
The order in which 4Test applies operators when it evaluates an expression may not be what you expect.
Use parentheses, or break an expression down into intermediate steps, to make sure it works as expected.
You can use View > Expression to evaluate an expression and check the result.

Code that never executes
To check for code that never executes, step through the script with Debug > Step Into. See the Debug
menu for more information.

Global and local variables with the same name
It is usually not good programming practice to give different variables the same names. If a global and local
variable with the same name are in scope (accessible) at the same time, your code can access only the
local variable.

To check for repeated names, use View > Local Variables and View > Global Variables to see if two
variables with the same name are in scope simultaneously.

Global variables with unexpected values
When you write a function that uses global variables, make sure that each variable has an appropriate
value when the function exits. If another function uses the same variable later, and it has an unexpected
value on entry to the function, an error could occur.

Debugging Test Scripts | 413

To check that a variable has a reasonable value on entry to a function, set a breakpoint on the line that
calls the function and use the command View > Global Variables to check the variable's value.

Incorrect use of break statements
A break statement transfers control of the script out of the innermost nested for, for each, while,
switch, or select statement only. Break exits from a single loop level, not from multiple levels. Use
Debug > Step Into to step through the script one line at a time and ensure that the flow of control works as
you expect. See Debug menu for more details.

Incorrect values for loop variables
When you write a for loop or a while loop, be sure that the initial, final, and step values for the variable
that controls the loop are correct. Incrementing a loop variable one time more or less than you really want
is a common source of errors.

To make sure a control loop works as you expect, use Debug > Step Into to step through the execution of
the loop one statement at a time, and watch how the value of the loop variable changes using View >
Local Variables. See Debug menu for more details.

Infinite loops
To check for infinite loops, step through the script with Debug > Step Into. See Debug menu for more
details.

Typographical errors
It is easy to make typographical errors that the 4Test compiler cannot catch. If a line of code does nothing,
this might be the problem.

Uninitialized variables
Silk Test Classic does not initialize variables for you. So if you have not initialized a variable on entry to a
function, it will have the value <unset>. It is better to explicitly give a value to a variable than to trust that
another function has already initialized it for you. Also, remember that 4Test does not keep local variables
around after a function exits. The next time the function is called, its local variables could be uninitialized.

If you are in doubt about whether a variable has a reasonable value at a particular point, set a breakpoint
there and use View > Global Variables or ViewLocal Variables to check the variable's value.

414 | Debugging Test Scripts

Troubleshooting the Open Agent
This section provides information and workarounds for working with the Open Agent.

Troubleshooting Apache Flex Applications
This functionality is supported only if you are using the Open Agent.

This section provides help and troubleshooting information for working with Apache Flex applications.

Why Cannot Silk Test Classic Recognize Apache Flex
Controls?
This functionality is supported only if you are using the Open Agent.

If Silk Test Classic cannot recognize the controls of an Apache Flex application, which you are accessing
through a Web server, you can try the following things:

• Compile your Apache Flex application with the Adobe automation libraries and the appropriate
FlexTechDomain.swc for the Apache Flex version.

• Use runtime loading.
• Apache Flex controls are not recognized when embedding an Apache Flex application with an empty id

attribute.

Troubleshooting Basic Workflow Issues
The following troubleshooting tips may help you with the basic workflow:

I restarted my application, but the Test button is not enabled

In order to enable the Test button on the Test Extensions dialog box, you must restart your application.
Do not restart Silk Test Classic; restart the application that you selected on the Enable Extensions dialog
box.

You must restart the application in the same manner. For example, if you are testing:

• A standalone Java application that you opened through a Command Prompt, make sure that you close
and restart both the Java application and the Command Prompt window .

• A browser application or applet, make sure you return to the page that you selected on the Enable
Extensions dialog box.

• An AOL browser application, make sure that you do not change the state of the application, for example
resizing, or you may have issues with playback.

You can configure only one Visual Basic application at a time.

The test of my enabled Extension failed – what should I do?

If the test of your application fails, see Troubleshooting Configuration Test Failures for general information.

Troubleshooting the Open Agent | 415

Error Messages
This section provides help and troubleshooting information for error messages.

Agent not responding

Problem

You get the following error message:

Error: Agent not responding

This error can occur for a number of reasons.

Solution

Try any or all of the following:

• Restart the application that you are testing.
• Restart Silk Test Classic.
• Restart the Host machine.

If you are recording declarations on a very large page and get this error, consider increasing the
AgentTimeout.

Control is not responding

Problem

You run a script and get the following error: Error: Control is not responding

This is a catch-all error message. It usually occurs in a Select() statement when Silk Test Classic is
trying to select an item from a ListBox, TreeView, ListView, or similar control.

The error can occur after the actual selection has occurred, or it can occur without the selection being
completed. In general the error means that the object is not responding to the messages Silk Test Classic
is sending in the manner in which it expects.

Solution

Try these things to eliminate the error message:

• If the line of code is inside a Recording block, remove the Recording keyword.
• Set the following option just before the line causing the error:

Agent.SetOption(OPT_VERIFY_RESPONDING, FALSE).

• If the selection is successful, but you still get the error, try using the Do . . . except feature.

Functionality Not Supported on the Open Agent
If you use Classic Agent functionality in an Open Agent script, an error message displays, stating that the
functionality is not supported on the Open Agent.

416 | Troubleshooting the Open Agent

Example

For example, if you try to call the ClearTrap function of the Classic Agent on a
MainWin object in an Open Agent script, the following error message displays:

The Open Agent does not support the function
'MainWin::ClearTrap'#

Unable to Connect to Agent

Problem

You get the following error message: Error: Unable to connect to agent

This error can occur for a number of reasons.

Solution

Connect to the
default agent

Click Tools > Connect to Default Agent.

The command starts the Classic Agent or the Open Agent on the local machine
depending on which agent is specified as the default in the Runtime Options dialog.
If the Agent does not start within 30 seconds, a message is displayed. If the default
Agent is configured to run on a remote machine, you must connect to it manually.

Restart the
agent that you
require for
testing

Click Start > Programs > Silk > Silk Test > Tools > Silk Test Open Agent or Start >
Programs > Silk > Silk Test > Tools > Silk Test Classic Agent .

Window is not active

Problem

You run a script and get the following error: Error: Window 'name' is not active.

This error means that the object Silk Test Classic is trying to act on is not active. This message applies to
top-level windows (MainWin, DialogBox, ChildWin).

Solution

You can correct the error by doing one of the following:

1. Edit the script and add an explicit SetActive() statement to the window you are trying to act on just
above the line where the error is occurring. An easy way to do this is to double-click the error in the
results file. You will be brought to the line in the script. Insert a new line above it and add a line ending
with the SetActive() method.

2. Tell Silk Test Classic not to verify that windows are active. There are two ways to do this:

To turn off the verification globally, uncheck the Verify that windows are active option on the
Verification tab in the Agent Options dialog (Options > Agent).

To turn off the option in your script on a case by case basis, add the following statement to the script,
just before the line causing the error: Agent.SetOption(OPT_VERIFY_EXPOSED, FALSE).

3. Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, TRUE).

This means Silk Test Classic will execute the action regardless of whether the window is active.

Troubleshooting the Open Agent | 417

4. Extend the window time out to be greater than 10 by inserting the Agent - Window Timeout to >= 10
into your partner.ini.

Window is not enabled

Problem

You run a script and get the following error: Error: Window 'name' is not enabled.

This error means that the object that Silk Test Classic is trying to act on is not enabled. This message
applies to controls inside top-level windows (such as PushButton and CheckBox).

Solution

You can correct this problem in one of two ways.

• If the object is indeed disabled, edit the script and add the actions that will enable the object.
• If the object is in fact enabled and you want the script to perform the action, tell Silk Test Classic not to

verify that a window is enabled:

To turn off the verification globally, uncheck the Verify that windows are enabled option on the
Verification tab in the Agent Options dialog box (Options > Agent).

To turn off the option in your script on a case-by-case basis, add the following statement to the script, just
before the line causing the error: Agent.SetOption(OPT_VERIFY_ENABLED, FALSE)

Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_ENABLED, TRUE).

This means Silk Test Classic will execute the action regardless of whether the window is enabled.

Window is not exposed

Problem

You run a script and get the following error: Error: Window 'name' is not exposed.

Sometimes, applications are written such that windows are hidden to the operating system, even though
they are fully exposed to the user. A running script might generate an error such as Window not
exposed, even though you can see the window as the script runs.

Solution

While it might be tempting to simply turn off the checks for these verifications from the Agent Options >
Verification dialog box, the best course of action is to take such errors on a case by case basis, and only
turn off the verification in cases where the window is genuinely viewable, but Silk Test Classic is getting
information from the operating system saying the object is not visible.

1. Add the following statement to the script, just before the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, FALSE).

2. Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, TRUE).

This means Silk Test Classic will execute the action regardless of whether it thinks the window is exposed.

418 | Troubleshooting the Open Agent

Window not found

Problem

You run a script and get the following error: Error: Window 'name' was not found.

Resolution

This error occurs in the following situations:

When the window that Silk Test
Classic is trying to perform the
action on is not on the desktop.

If you are watching the script run, and at the time the error occurs
you can see the window on the screen, it usually means the tag that
was generated is not a correct tag. This could happen if the
application changed from the time the script or include file was
originally created.

To resolve this issue, enable view trace listing in your script.

The window is taking more than
the number of seconds specified
for the window timeout to open.

To resolve this issue, set the Window Timeout value to prevent
Window Not Found exceptions

Only if you are using the Classic
Agent, in the TrueLog Options -
Classic Agent dialog box, if all of
the following options are set

• The action PressKeys is enabled.
• Bitmaps are captured after or before and after the PressKeys

action.
• PressKeys actions are logged.

The preceding settings are set by default if you select Full as
the TrueLog preset.

To resolve this issue, modify your test case.

Handling Exceptions
This section provides help and troubleshooting information for handling exceptions.

Default Error Handling
If a test case fails, for example if the expected value doesn’t match the actual value in a verification
statement, by default Silk Test Classic calls its built-in recovery system, which:

• Terminates the test case.
• Logs the error in the results file.
• Restores your application to its default base state in preparation for the next test case.

These runtime errors are called exceptions. They indicate that something did not go as expected in a
script. They can be generated automatically by Silk Test Classic, such as when a verification fails, when
there is a division by zero in a script, or when an invalid function is called.

You can also generate exceptions explicitly in a script.

However, if you do not want Silk Test Classic to transfer control to the recovery system when an exception
is generated, but instead want to trap the exception and handle it yourself, use the 4Test do...except
statement.

Troubleshooting the Open Agent | 419

Custom Error Handling
You can also use do ... except to perform some custom error handling, then use the re-raise
statement to pass control to the recovery system as usual.

Example: do ... except

The Text Editor application displays a message box if a user searches for text that does
not exist in the document. You can create a data-driven test case that verifies that the
message box appears and that it displays the correct message. Suppose you want to
determine if the Text Editor application is finding false matches, that is, if it is selecting
text in the document before displaying the message box. That means that you want to
do some testing after the exception is raised, instead of immediately passing control to
the recovery system. The following code sample shows how you can use do ...
except to keep the control inside the test case:

testcase Negative (SEARCHINFO Data)
 STRING sMatch
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()

 do
 MessageBox.Message.VerifyValue (Data.sMessage)
 except
 sMatch = DocumentWindow.Document.GetSelText ()

 if (sMatch != "")
 Print ("Found " + sMatch + " not " + Data.sPattern)
 reraise
 MessageBox.OK.Click ()

 Find.Cancel.Click ()
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

This following tasks are performed in the example:

• A test is performed after an exception is raised.
• A statement is printed to the results file if text was selected.
• The recovery system is called.
• The recovery system terminates the test case, logs the error, and restores the test

application to its default base state.

As the example shows, following the do keyword is the verification statement, and
following the except keyword are the 4Test statements that handle the exception. The
exception-handling statements in this example perform the following tasks:

• Call the GetSelText method to determine what text, if any, is currently selected in
the document.

• If the return value from the GetSelText method is not an empty string, it means
that the application found a false match.

• If the application found a false match, print the false match and the search string to
the results file.

• Re-raise the exception to transfer control to the recovery system.

420 | Troubleshooting the Open Agent

• Terminate the test case.

The reraise statement raises the most recent exception again and passes control to the
next exception handler. In the preceding example, the reraise statement passes control
to the built-in recovery system. The reraise statement is used in the example because if
the exception-handling code does not explicitly re-raise the exception, the flow of control
passes to the next statement in the test case.

Trapping the exception number
Each built-in exception has a name and a number (they are defined as an enumerated data type,
EXCEPTION). For example, the exception generated when a verify fails is E_VERIFY (13700), and the
exception generated when there is a division by zero is E_DIVIDE_BY_ZERO (11500).

All exceptions are defined in 4test.inc, in the directory where you installed Silk Test Classic.

You can use the ExceptNum function to test for which exception has been generated and, perhaps, take
different actions based on the exception. You would capture the exception in a do...except statement
then check for the exception using ExceptNum.

For example, if you want to ignore the exception E_WINDOW_SIZE_ INVALID, which is generated when a
window is too big for the screen, you could do something like this:

do
Open.Invoke ()
except
if (ExceptNum () != E_WINDOW_SIZE_INVALID)
 reraise

If the exception is not E_WINDOW_SIZE_INVALID, the exception is reraised (and passed to the recovery
system for processing). If the exception is E_ WINDOW_SIZE_INVALID, it is ignored.

Defining your own exceptions
In addition to using built-in exceptions, you can define your own exceptions and generate them using the
raise statement.

Consider the following testcase:

testcase raiseExample ()
 STRING sTestValue = "xxx"
 STRING sExpected = "yyy"
 TestVerification (sExpected, sTestValue)

TestVerification (STRING sExpected, STRING sTestValue)
 if (sExpected == sTestValue)
 Print ("Success!")
 else
 do
 raise 1, "{sExpected} is different than {sTestValue}"
 except
print ("Exception number is {ExceptNum()}")
 reraise

The TestVerification function tests two strings. If they are not the same, they raise a user-defined
exception using the raise statement.

Raise Statement

The raise statement takes one required argument, which is the exception number. All built-in exceptions
have negative numbers, so you should use positive numbers for your user-defined exceptions. raise can

Troubleshooting the Open Agent | 421

also take an optional second argument, which provides information about the exception; that information is
logged in the results file by the built-in recovery system or if you call ExceptLog.

In the preceding testcase, raise is in a do...except statement, so control passes to the except clause,
where the exception number is printed, then the exception is reraised and passed to the recovery system,
which handles it the same way it handles built-in exceptions.

Here is the result of the testcase:

Testcase raiseExample - 1 error
Exception number is 1
yyy is different than xxx
Occurred in TestVerification at except.t(31)
Called from raiseExample at except.t(25)

Note that since the error was re-raised, the testcase failed.

Using do...except statements to trap and handle
exceptions
Using do...except you can handle exceptions locally, instead of passing control to Silk Test Classic’s built-in
error handler (which is part of the recovery system). The statement has the following syntax:

do
<statements>
except
<statements>

If an exception is raised in the do clause of the statement, control is immediately passed to the except
clause, instead of to the recovery system.

If no exception is raised in the do clause of the statement, control is passed to the line after the except
clause. The statements in the except clause are not executed.

Consider this simple testcase:

testcase except1 (STRING sExpectedVal, STRING sActualVal)

do
 Verify (sExpectedVal, sActualVal)
 Print ("Verification succeeded")
except
 Print ("Verification failed")

This testcase uses the built-in function Verify, which generates an exception if its two arguments are not
equivalent. In this testcase, if sExpectedVal equals sActualVal, no exception is raised,
Verification succeeded is printed, and the testcase terminates. If the two values are not equal, Verify
raises an exception, control immediately passes to the except clause (the first Print statement is not
executed), and Verification failed is printed.

Here is the result if the two values "one" and "two" are passed to the testcase:

Testcase except1 ("one", "two") - Passed
Verification failed

The testcase passes and the recovery system is not called because you handled the error yourself.

You handle the error in the except clause. You can include any 4Test statements, so you could, for
example, choose to ignore the error, write information to a separate log file, and log the error in the results
file.

422 | Troubleshooting the Open Agent

Programmatically Logging an Error
Test cases can pass, even though an error has occurred, because they used their own error handler and
did not specify to log the error. If you want to handle errors locally and generate an error (that is, log an
error in the results file), you can do any of the following:

• After you have handled the error, re-raise it using the reraise statement and let the default recovery
system handle it.

• Call any of the following functions in your script:

LogError
(string, [cmd-
line])

Writes string to the results file as an error (displays in red or italics, depending
on platform) and increments the error counter.

This function is called automatically if you don’t handle the error yourself.

cmd-line is an optional string expression that contains a command line.

LogWarning
(string)

Same as LogError, except it logs a warning, not an error.

ExceptLog () Calls LogError with the data from the most recent exception.

Performing More than One Verification in a Test Case
If the verification fails in a test case with only one verification statement, usually an exception is raised and
the test case is terminated. However, if you want to perform more than one verification in a test case,
before the test case terminates, this approach would not work.

Classic Agent Example

For example, see the following sample test case:

testcase MultiVerify ()
 TextEditor.Search.Find.Pick ()
 Find.VerifyCaption ("Find")
 Find.VerifyFocus (Find.FindWhat)
 Find.VerifyEnabled (TRUE)
 Find.Cancel.Click ()

The test case contains three verification statements. However, if the first verification,
VerifyCaption, fails, an exception is raised and the test case terminates. The second
and the third verification are not executed.

To perform more than one verification in a test case, you can trap all verifications except
the last one in a do...except statement, like the following sample for the Classic
Agent shows:

testcase MultiVerify2 ()
 TextEditor.Search.Find.Pick ()
 do
 Find.VerifyCaption ("Find")
 except
 ExceptLog ()
 do
 Find.VerifyFocus (Find.FindWhat)
 except
 ExceptLog ()
 Find.VerifyEnabled (TRUE)
 Find.Cancel.Click ()

All the verifications in this example are executed each time that the test case is run. If
one of the first two verifications fails, the 4Test function ExceptLog is called. The

Troubleshooting the Open Agent | 423

ExceptLog function logs the error information in the results file, then continues the
execution of the script.

Open Agent Example

For example, you might want to print the text associated with the exception as well as
the function calls that generated the exception. The following test case illustrates this:

testcase VerifyTest ()
 STRING sTestValue = "xxx"
 STRING sExpectedValue = "yyy"
 CompValues (sExpectedValue, sTestValue)

CompValues (STRING sExpectedValue, STRING sTestValue)
 do
 Verify (sExpectedValue, sTestValue)
 except
 ErrorHandler ()

ErrorHandler ()
 CALL Call
 LIST OF CALL lCall
 lCall = ExceptCalls ()
 Print (ExceptData ())
 for each Call in lCall
 Print("Module: {Call.sModule}",
 "Function: {Call.sFunction}",
 "Line: {Call.iLine}")

• The test case calls the user-defined function CompValues, passing two arguments.
• CompValues uses Verify to compare its arguments. If they are not equal, an

exception is automatically raised.
• If an exception is raised, CompValues calls a user-defined function,

ErrorHandler, which handles the error. This is a general function that can be used
throughout your scripts to process errors the way you want.

• ErrorHandler uses two built-in exception functions, ExceptData and
ExceptCalls.

Except Data All built-in exceptions have message text
associated with them. ExceptData returns that
text.

ExceptCalls Returns a list of the function calls that
generated the exception. You can see from
ErrorHandler above, that ExceptCalls
returns a LIST OF CALL. CALL is a built-in
data type that is a record with three elements:

• sFunction

• sModule

• iLine

ErrorHandler processes each of the calls
and prints them in the results file.

• Silk Test Classic also provides the function ExceptPrint, which combines the
features of ExceptCalls, ExceptData, and ExceptNum.

Testcase VerifyTest - Passed
*** Error: Verify value failed - got "yyy", expected "xxx"
Module: Function: Verify Line: 0

424 | Troubleshooting the Open Agent

Module: except.t Function: CompValues Line: 121
Module: except.t Function: VerifyTest Line: 112

The second line is the result of printing the information from ExceptData. The rest
of the lines show the processing of the information from ExceptCalls.

This test case passes because the error was handled locally and not re-raised.

Writing an Error-Handling Function
If you want to customize your error processing, you will probably want to write your own error-handling
function, which you can reuse in many scripts.

Open Agent Example

For example, you might want to print the text associated with the exception as well as
the function calls that generated the exception. The following test case illustrates this:

testcase VerifyTest ()
 STRING sTestValue = "xxx"
 STRING sExpectedValue = "yyy"
 CompValues (sExpectedValue, sTestValue)

CompValues (STRING sExpectedValue, STRING sTestValue)
 do
 Verify (sExpectedValue, sTestValue)
 except
 ErrorHandler ()

ErrorHandler ()
 CALL Call
 LIST OF CALL lCall
 lCall = ExceptCalls ()
 Print (ExceptData ())
 for each Call in lCall
 Print("Module: {Call.sModule}",
 "Function: {Call.sFunction}",
 "Line: {Call.iLine}")

• The test case calls the user-defined function CompValues, passing two arguments.
• CompValues uses Verify to compare its arguments. If they are not equal, an

exception is automatically raised.
• If an exception is raised, CompValues calls a user-defined function,

ErrorHandler, which handles the error. This is a general function that can be used
throughout your scripts to process errors the way you want.

• ErrorHandler uses two built-in exception functions, ExceptData and
ExceptCalls.

Except Data All built-in exceptions have message text
associated with them. ExceptData returns that
text.

ExceptCalls Returns a list of the function calls that
generated the exception. You can see from
ErrorHandler above, that ExceptCalls
returns a LIST OF CALL. CALL is a built-in
data type that is a record with three elements:

• sFunction

• sModule

Troubleshooting the Open Agent | 425

• iLine

ErrorHandler processes each of the calls
and prints them in the results file.

• Silk Test Classic also provides the function ExceptPrint, which combines the
features of ExceptCalls, ExceptData, and ExceptNum.

Testcase VerifyTest - Passed
*** Error: Verify value failed - got "yyy", expected "xxx"
Module: Function: Verify Line: 0
Module: except.t Function: CompValues Line: 121
Module: except.t Function: VerifyTest Line: 112

The second line is the result of printing the information from ExceptData. The rest
of the lines show the processing of the information from ExceptCalls.

This test case passes because the error was handled locally and not re-raised.

Exception Values
This section describes the exceptions that are generated by Silk Test Classic under specific error
conditions.

Exception value Description

E_ABORT Script aborted by user.

E_APP_NOT_READY The application is not ready.

E_APP_NOT_RESPONDING The application is not responding to input.

E_APPID_INVALID The specified application ID is not a valid application.

E_BITMAP_NOT_STABLE The bitmap timeout period set with
OPT_BITMAP_MATCH_TIMEOUT
was reached before the image stabilized.

E_BITMAP_REGION_INVALID The specified region was off the screen.

E_BITMAPS_DIFFERENT The comparison failed when comparing two bitmaps.

E_CANT_CLEAR_SELECTION The selection cannot be cleared.

E_CANT_CLOSE_WINDOW The window cannot be closed (often resulting when a
confirmation dialog box pops up).

E_CANT_COMPARE_BITMAP Silk Test Classic ran out of a system resource (such as
memory) needed to compare the bitmaps.

E_CANT_CONVERT_RESOURCE The specified resource cannot be handled by
GetResource, although it is a valid resource for the
widget.

E_CANT_EXIT_APP Silk Test Classic was unable to close the application.

E_CANT_EXTEND_SELECTION The list box selection can not be extended because
nothing is selected.

E_CANT_MAXIMIZE_WINDOW The window can not be maximized.

E_CANT_MINIMIZE_WINDOW The window can not be minimized.

E_CANT_MOVE_WINDOW The window can not be moved.

426 | Troubleshooting the Open Agent

Exception value Description

E_CANT_RESTORE_WINDOW The window size can not be restored.

E_CANT_SET_ACTIVE The window can not be set active.

E_CANT_SET_FOCUS The window can not be given the input focus.

E_CANT_SIZE_WINDOW The window can not be resized.

E_CANT_START_APP The application cannot be started.

E_COL_COUNT_INVALID The specified value is not a valid character count.

E_COL_NUM_INVALID The specified value is not a valid character position.

E_COL_START_EXCEEDS_END The starting character exceeds the end character
position.

E_COLUMN_INDEX_INVALID The specified index is not a valid column index. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_COLUMN_NAME_INVALID The specified index is not a valid column index. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_CONTROL_NOT_RESPONDING The control is not responding. Raised after checking
whether a specified action took place.

E_COORD_OFF_SCREEN The specified mouse coordinate is off the screen.

E_COORD_OUTSIDE_WINDOW The specified coordinate is outside the window. This
exception is never raised if the OPT_VERIFY_COORD
option is set to FALSE.

E_CURSOR_TIMEOUT The cursor timeout period was reached before the correct
cursor appeared.

E_DELAY_INVALID The specified delay is not valid.

E_FUNCTION_NOT_REGISTERED The function called is a user-defined function that hasn't
been registered by the application.

E_GRID_HAS_NO_COL_HDR The specified DataGrid has no column header. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_GUIFUNC_ID_INVALID The specified function is not a valid function.

E_INTERNAL Internal Silk Test Classic error.

E_INVALID_REQUEST Invalid argument count or argument, or wrong number of
arguments.

E_ITEM_INDEX_INVALID The specified index is not a valid item index.

E_ITEM_NOT_FOUND The specified item was not found.

E_ITEM_NOT_VISIBLE The specified item is not visible.

E_KEY_COUNT_INVALID The repeat count used in the key specification is not a
valid number.

Troubleshooting the Open Agent | 427

Exception value Description

E_KEY_NAME_INVALID The specified key name is not valid.

E_KEY_SYNTAX_ERROR The syntax used in the key specification is not valid.

E_LINE_COUNT_INVALID The specified line count is not valid.

E_LINE_NUM_INVALID The specified line number is not valid.

E_LINE_START_EXCEEDS_END The specified start line exceeds the end line number.

E_MOUSE_BUTTON_INVALID The specified mouse button is not valid

E_NO_ACTIVE_WINDOW No window is active.

E_NO_COLUMN GuptaTable exception.

E_NO_DEFAULT_PUSHBUTTON The dialog box does not have a default button.

E_NO_FOCUS_WINDOW No window has the input focus.

E_NO_SETFOCUS_CELL GuptaTable exception.

E_NO_SETFOCUS_COLUMN GuptaTable exception.

E_NO_SETTEXT_CELL GuptaTable exception.

E_NOFOCUS_CELL No cell in the Gupta table has input focus.

E_NOFOCUS_COLUMN No column in the Gupta table has input focus.

E_NOFOCUS_ROW No row in the Gupta table has input focus.

E_NOT_A_TABLEWINDOW The specified window is not a Gupta table.

E_OPTION_CLASS_MAP_INVALID The mapping specified with the OPT_CLASS_MAP
option is not valid.

E_OPTION_EVTSTR_LENGTH The length of the event string given in
OPT_MENU_INVOKE_POPUP was too long.

E_OPTION_NAME_INVALID The specified agent option does not exist.

E_OPTION_TOO_MANY_TAGS The maximum number of tags was exceeded when
specifying buttons and menu items using one or more of
these options:

• OPT_CLOSE_CONFIRM_BUTTONS

• OPT_CLOSE_WINDOW_BUTTONS

• OPT_CLOSE_WINDOW_MENUS

E_OPTION_TYPE_MISMATCH Mismatch between type of agent option and type of
specified value.

E_OPTION_VALUE_INVALID The specified agent option is not valid.

E_OUT_OF_MEMORY The system has run out of memory.

E_POS_INVALID The specified position is not valid.

E_POS_NOT_REACHABLE The specified position cannot be reached. It is out of
range of the object.

E_RESOURCE_NOT_FOUND The widget does not contain the specified resource.

E_ROW_INDEX_INVALID The specified index is not a valid row index. All
DataGrid methods that use DataGridCell,

428 | Troubleshooting the Open Agent

Exception value Description

DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_SBAR_HAS_NO_THUMB The scroll bar thumb can not be clicked to scroll a page
because the scroll bar does not have a thumb.

E_SQLW_BAD_COLUMN_NAME A bad column name was specified for the Gupta table.

E_SQLW_BAD_COLUMN_NUMBER A bad column number was specified for the Gupta table.

E_SQLW_BAD_ROW_NUMBER A bad row number was specified for the Gupta table.

E_SQLW_CANT_ENTER_TEXT GuptaTable exception.

E_SQLW_INCORRECT_LIST GuptaTable exception.

E_SQLW_NO_EDIT_WINDOW GuptaTable exception.

E_SQLW_TABLE_WINDOW_HIDDEN GuptaTable exception.

E_SQLW_TOO_BIG_LIST GuptaTable exception.

E_SYSTEM A system operation has failed.

E_TAG_SYNTAX_ERROR The tag syntax is not valid: invalid coordinate or index,
multiple indices specified, the window part is not the last
part of the tag, or the tilde (~) is not followed by a child
window.

E_TIMER The specified timer operation is redundant. For example,
a pause operation specified for a stopped timer.

E_TRAP_NOT_SET Attempted to clear a trap that was not set.

E_UNSUPPORTED The specified method is not supported on the current
platform.

E_VAR_EXPECTED A function or method call has not passed a variable for a
required parameter or an expression failed to specify a
variable required by an operator.

E_VERIFY User-specified verification failed.

E_WINDOW_INDEX_INVALID The tag uses an invalid index number.

E_WINDOW_NOT_ACTIVE The specified window is not active.

E_WINDOW_NOT_ENABLED The specified window is not enabled.

E_WINDOW_NOT_EXPOSED The specified window is not exposed.

E_WINDOW_NOT_FOUND The specified window is not found. Raised by any method
that operates on a window, except Exists.

E_WINDOW_NOT_UNIQUE The specified identifier does not represent a unique
window. Raised by any method that operates on a
window. Affected by the value set with the
OPT_VERIFY_UNIQUE option.

If you receive this exception, you might try using a slightly
modified tag syntax to refer to a window with a non-
unique tag. You can either include an index number after
the object, as in Dbox ("Cancel[2]"), or you can
specify the window by including the text of a child that

Troubleshooting the Open Agent | 429

Exception value Description

uniquely identifies the window, such as Dbox/
uniqueText/..., where the unique text is the tag of
a child of that window.

E_WINDOW_SIZE_INVALID The window size is too big for the screen or it is negative.

E_WINDOW_TYPE_MISMATCH The specified window is not valid for this method. Raised
when the type of window used is not the type the method
accepts.

Troubleshooting Java Applications
This section provides solutions for common reasons that might lead to a failure of the test of your
standalone Java application or applet. If these do not solve the specific problem that you are having, you
can enable your extension manually.

The test of your standalone Java application or applet may fail if the application or applet was not ready to
test, the Java plug-in was not enabled properly, if there is a Java recognition issue, or if the Java applet
does not contain any Java controls within the JavaMainWin.

What Can I Do If the Silk Test Java File Is Not Included
in a Plug-In?
If the SilkTest_Java3.jar file is not included in the lib/ext directory of the plug-in that you are
using:

1. Locate the lib/ext directory of the plug-in that you are using and check if the SilkTest_Java3.jar
file is included in this folder.

2. If the SilkTest_Java3.jar file is not included in the folder, copy the file from the javaex folder of
the Silk Test installation directory into thelib\ext directory of the plug-in.

What Can I Do If Java Controls In an Applet Are Not
Recognized?
Silk Test Classic cannot recognize any Java children within an applet if your applet contains only custom
classes, which are Java classes that are not recognized by default, for example a frame containing only an
image. For information about mapping custom classes to standard classes, see Mapping Custom Classes
to Standard Classes. Additionally, you have to set the Java security privileges that are required by Silk Test
Classic.

Multiple Machines Testing
This section provides help and troubleshooting information for testing on multiple machines.

430 | Troubleshooting the Open Agent

Setting Up the Recovery System for Multiple Local
Applications

Problem

By default, the recovery system will only work for the single application assigned to the const
wMainWindow. With distributed testing, you can get recovery on multiple applications by using
multitestcase instead of testcase.

You might ask whether you can get the recovery system to work on multiple applications that are running
locally using multitestcase locally. The answer is no; multitestcase is for distributed testing only.

But you can use the following solution instead, using testcase.

Solution

To get recovery for multiple local applications, set up your frame file to do the following:

1. Get standard wMainWindow declarations for each application. The easiest way is to select File > New
> Test Frame for each application, then combine the wMainWindow declarations into a single frame file
or include them with use.

2. Make the global wMainWindow a variable of type WINDOW, rather than a constant.
3. Assign one of the windows to wMainWindow as a starting point.
4. Create a LIST OF WINDOW and assign the wMainWindow identifier for each application you are

dealing with to it.
5. Define a TestcaseEnter function so that you reassign the wMainWindow variable and call

SetAppState on each MainWin in turn.
6. Define a TestcaseExit function so that you reassign the wMainWindow variable and call

SetBaseState on each MainWin in turn.
7. Then use DefaultBaseState, or your own base state if you want, with each of your test cases. In

your test case, use SetActive each time you switch from one application to the other.

Example

The example consists of two sample files. The sample files are for the Classic Agent. If
you want to use the example with the Open Agent, you have to change the sample
code. For the sample script file, see two_apps.t. For the sample include file, see
two_apps.inc. The example uses two demo applications shipped with Silk Test
Classic, the Text Editor and the Test Application. To see that the recovery system is
working for both applications, turn on the two debugging options in Runtime Options
and look at the transcript after running the test script.

The first test case has an intentional error in its last statement to demonstrate the
recovery system. The test case also demonstrates how to move data from one
application to another with Clipboard.GetText and Clipboard.SetText.

Because the recovery system is on, the DefaultBaseState will take care of invoking
each application if it is not already running and will return to the DefaultBaseState after
each test case, even if the test case fails.

You can print the sample files out or copy them to the Clipboard, then paste them into
Silk Test Classic. You might have to do some cleanup where the indentation of lines is
incorrect in the pasted file.

Troubleshooting the Open Agent | 431

two_apps.t
The following sample script file for the Classic Agent shows how you can locally test multiple applications.
To use the sample with the Open Agent, you have to change the sample code, for example you have to
replace all tags with locators.

testcase Test1 () appstate DefaultBaseState
 //SetActive each time you switch apps
 TestApplication.SetActive()
 TestApplication.File.New.Pick ()
 MDIChildWindow1.TextField1.SetPosition (1, 1)
 MDIChildWindow1.TextField1.TypeKeys ("In Test Application MDI Child Window
#1.")
 //SetActive each time you switch apps
 TextEditor.SetActive ()
 TextEditor.File.New.Pick ()
 TextEditor.ChildWin("(untitled)[1]").TextField("#1")
 .TypeKeys ("In Text Editor untitled Document window.<Enter>")
 //SetActive each time you switch apps
 TestApplication.SetActive()
 LIST OF STRING lsTempStrings
 lsTempStrings = MDIChildWindow1.TextField1.GetMultiText()
 Clipboard.SetText([LIST OF STRING]lsTempStrings)
 //SetActive each time you switch apps
 TextEditor.SetActive()
 TextEditor.ChildWin("(untitled)
[1]").TextField("#1").SetMultiText(Clipboard.GetText(),2)
 TextEditor.VerifyCaption("FooBar")

testcase Test2 () appstate DefaultBaseState
 wMainWindow = TestApplication
 TestApplication.SetActive()
 TestApplication.File.New.Pick ()
 MDIChildWindow1.TextField1.SetPosition (1, 1)
 MDIChildWindow1.TextField1.TypeKeys ("In Test Application MDI Child Window
#1.")
 wMainWindow = TextEditor
 TextEditor.SetActive ()
 TextEditor.File.New.Pick ()
 TextEditor.ChildWin("(untitled)[1]").TextField("#1")
 .TypeKeys ("In Text Editor untitled Document window.<Enter>")
 wMainWindow = TestApplication
 TestApplication.SetActive()
 LIST OF STRING lsTempStrings
 lsTempStrings = MDIChildWindow1.TextField1.GetMultiText()
 Clipboard.SetText([LIST OF STRING]lsTempStrings)
 wMainWindow = TextEditor
 TextEditor.SetActive()
 TextEditor.ChildWin("(untitled)
[1]").TextField("#1").SetMultiText(Clipboard.GetText(),2)

two_apps.inc
The following sample include file for the Classic Agent shows how you can locally test multiple applications.
To use the sample with the Open Agent, you have to change the sample code, for example you have to
replace all tags with locators.

// two_apps.inc
// define wMainWindow as a window global var
// and assign one of the apps (your pick) as a starting point.
window wMainWindow = TextEditor
const wMainWindow = TextEditor //replace default def

432 | Troubleshooting the Open Agent

// Create a list of app MainWins
list of window lwApps = {...}
TextEditor
TestApplication
// Define your own TestCaseEnter.
TestCaseEnter ()
 window wCurrentApp
 for each wCurrentApp in lwApps
 wMainWindow = wCurrentApp
 SetAppState()

// Define your own TestCaseExit.
TestCaseExit (BOOLEAN bException)
 if bException
 ExceptLog()
 window wCurrentApp
 for each wCurrentApp in lwApps
 wMainWindow = wCurrentApp
 if (wCurrentApp.Exists())
 SetBaseState()

window MainWin TextEditor
 tag "Text Editor"

// The working directory of the application when it is invoked
const sDir = "C:\QAP40"
// The command line used to invoke the application
const sCmdLine = "C:\PROGRAMFILES\<SilkTest install directory>\\SILKTEST
\TEXTEDIT.EXE"

// The first window to appear when the application is invoked
// const wStartup = ?

// The list of windows the recovery system is to leave open
// const lwLeaveOpen = {?}
Menu File
 tag "File"
 MenuItem New
 tag "New"
 MenuItem Open
 tag "Open"
 MenuItem Close
 tag "Close"
 MenuItem Save
 tag "Save"
 MenuItem SaveAs
 tag "Save As"
 MenuItem Print
 tag "Print"
 MenuItem PrinterSetup
 tag "Printer Setup"
 MenuItem Exit
 tag "Exit"
 Menu Edit
 tag "Edit"
 MenuItem Undo
 tag "Undo"
 MenuItem Cut
 tag "Cut"
 MenuItem Copy
 tag "Copy"
 MenuItem Paste
 tag "Paste"

Troubleshooting the Open Agent | 433

 MenuItem Delete
 tag "Delete"
 Menu Search
 tag "Search"
 MenuItem Find
 tag "Find"
 MenuItem FindNext
 tag "Find Next"
 MenuItem Replace
 tag "Replace"
 MenuItem GotoLine
 tag "Goto Line"
 Menu Options
 tag "Options"
 MenuItem Font
 tag "Font"
 MenuItem Tabs
 tag "Tabs"
 MenuItem AutomaticIndent
 tag "Automatic indent"
 MenuItem CreateBackups
 tag "Create backups"
 Menu xWindow
 tag "Window"
 MenuItem TileVertically
 tag "Tile Vertically"
 MenuItem TileHorizontally
 tag "Tile Horizontally"
 MenuItem Cascade
 tag "Cascade"
 MenuItem ArrangeIcons
 tag "Arrange Icons"
 MenuItem CloseAll
 tag "Close All"
 MenuItem Next
 tag "Next"
 Menu Help
 tag "Help"
 MenuItem About
 tag "About"

window MessageBoxClass MessageBox
 tag "~ActiveApp/[DialogBox]$MessageBox"
 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Yes
 tag "Yes"
 PushButton No
 tag "No"
 StaticText Message
 mswnt tag "#2"
 tag "#1"

window ChildWin Untitled
 tag "(untitled)"
 parent TextEditor
 TextField TextField1
 tag "#1"

window DialogBox Open
 tag "Open"
 parent TextEditor

434 | Troubleshooting the Open Agent

 StaticText FileNameText
 tag "File Name:"
 TextField FileName1
 tag "File Name:"
 ListBox FileName2
 tag "File Name:"
 StaticText DirectoriesText
 tag "Directories:"
 StaticText CQap40Text
 tag "c:\qap40"
 ListBox CQap40
 tag "c:\qap40"
 StaticText ListFilesOfTypeText
 tag "List Files of Type:"
 PopupList ListFilesOfType
 tag "List Files of Type:"
 StaticText DrivesText
 tag "Drives:"
 PopupList Drives
 tag "Drives:"
 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Network
 tag "Network"

window MainWin TestApplication
 tag "Test Application"
// The working directory of the application when it is invoked
const sDir = "C:\QAP40"

// The command line used to invoke the application
const sCmdLine = "C:\QAP40\TESTAPP.EXE"

// The first window to appear when the application is invoked
// const wStartup = ?

// The list of windows the recovery system is to leave open
// const lwLeaveOpen = {?}
Menu File
 tag "File"
 MenuItem New
 tag "New"
 MenuItem Close
 tag "Close"
 MenuItem Exit
 tag "Exit"
 MenuItem About
 tag "About"
Menu Control
 tag "Control"
 MenuItem CheckBox
 tag "Check box"
 MenuItem ComboBox
 tag "Combo box"
 MenuItem ListBox
 tag "List box"
 MenuItem PopupList
 tag "Popup list"
 MenuItem PushButton
 tag "Push button"
 MenuItem RadioButton
 tag "Radio button"

Troubleshooting the Open Agent | 435

 MenuItem StaticText
 tag "Static text"
 MenuItem Scrollbar
 tag "Scrollbar"
 MenuItem Textfield
 tag "Textfield"
 MenuItem DrawingArea
 tag "Drawing area"
 MenuItem KeyboardEvents
 tag "Keyboard events"
 MenuItem Cursors
 tag "Cursors"
 MenuItem ListView
 tag "List view"
 MenuItem PageList
 tag "Page list"
 MenuItem StatusBar
 tag "Status bar"
 MenuItem ToolBar
 tag "Tool bar"
 MenuItem TrackBar
 tag "Track bar"
 MenuItem TreeView
 tag "Tree view"
 MenuItem UpDown
 tag "Up-Down"
Menu Menu
 tag "Menu"
 MenuItem TheItem
 tag "The item"
 MenuItem TheAcceleratorItem
 tag "The accelerator item"
 Menu TheCascadeItem
 tag "The cascade item"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 MenuItem Check
 tag "Check"
 MenuItem Uncheck
 tag "Uncheck"
 MenuItem TheCheckItem
 tag "The check item"
 MenuItem Enable
 tag "Enable"
 MenuItem Disable
 tag "Disable"
 MenuItem TheEnableItem
 tag "The enable item"
 Menu Submenu1
 tag "Submenu1"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Submenu2
 tag "Submenu2"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Submenu3
 tag "Submenu3"

436 | Troubleshooting the Open Agent

 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 MenuItem ThePopupMenu
 tag "The popup menu"
 MenuItem Check
 tag "Check"
 MenuItem Uncheck
 tag "Uncheck"
 MenuItem TheCheckItem
 tag "The check item"
 MenuItem Enable
 tag "Enable"
 MenuItem Disable
 tag "Disable"
 MenuItem TheEnableItem
 tag "The enable item"
 MenuItem AddMenu
 tag "Add menu"
 MenuItem ClearMenus
 tag "Clear menus"
 Menu DisabledMenu
 tag "DisabledMenu"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Menu5
 tag "#5"
 MenuItem MenuItem1
 tag "#1"
 MenuItem MenuItem2
 tag "#2"
 Menu xWindow
 tag "Window"
 MenuItem Cascade
 tag "Cascade"
 MenuItem Tile
 tag "Tile"
 MenuItem ArrangeIcons
 tag "Arrange Icons"
 MenuItem CloseAll
 tag "Close All"
 MenuItem ChangeCaption
 tag "Change Caption"
 MenuItem SysModal1
 tag "SysModal 1"
 MenuItem SysModal2
 tag "SysModal 2"
 MenuItem SysModal3
 tag "SysModal 3"
 MenuItem N1MDIChildWindow1
 tag "1 MDI Child Window #1"

window ChildWin MDIChildWindow1
 tag "MDI Child Window #1"
 parent TestApplication
 TextField TextField1
 tag "#1"

Troubleshooting the Open Agent | 437

Other Problems
This section provides help and troubleshooting information for problems that are not covered by another
section.

Adding a Property to the Recorder
1. Write a method.
2. Add a property to the class.
3. Add the property to the list of property names.

For example, if you have a text field that is ReadOnly and you want to add that property to the recorder
you can do the following:

1. Write the method Boolean IsReadOnly() for the TextField class.
2. Add the property, bReadOnly to the class.
3. Add bReadOnly to the list of property names.
4. Compile. bReadOnly will appear in the Recorder after you compile.

Winclass TextField : TextFieldBOOLEAN IsReadOnly()
STRING sOriginalText = this.GetText()
STRING sNewText = "xxx"
this.SetText(sNewText)
if this.GetText()==sOriginalText
return TRUE
else
return FALSE
property bReadOnly
BOOLEAN Get()
return this.IsReadOnly()
LIST OF STRING IsPropertyNames = {…}
"bReadOnly"

Cannot Double-Click a Silk Test Classic File and Open
Silk Test Classic

Problem

Silk Test Classic does not open automatically when you double-click
a .t, .inc, .s, .g.t, .pln, .res, .stp, or .vtp file.

Cause

During the install process, Silk Test Classic is associated with these file types. However if these file type
associations have been changed after Silk Test Classic setup, these file types may not be opened with Silk
Test Classic when double-clicking such a file.

Note: File type associations are only available for Microsoft Windows platforms.

Solution

You can either manually associate these file types with Silk Test Classic in Windows, under Start >
Settings > Control Panel > Folder Options, or reinstall Silk Test Classic.

438 | Troubleshooting the Open Agent

Cannot Extend AnyWin, Control, or MoveableWin
Classes
The AnyWin, Control, and MoveableWin classes are logical (virtual) classes that do not correspond to
any actual GUI objects, but instead define methods common to the classes that derive from them. This
means that Silk Test Classic never records a declaration that has one of these classes.

Furthermore, you cannot extend or override logical classes. If you try to extend a logical class, by adding a
method, property or data member to it, that method, property, or data member is not inherited by classes
derived from the class. You will get a compilation error saying that the method, property, or data member is
not defined for the window that tries to call it.

You can also not override the class, by rewriting existing methods, properties, or data members. Your
modifications are not inherited by classes derived from the class.

Cannot open results file

Problem

Silk Test Classic crashes while running a script and reports the error Can't open results file.

Solution

While Silk Test Classic is running a script, it temporarily stores results in a journal file (.jou) which is
converted to a .res file when the script finishes running.

Delete all .jou files in the same directory as the script. (You do not have to delete your results files.)

Restart Silk Test Classic and run your script again.

Common Scripting Problems
Here are some common problems that occur with scripts.

Typographical errors

It is very easy to make typographical errors that the 4Test compiler cannot catch. If a line of code does
nothing, this might be the problem.

Global variables with unexpected values

When you write a function that uses global variables, make sure that each variable has an appropriate
value when the function exits. If another function uses the same variable later, and it has an unexpected
value on entry to the function, an error could occur.

To check that a variable has a reasonable value on entry to a function, set a breakpoint on the line that
calls the function and use the command View > Global Variables to check the variable's value.

Uninitialized variables

Silk Test Classic does not initialize variables for you. So if you have not initialized a variable on entry to a
function, it will have the value <unset>. It is better to explicitly give a value to a variable than to trust that
another function has already initialized it for you. Also, remember that 4Test does not keep local variables
around after a function exits; the next time the function is called, its local variables could be uninitialized.

If you are in doubt about whether a variable has a reasonable value at a particular point, set a breakpoint
there and use View > Global Variables or View > Local Variables to check the variable's value.

Troubleshooting the Open Agent | 439

Global and local variables with the same name

It is usually not good programming practice to give different variables the same names. If a global and local
variable with the same name are in scope (accessible) at the same time, your code can only access the
local variable.

To check for repeated names, use View > Local Variables and View > Global Variables to see if two
variables with the same name are in scope simultaneously.

Incorrect values for loop variables

When you write a for loop or a while loop, be sure that the initial, final, and step values for the variable that
controls the loop are correct. Incrementing a loop variable one time more or less than you really want is a
common source of errors.

To make sure a control loop works as you expect, use Debug > Step Into to step through the execution of
the loop one statement at a time, and watch how the value of the loop variable changes using View >
Local Variables.

Checking the precedence of operators

The order in which 4Test applies operators when it evaluates an expression may not be what you expect.
Use parentheses, or break an expression down into intermediate steps, to make sure it works as expected.
You can use View/Expression to evaluate an expression and check the result.

Incorrect uses of break statements

A break statement transfers control of the script out of the innermost nested for, for each, while, switch, or
select statement only. In other words, break exits from a single loop level, not from multiple levels. Use
Debug > Step Into to step through the script one line at a time and ensure that the flow of control works as
you expect.

Infinite loops

To check for infinite loops, step through the script with Debug > Step Into.

Code that never executes

To check for code that never executes, step through the script with Debug > Step Into.

Conflict with Virus Detectors

Problem

Silk Test Classic will occasionally have problems on machines running virus detectors that use heuristic or
algorithmic virus detection in addition to the standard pattern recognition. What happens is that while Silk
Test Classic is running, the virus detector identifies Silk Test Classic as displaying "virus-like" behavior, and
kills or otherwise disables the agent. This leads to unpredictable and inconsistent behavior in Silk Test
Classic, including loss of communications with the agent and inconsistent test results or object recognition.

Solution

To avoid this problem the only solution is to temporarily disable the virus detector while Silk Test Classic is
running.

440 | Troubleshooting the Open Agent

Displaying the Euro Symbol

Problem

You want to display the Euro (€) symbol.

Solution

Download a Euro-enabled font from Microsoft. Double check that you can see the Euro symbol by opening
Notepad on the machine where you installed the font and entering the ASCII code for the Euro symbol. As
long as you see the symbol in notepad, you should be able to see it within Silk Test Classic.

In Silk Test Classic, click Options > Editor Font and be sure that your font is set to Arial, Courier New, or
Times New Roman.

Do I Need Administrator Privileges to Run Silk Test
Classic?
You require the following privileges to install or run Silk Test Classic:

• To install Silk Test Classic, you must have local administrator privileges.
• To install Silk Test Classic on a Windows server, you must have domain-level administrator privileges.
• To run Silk Test Classic with the Classic Agent, you must have administrator privileges.
• To run Silk Test Classic with the Open Agent, you must have administrator privileges, if you have

installed Silk Test Classic into the Program Files folder.
• To run Silk Test Classic with the Open Agent, you do not need to have administrator privileges, if you

have installed Silk Test Classic into a different location than the Program Files folder.

Note: If User Account Control (UAC) is activated on your system, we recommend that you install Silk
Test Classic into a different location than the Program Files folder.

General Protection Faults

Problem

When recording or running tests, you get a General Protection Fault (GPF) or Invalid Page
Fault (IPF) in agent.exe or partner.exe.

Solution

It can be very difficult to pin down the cause of these problems. It might involve a combination of your
machine's configuration, other applications that are running, and the network's configuration. The best
approach is to gather the diagnostic information described below and send it to Technical Support with a
detailed description of what scenario led to the error.

Capture the
system
diagnostics

When the system error message displays, chose the option to capture detailed
information on the error. Write the information down.

Capture a
debug.log file

1. Ensure that no Silk Test Classic or Agent processes are running.
2. Open a DOS prompt window.
3. Change your working directory to your Silk Test Classic installation directory.
4. Delete or rename c:\debug.log if the file exists.
5. Set the following environment variable: set QAP_DEBUG_AGENT=1.

Troubleshooting the Open Agent | 441

6. Start the Agent manually: start .\agent.
7. Start Silk Test Classic manually: start .\partner.
8. Go through the scenario to reproduce the problem.
9. The file c:\debug.log file will be created.
10.Send this file as an attachment to your email to Technical Support.

Monitor CPU and
RAM usage

When reproducing this error to gather the diagnostics above, also run a system
resource monitor to check on CPU and RAM usage. Note whether CPU or RAM is
being exhausted.

Note your system
configuration

When sending in these diagnostics, note the version of Silk Test Classic, the
operating system and version, and the machine configuration (CPU, RAM, disk
space).

Running Global Variables from a Test Plan Versus
Running Them from a Script

Problem

When running from a test plan, global variables don’t keep their value from one test case to another.

When test cases are run from a script, global variables are initialized once at the beginning and do not get
reset while the script is being run. On the other hand, when you run test cases from a test plan, all global
variables get re-initialized after each test case. This is because the Agent reinitializes itself before running
each test case. Consequently, you may find that global variables are not as useful when running from a test
plan.

Solution

A workaround is to use the FileWriteLine or FileWriteValue function to write the values of the
global variables out to a file, then use the FileReadLine or FileReadValue function to read the value
back into each variable in each test case.

Include File or Script Compiles but Changes are Not
Picked Up

Problem

You compile an include file or script, but changes that you made are not used when you run the script.

Solutions

Did you change
the wrong
include file?

Make sure that the include file you are compiling is the same as the file that is being
used by the script. Just because you have an include file open and have just compiled
it does not mean that it is being used by the script. The include file that the script will
use is either specified in Runtime Options (Use Files field) or by a use statement in the
script.

Is there a time-
stamp
problem?

If the time stamp for the file on disk is later than the machine time when you do Run >
Compile, then the compile does not actually happen and no message is given. This
can happen if two machines are sharing a file system where the files are being written
out and the time on the machines is not synchronized.

442 | Troubleshooting the Open Agent

By default, Silk Test Classic only compiles files that need compiling, based on the date
of the existing object files and the system clock. This way, you don't have to wait to
recompile all files each time a change is made to one file.

If you need to, you can force Silk Test Classic to compile all files by selecting Run >
Compile All. Run > Compile All compiles the script or suite and all dependent
include files, even if they have not changed since they were last compiled. It also
compiles files listed in the Use Files field in the Runtime Options dialog and the
compiler constants declared in the Runtime Options dialog. Finally, it compiles the
include files loaded at startup, if needed.

Are your object
files corrupted?

Sometimes a Silk Test Classic object (.ino or .to) file can become corrupted.
Sometimes a corrupted object file can cause Silk Test Classic to assume that the
existing compile is up to date and to skip the recompile without any message.

To work around this, delete all .ino and .to files in the directories containing
the .inc and .t files you are trying to compile, then compile again.

Library Browser Not Displaying User-Defined Methods

Problem

You add a description for a user-defined method and a user-defined function to 4test.txt. After
restarting Silk Test Classic, the new description for the function displays in the Library Browser, but not the
description for the method. So you know that the modified 4test.txt file is being used, but your user-
defined method is not being displayed in the Library Browser.

Solutions

Only methods defined in a class definition (that is, in your include file where your class is defined) will
display in the Library Browser. For example, MyAccept will be displayed.

winclass DialogBox:DialogBox
Boolean MyAccept()
...

Methods you define for an individual object are not displayed in the Library Browser. For example,
MyDialogAccept will not display.

DialogBox MyDialog
tag "My Dialog"
Boolean MyDialogAccept()
...

In order to display in the Library Browser, the description in your 4test.txt file must have a return type
that matches the return type in your include file declaration. If the 4test.txt description has no returns
statement, then the declaration must be for a return type of void (either specified explicitly or by defaulting
to type void). Otherwise, the description will not display in the Library Browser.

For more information about adding information to the Library Browser, see Adding to the Library Browser.

Maximum Size of Silk Test Classic Files
The following size limits apply:

• The limit for .inc, .t, and .pln files (and their associated backup files, .*_) is 64K lines.
• The size limit for the corresponding object files (.*o) depends on the amount of available system

memory.
• The Silk Test Classic editor limits lines to 1024 characters.

Troubleshooting the Open Agent | 443

• The maximum size of a single entry in a .res file is 64K.
• Test case names can have a maximum of 127 characters. When you create a data-driven test case, Silk

Test Classic truncates any test case name that is greater than 124 characters.

Recorder Does Not Capture All Actions

Problem

While recording, the Silk Test Recorder does not capture all actions in your application under test, though
you complete the actions.

Cause

The application under test may be "going too fast" and the Silk Test Recorder may not be able to keep up.

Solution

Slow down the interactions with your application while recording. Record a test case at the speed of the
Silk Test Recorder.

Relationship between Exceptions Defined in 4test.inc
and Messages Sent To the Result File
Silk Test Classic calls LogError automatically when it raises an exception that you have not handled. By
reading 4test.inc you can find that Silk Test Classic has a list of exceptions like:

E_ABORT = -10100,
E_TBL_HAS_NO_ROW_HDR = -30100,
E_WINDOW_NOT_FOUND = -27800

Since exception numbers can apply to more than one exception, it can be helpful to query on a particular
exception number via ExceptNum() to decide how to handle an error. If you need to query on a specific
exception message, you can use ExceptData(). We recommend using MatchStr() with
ExceptData().

To find the E_... constant for any 4Test exception, you can use:

[-] do
 <code that causes exception>
[-] except
[] LogWarning ("Exception number: {[EXCEPTION]ExceptNum ()}")
[] reraise

This will print out the exception constant in the warning.

Be sure to remove the LogWarning do..except block after you have found the E_... constant.

The 4Test Editor Does Not Display Enough Characters

Problem

While you can edit 4Test files outside of Silk Test Classic and create lines with more than 1024 characters,
the Silk Test 4Test Editor (4Test Editor) does not let you edit or extend these lines.

The line limit of the 4Test Editor is 1024 characters.

Solution

Use the <Shift+Enter> continuation character to break the line into smaller lines.

444 | Troubleshooting the Open Agent

Stopping a Test Plan
Problem

You want to abort a test plan programmatically without using exit. Calling exit just aborts the script and
continues on to the next test case.

Solution

You can call

[] @("$StopRunning") ()

from a test case or a recovery system function such as ScriptExit(), which is called for each test case
in the test plan, or TestCaseExit().

This call will stop everything without even invoking the recovery system. Calling it will generate the
following exception message, with no call stack: Exception -200000

Using a Property Instead of a Data Member
Data members are resolved (assigned values) during compilation. If the expression for the data member
includes variables that will change at run-time, then you must use a property instead of that data member.

Using File Functions to Add Information to the
Beginning of a File
In Silk Test Classic 5.5 SP1 or later, there is no file open mode that allows you to insert information into the
beginning of a file. If you use FM_UPDATE, you can read in part of your file before writing, but any write
function calls will overwrite the rest of the file.

If you are writing strings rather than structured data, you can use ListRead() and ListWrite() to
insert information at the beginning or any other point of a file. Use ListRead() to read the contents of the
file into a list, insert the new information at the head or any other point of the list, and use ListWrite() to
write it back out.

[-] LIST OF STRING lsNewInfo = {...}
[] "*New line one*"
[] "*New line two*"
[] "*New line three*"
[] LIST OF STRING lsFile
[] INTEGER i
[]
[] ListRead (lsFile, "{GetProgramDir ()}\Sample.txt")
[-] for i = 1 to ListCount (lsNewInfo)
[] ListInsert (lsFile, i, lsNewInfo[i])
[] ListWrite (lsFile, "{GetProgramDir ()}\Sample.txt")
[]

Sample.txt before the write:

Line 1
Line 2
Line 3
Line 4
Line 5

Sample.txt after:

New line one
New line two

Troubleshooting the Open Agent | 445

New line three
Line 1
Line 2
Line 3
Line 4
Line 5

Why Does the Str Function Not Round Correctly?
Any decimal/float number has an internal binary representation. Unfortunately, you can never be sure if a
decimal value has an exact representation in its binary pendant. If an exact binary representation is not
possible (mathematical constraint), the nearest value is used and this leads to the issue where it seems the
str function is not rounding correctly. You can workaround this issue. Use the following code to see the
internal representation:

[] printf("%.a20e\n", 32.495)
[] printf("%.a20e\n", 31.495)

Troubleshooting Projects
This section provides solutions to common problems that you might encounter when you are working with
projects in Silk Test Classic.

Files Not Found When Opening Project
If, when opening your project, Silk Test Classic cannot find a file in the location referenced in the project
file, which is a .vtp file, an error message displays noting the file that cannot be found.

Silk Test Classic may not be able to find files that have been moved or renamed outside of Silk Test
Classic, for example in Windows Explorer, or files that are located on a shared network folder that is no
longer accessible.

• If Silk Test Classic cannot find a file in your project, we suggest that you note the name of missing file,
and click OK. Silk Test Classic will open the project and remove the file that it cannot find from the
project list. You can then add the missing file to your project.

• If Silk Test Classic cannot open multiple files in your project, we suggest you click Cancel and
determine why the files cannot be found. For example a directory might have been moved. Depending
upon the problem, you can determine how to make the files accessible to the project. You may need to
add the files from their new location.

Silk Test Classic Cannot Load My Project File
If Silk Test Classic cannot load your project file, the contents of your .vtp file might have changed or
your .ini file might have been moved.

If you remove or incorrectly edit the ProjectIni= line in the ProjectProfile section of your
<projectname>.vtp file, or if you have moved your <projectname>.ini file and the ProjectIni=
line no longer points to the correct location of the .ini file, Silk Test Classic is not able to load your
project.

To avoid this, make sure that the ProjectProfile section exists in your .vtp file and that the section
refers to the correct name and location of your .ini file. Additionally, the <projectname>.ini file and
the <projectname>.vtp file refer to each other, so ensure that these references are correct in both files.
Perform these changes in a text editor outside of Silk Test Classic.

446 | Troubleshooting the Open Agent

Example

The following code sample shows a sample ProjectProfile section in a
<projectname>.vtp file:

[ProjectProfile]
ProjectIni=C:\Program Files\<Silk Test install directory>
\SilkTest\Projects\<projectname>.ini

Silk Test Classic Cannot Save Files to My Project
You cannot add or remove files from a read-only project. If you attempt to make any changes to a read-only
project, a message box displays indicating that your changes will not be saved to the project.

For example, Unable to save changes to the current project. The project file has
read-only attributes.

When you click OK on the error message box, Silk Test Classic adds or removes the file from the project
temporarily for that session, but when you close the project, the message box displays again. When you re-
open the project, you will see your files have not been added or removed.

Additionally, if you are using Microsoft Windows 7 or later, you might need to run Silk Test Classic as an
administrator. To run Silk Test Classic as an administrator, right-click the Silk Test Classic icon in the Start
Menu and click Run as administrator.

Silk Test Classic Does Not Run
The following table describes what you can do if Silk Test Classic does not start.

If Silk Test Classic does not run because it is looking
for the following:

You can do the following:

Project files that are moved or corrupted. Open the SilkTestClassic.ini file in a text editor
and remove the CurrentProject= line from the
ProjectState section. Silk Test Classic should then
start, however your project will not open. You can
examine your <projectname>.ini and
<projectname>.vtp files to determine and correct
the problem.

The following code example shows the ProjectState
section in a sample partner.ini file:

[ProjectState]
CurrentProject=C:\Program Files
\<SilkTest install directory>
 \SilkTest\Examples\ProjectName.vtp

A testplan.ini file that is corrupted. Delete or rename the corrupted testplan.ini file,
and then restart Silk Test Classic.

My Files No Longer Display In the Recent Files List
After you open or create a project, files that you had recently opened outside of the project do no longer
display in the Recent Files list.

Troubleshooting the Open Agent | 447

Cannot Find Items In Classic 4Test
If you are working with Classic 4Test, objects display in the correct nodes on the Global tab, however when
you double-click an object, the file opens and the cursor displays at the top of the file, instead of in the line
in which the object is defined.

Editing the Project Files
You require good knowledge of your files and how the partner and <projectname>.ini files work before
attempting to edit these files. Be cautious when editing the <projectname>.vtp and
<projectname>.ini files.

To edit the <projectname>.vtp and <projectname>.ini files:

1. Update the references to the source location of your files. If the location of your projectname.vtp
and projectname.ini files has changed, make sure you update that as well. Each file refers to the
other.

The ProjectProfile section in the projectname.vtp file is required. Silk Test Classic will not be able to
load your project if this section does not exist.

1. Ensure that your project is closed and that all the files referenced by the project exist.

2. Open the <projectname>.vtp and <projectname>.ini files in a text editor outside of Silk Test
Classic.

Note: Do not edit the projectname.vtp and projectname.ini files in the 4Test Editor.

3. Update the references to the source location of your files.

4. The <projectname>.vtp and <projectname>.ini files refer to each other. If the relative location
of these files has changed, update the location in the files.

The ProjectProfile section in the <projectname>.vtp file is required. Silk Test Classic is not able to
load your project if this section does not exist.

Recognition Issues
This section provides help and troubleshooting information for recognition issues.

How Can the Application Developers Make
Applications Ready for Automated Testing?
The attributes available for a specific control in the application under test (AUT) might not be sufficient to
guarantee that Silk Test Classic always recognizes the control during automated testing. In such a case the
application developer can add custom attributes to the control, which can then be used as locator attributes
for the control. The following examples describe how an application developer can include custom
attributes in different application types:

• To include custom attributes in a Web application, add them to the html tag. Type <input
type='button' bcauid='abc' value='click me' /> to add an attribute called bcauid.

• To include custom attributes in a Java SWT application, use the
org.swt.widgets.Widget.setData(String <varname>key</varname>, Object <varname>value</
varname>) method.

• To include custom attributes in a Swing application, use the SetClientProperty("propertyName",
"propertyValue") method.

448 | Troubleshooting the Open Agent

Tips
This section provides general troubleshooting tips.

Example Test Cases for the Find Dialog Box
If you want to test the Find dialog box, each test case would need to perform the following tasks:

1. Open a new document file.
2. Type text into the document.
3. Position the insertion point at the top of the file.
4. Select Find from the Search menu.
5. Select the forward (down) direction for the search.
6. Make the search case sensitive.

Non-Data-Driven Test Case for the Classic Agent

testcase FindTest ()
TextEditor.File.New.Pick ()
DocumentWindow.Document.TypeKeys ("Test Case<HOME>")
TextEditor.Search.Find.Pick ()
Find.FindWhat.SetText ("Case")
Find.CaseSensitive.Check ()
Find.Direction.Select ("Down")
Find.FindNext.Click ()
Find.Cancel.Click ()
DocumentWindow.Document.VerifySelText (<text>)
Case
TextEditor.File.Close.Pick ()
MessageBox.No.Click ()

The major disadvantage of this kind of test case is that it tests only one out of the many
possible sets of input data to the Find dialog box. To adequately test the Find dialog
box, you must record or hand-write a separate test case for each possible combination
of input data that needs to be tested. In even a small application, this creates a huge
number of test cases, each of which must be maintained as the application changes.

Non-Data-Driven Test Case for the Open Agent

testcase Find ()
 recording
 UntitledNotepad.SetActive()
 UntitledNotepad.New.Pick()
 UntitledNotepad.TextField.TypeKeys("Test Case
<LessThan>Home")
 UntitledNotepad.TextField.PressKeys("<Left Shift>")
 UntitledNotepad.TextField.TypeKeys("<GreaterThan>")
 UntitledNotepad.Find.Pick()
 UntitledNotepad.FindDialog.FindWhat.SetText("Case")
 UntitledNotepad.FindDialog.Down.Select("Down")
 Tmp_findNotepad.Find.MatchCase.Check()
 UntitledNotepad.FindDialog.FindNext.Click()
 Tmp_findNotepad.Find.Cancel.Click()
 Tmp_findNotepad.Find.Close()

Troubleshooting the Open Agent | 449

When to use the Bitmap Tool
You might want to use the Bitmap Tool in these situations:

• To compare a baseline bitmap against a bitmap generated during testing.
• To compare two bitmaps from a failed test.

For example, suppose during your first round of testing you create a bitmap using one of Silk Test Classic’s
built-in bitmap functions, CaptureBItmap. Assume that a second round of testing generates another
bitmap, which your test script compares to the first. If the testcase fails, Silk Test Classic raises an
exception but cannot specifically identify the ways in which the two images differ. At this point, you can
open the Bitmap Tool from the results file to inspect both bitmaps.

Troubleshooting Web Applications
The test of your browser application may have failed for one of the reasons described in this section. If the
suggested solutions do not address the problem you are having, you can enable your extension manually.

What Can I Do If the Page I Have Selected Is Empty?
If the page you are testing is empty or does not contain any HTML elements, you might receive a Could
not recognize any HTML classes in your browser application message. Your
configuration might be correct, however, the automated configuration test does not support testing of blank
pages or pages that do not contain HTML elements. You can manually verify that your extensions are set
properly, open your application, and then record window declarations. If you can record against HTML
classes, the extension is configured correctly and you are ready to set up the recovery system using the
Basic Workflow bar.

Why Do I Get an Error Message When I Set the
Accessibility Extension?
If you are using Internet Explorer to test a Web application and you have set the Accessibility extension,
you might get an error message when the start page of the browser is "about:blank". To avoid getting the
error message, set the start page of the browser to a different page.

450 | Troubleshooting the Open Agent

Using the Runtime Version of Silk Test
Classic

The Silk Test Classic Runtime (Runtime) provides a subset of the functionality of Silk Test Classic.
Specifically, it allows you to perform all of the tasks associated with executing tests and analyzing results.
You are prohibited from editing existing automation or creating new automation. The Runtime is intended to
run previously compiled files. If you update a shared file while the Runtime is open, you must close the
Runtime and reopen it in order to use the updated file.

Silk Test Classic Runtime is an installation option. For additional information, refer to the Silk Test
Installation Guide.

The Silk Test Classic Runtime Help includes the topics that are available from the full version of Silk Test
Classic, and additional product-specific information.

Installing the Runtime Version
Silk Test Classic Runtime is an installation option. For additional information, refer to the Silk Test
Installation Guide.

We strongly recommend that you do not install Silk Test Classic Runtime on the same machine as Silk Test
Classic. Silk Test Classic runtime shares files with this product and will overwrite any other installation you
already have on your machine.

Note: Silk Test Classic Runtime is sold and licensed separately from standard Silk Test Classic.

Starting the Runtime Version
You can start Silk Test Classic Runtime from the following locations:

• The command-line prompt in a DOS window. Enter runtime.exe. The same syntax applies as with
starting Silk Test Classic from the command line.

• The Silk Test Classic GUI. You must have selected the Silk Test Classic Runtime option during
installation.

When you start the Runtime, it displays minimized as an icon only; click the icon to maximize the window.

Comparing Silk Test Classic and Silk Test Classic
Runtime Menus and Commands

The table below lists the menus and commands that are available for each agent in Silk Test Classic and
those that are available in Silk Test Classic Runtime:

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Breakpoint Toggle Classic Agent

Open Agent

No

Using the Runtime Version of Silk Test Classic | 451

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Add Classic Agent

Open Agent

No

Delete Classic Agent

Open Agent

No

Delete All Classic Agent

Open Agent

No

Debug Abort Classic Agent

Open Agent

No

Exit Classic Agent

Open Agent

No

Finish Function Classic Agent

Open Agent

No

Reset Classic Agent

Open Agent

No

Run and Debug/Continue Classic Agent

Open Agent

No

Run to Cursor Classic Agent

Open Agent

No

Step Into Classic Agent

Open Agent

No

Step Over Classic Agent

Open Agent

No

Edit Undo Classic Agent

Open Agent

No

Redo Classic Agent

Open Agent

No

Cut Classic Agent

Open Agent

No

Copy Classic Agent

Open Agent

Yes

Select All Classic Agent

Open Agent

Yes

Paste Classic Agent No

452 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Delete Classic Agent

Open Agent

No

Find Classic Agent

Open Agent

Yes

Find Next Classic Agent

Open Agent

Yes

Replace Classic Agent

Open Agent

No

Go to Line Classic Agent

Open Agent

Yes

Go to Definition Classic Agent

Open Agent

Yes

Find Error Classic Agent

Open Agent

Yes

Data Driven Classic Agent

Open Agent

No

Visual 4Test Classic Agent

Open Agent

Yes

File New Classic Agent

Open Agent

No

Open Classic Agent

Open Agent

Yes

Close Classic Agent

Open Agent

Yes

Save Classic Agent

Open Agent

No

Save Object File Classic Agent

Open Agent

No

Save As Classic Agent

Open Agent

No

Save All Classic Agent

Open Agent

No

Using the Runtime Version of Silk Test Classic | 453

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

New Project Classic Agent

Open Agent

No

Open Project Classic Agent

Open Agent

Yes

Close Project Classic Agent

Open Agent

Yes

Export Project Classic Agent

Open Agent

No

Email Project Classic Agent

Open Agent

No

Run Classic Agent

Open Agent

Yes

Debug Classic Agent

Open Agent

No

Check out Classic Agent

Open Agent

No

Check in Classic Agent

Open Agent

No

Print Classic Agent

Open Agent

Yes

Printer Setup Classic Agent

Open Agent

Yes

Recent Files and Recent
Projects

Classic Agent

Open Agent

Yes

Exit Classic Agent

Open Agent

Yes

Help Help Topics Classic Agent

Open Agent

Yes

Library Browser Classic Agent

Open Agent

Yes

Tutorials Classic Agent

Open Agent

Yes

About Silk Test Classic Classic Agent Yes

454 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Include Open Classic Agent

Open Agent

Yes

Open All Classic Agent

Open Agent

Yes

Close Classic Agent

Open Agent

Yes

Close All Classic Agent

Open Agent

Yes

Save Classic Agent

Open Agent

No

Acquire Lock Classic Agent

Open Agent

No

Release Lock Classic Agent

Open Agent

No

Options General Classic Agent

Open Agent

Yes

Editor Font Classic Agent

Open Agent

Yes

Editor Colors Classic Agent

Open Agent

Yes

Runtime Classic Agent

Open Agent

Yes

Agent Classic Agent

Open Agent

Yes

Extensions Classic Agent Yes

Application Configurations Open Agent Yes

Recorder Classic Agent

Open Agent

No

Class Map Classic Agent Yes

Class Attributes Classic Agent Yes

Property Sets Classic Agent

Open Agent

Yes

Using the Runtime Version of Silk Test Classic | 455

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

TrueLog Classic Agent

Open Agent

Yes

Silk Central URLs Classic Agent

Open Agent

Yes

Open Options Set Classic Agent

Open Agent

Yes

Save New Options Set Classic Agent

Open Agent

No

Close Options Set Classic Agent

Open Agent

Yes

Recent Options Sets Classic Agent

Open Agent

Yes

Outline Move Left Classic Agent

Open Agent

No

Move Right Classic Agent

Open Agent

No

Transpose Up Classic Agent

Open Agent

No

Transpose Down Classic Agent

Open Agent

No

Expand Classic Agent

Open Agent

Yes

Expand All Classic Agent

Open Agent

Yes

Collapse Classic Agent

Open Agent

Yes

Collapse All Classic Agent

Open Agent

Yes

Comment Classic Agent

Open Agent

No

Uncomment Classic Agent

Open Agent

No

Project View Explorer Classic Agent Yes

456 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Align Classic Agent

Open Agent

Yes

Project Description Classic Agent

Open Agent

No

Add File Classic Agent

Open Agent

No

Remove File Classic Agent

Open Agent

No

Record Window Declarations Classic Agent No

Application State Classic Agent

Open Agent

No

Testcase Classic Agent

Open Agent

No

Method Classic Agent

Open Agent

No

Actions Classic Agent No

Class Classic Agent No

Window Identifiers Classic Agent No

Window Locations Classic Agent

Open Agent

No

Defined Window Classic Agent No

Window Tags Classic Agent No

Results Select Classic Agent

Open Agent

Yes

Merge Classic Agent

Open Agent

Yes

Delete Classic Agent

Open Agent

Yes

Extract Classic Agent

Open Agent

Yes

Export Classic Agent Yes

Using the Runtime Version of Silk Test Classic | 457

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Launch TrueLog Explorer Classic Agent

Open Agent

Yes

Send to Issue Manager Classic Agent

Open Agent

Yes

Convert to Plan Classic Agent

Open Agent

No

Compact Classic Agent

Open Agent

Yes

Show Summary Classic Agent

Open Agent

Yes

Hide Summary Classic Agent

Open Agent

Yes

View Options Classic Agent

Open Agent

Yes

Go to Source Classic Agent

Open Agent

Yes

View Differences Classic Agent

Open Agent

Yes

Update Expected Value Classic Agent

Open Agent

No

Pass/Fail Report Classic Agent

Open Agent

Yes

Mark Failures in Plan Classic Agent

Open Agent

Yes

Compare Two Results Classic Agent

Open Agent

Yes

Next Result Difference Classic Agent

Open Agent

Yes

Next Error Difference Classic Agent

Open Agent

Yes

Run Compile Classic Agent

Open Agent

No

458 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Compile all Classic Agent

Open Agent

No

Run Classic Agent

Open Agent

Yes

Debug Classic Agent

Open Agent

No

Application State Classic Agent

Open Agent

Yes

Testcase Classic Agent

Open Agent

Yes

Show Status Classic Agent

Open Agent

Yes

Abort Classic Agent

Open Agent

Yes

Testplan Go to Script Classic Agent

Open Agent

Yes

Detail Classic Agent

Open Agent

No

Insert Template Classic Agent

Open Agent

No

Completion Report Classic Agent

Open Agent

Yes

Mark Classic Agent

Open Agent

Yes

Mark All Classic Agent

Open Agent

Yes

Unmark Classic Agent

Open Agent

Yes

Unmark All Classic Agent

Open Agent

Yes

Mark by Query Classic Agent

Open Agent

Yes

Mark by Named Query Classic Agent Yes

Using the Runtime Version of Silk Test Classic | 459

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Find Next Mark Classic Agent

Open Agent

Yes

Define Attributes Classic Agent

Open Agent

Yes

Run Manual Tests Classic Agent

Open Agent

No

Tools Start Silk Performer Classic Agent

Open Agent

No

Connect to Default Agent Classic Agent

Open Agent

Yes

Data Drive Testcase Classic Agent No

Enable Extensions Classic Agent No

Open Silk Central Classic Agent

Open Agent

Yes

Open Issue Manager Classic Agent

Open Agent

Yes

View/Transcript Expression Classic Agent

Open Agent

No

Global Variables Classic Agent

Open Agent

No

Local Variables Classic Agent

Open Agent

No

Expand Data Classic Agent

Open Agent

No

Collapse Data Classic Agent

Open Agent

No

Module Classic Agent

Open Agent

No

Breakpoints Classic Agent

Open Agent

No

Call Stack Classic Agent

Open Agent

No

460 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Transcript Classic Agent

Open Agent

No

Window Tile Vertically Classic Agent

Open Agent

Yes

Tile Horizontally Classic Agent

Open Agent

Yes

Cascade Classic Agent

Open Agent

Yes

Arrange Icons Classic Agent

Open Agent

Yes

Close All Classic Agent

Open Agent

Yes

Next Classic Agent

Open Agent

Yes

Previous Classic Agent

Open Agent

Yes

filename-filepath Classic Agent

Open Agent

Yes

Workflows Basic Classic Agent

Open Agent

No

Data Driven Classic Agent

Open Agent

No

Using the Runtime Version of Silk Test Classic | 461

Glossary
This section provides an alphabetical list of terms that are related to Silk Test Classic and their
descriptions.

4Test Classes
Classes are the core of object-oriented languages such as Visual Basic or 4Test. Each GUI object is an
instance of a class of objects. The class defines the actions, or methods, that can be performed on all
objects of a given type. For example, in 4Test the PushButton class defines the methods that can be
performed on all pushbuttons in your application. The methods defined for pushbuttons work only on
pushbuttons, not on radio lists.

The class also defines the data, or properties, of an object. In 4Test and Visual Basic, you can set or
retrieve the value of a property directly using the dot operator and a syntax similar to standard Visual
Basic.

4Test-Compatible Information or Methods
Information or methods that can be passed by value in 4Test prototypes.

Abstract Windowing Toolkit
The Abstract Windowing Toolkit (AWT) is a library of Java GUI object classes that is included with the Java
Development Kit from Sun Microsystems. The AWT handles common interface elements for windowing
environments including Windows.

The AWT contains the following set of GUI components:

• Button
• CheckBox
• CheckBox Group (RadioList)
• Choice (PopupList)
• Label (StaticText)
• List (ListBox)
• Scroll Bar
• Text Component (TextField)
• Menu

accented character
A character that has a diacritic attached to it.

agent
The agent is the software process that translates the commands in your scripts into GUI-specific
commands. It is the agent that actually drives and monitors the application you are testing.

462 | Glossary

applet
A Java program designed to run inside a Java-compatible Web browser, such as Netscape Navigator.

application state
The state you expect your application to be in at the beginning of a test case. This is in addition to the
conditions required for the base state.

attributes
In the test plan editor, attributes are site-specific characteristics that you can define for your test plan and
assign to test descriptions and group descriptions. Each attribute has a set of values. For example, you
define the Developer attribute and assign it the values of Kate, Ned, Paul, and Susan, the names of the
QA engineers in your department.

Attributes are useful for grouping tests, in that you can run or report on parts of the test plan that have a
given attribute value. For example, all tests that were developed by Bob can be executed as a group.

In Silk Test Classic, an attribute is a characteristic of an application that you verify in a test case. Attributes
are used in the Verify Window dialog box, which is available only for projects or scripts that use the
Classic Agent.

Band (.NET)
Each level in the grid hierarchy has one band object created to represent it.

base state
The known, stable state you expect the application to be in at the start of each test case.

bidirectional text
A mixture of characters that are read from left to right and characters that are read from right to left. Most
Arabic and Hebrew characters, for example, are read from right to left, but numbers and quoted western
terms within Arabic or Hebrew text are read from left to right.

Bytecode
The form of Java code that the Java Virtual Machine reads. Other compiled languages use compilers to
translate their code into native code, also called machine code, that runs on a particular operating system.
By contrast, Java compilers translate Java programs into bytecode, an intermediate form of code that is
slower than compiled code, but that can theoretically run on any hardware equipped with a Java Virtual
Machine.

Glossary | 463

call stack
A call stack is a listing of all the function calls that have been called to reach the current function in the
script you are debugging.

In debugging mode, a list of functions and test cases which were executing at the time at which an error
occurred in a script. The functions and test cases are listed in reverse order, from the last one executed
back to the first.

child object
Subordinate object in the GUI hierarchy. A child object is either logically associated with, or physically
contained by, its parent object. For example, the File menu, as well as all other menus, are physically
contained by the main window.

class
GUI object type. The class determines which methods can operate on an object. Each object in the
application is an instance of a GUI class.

class library
A collection of related classes that solve specific programming problems. The Java Abstract Windowing
Toolkit (AWT) and Java Foundation Class (JFC) are examples of Java class libraries.

class mapping
Association of nonstandard custom objects with standard objects understood by Silk Test Classic.

Classic 4Test
Classic 4Test is one of the two outline editors you can use with Silk Test Classic. Classic 4Test is similar to
C and does not contain colors. Visual 4Test, enabled by default, is similar to Visual C++ and contains
colors.

To switch between editor modes, click Edit > Visual 4Test to check or uncheck the check mark. You can
also specify your editor mode on the General Options dialog box.

client area
The internal area of a window not including scroll bars, title bar, or borders.

custom object
Nonstandard object that Silk Test Classic does not know how to interact with.

464 | Glossary

data-driven test case
A special kind of test case that receives many combinations of data from 4Test functions/test plan.

data member
Variable defined within a class or window declaration. The value of a data member can be an expression,
but it is important to keep in mind that data members are resolved (assigned values) during compilation. If
the expression for the data member includes variables that will change at run-time, then you must use a
property instead of that data member.

declarations
See Window Declarations.

DefaultBaseState
Built-in application state function that returns your application to its base state. By default, the built-in
DefaultBaseState ensures that the application is running and is not minimized, the main window of the
application is open, and all other windows, for example dialog boxes and message boxes, are closed.

diacritic
1. Any mark placed over, under, or through a Latin-based character, usually to indicate a change in

phonetic value from the unmarked state.
2. A character that is attached to or overlays a preceding base character.

Most diacritics are non-spacing characters that don't increase the width of the base character.

Difference Viewer
Dual-paned display-only window that lists every expected value in a test case and its corresponding actual
value. Highlights all occurrences where expected and actual values differ. You display the Difference
Viewer by selecting the box icon in the results file.

double-byte character set (DBCS)
A double-byte character set, which is a specific type of multibyte character set, includes some characters
that consist of 1 byte and some characters that consist of 2 bytes.

dynamic instantiation
This special syntax is called a dynamic instantiation and is composed of the class and tag or locator of the
object. For example, if there is not a declaration for the Find dialog box of the Text Editor application, the
syntax required to identify the object looks like the following:

Glossary | 465

• Classic Agent:

MainWin("Text Editor|$D:\PROGRAM FILES
 \<SilkTest install directory>\SILKTEST\TEXTEDIT.EXE").DialogBox("Find")

• Open Agent:

/MainWin[@caption='Untitled - Text Editor']//DialogBox[@caption='Find']

The general syntax of this kind of identifier is:

• Classic Agent:

class("tag").class("tag"). ...

• Open Agent:

class('locator').class('locator'). ...

With the Classic Agent, the recorder uses the multiple-tag settings that are stored in the Record Window
Declarations dialog box to create the dynamic tag. In the Classic Agent example shown above, the tag for
the Text Editor contains its caption as well as its window ID. For additional information, see About Tags.

dynamic link library (DLL)
A library of reusable functions that allow code, data, and resources to be shared among programs using
the module. Programs are linked to the module dynamically at runtime.

enabling
Altering program code to handle input, display, and editing of bidirectional or double-byte languages, such
as Arabic and Japanese.

exception
Signal that something did not work as expected in a script. Logs the error in the results file.

frame file
See test frame file.

fully qualified object name
Name that uniquely identifies a GUI object. The actual format depends on whether or not a window
declaration has been previously recorded for the object and its ancestors.

group description
In the test plan editor, one or more lines in an outline that describe a group of tests, not a single test. Group
descriptions by default are displayed in black.

466 | Glossary

handles
A handle is an identification code provided for certain types of object so that you can pass it to a function
that needs to know which object to manipulate.

hierarchy of GUI objects
Parent-child relationships between GUI objects.

host machine
A host machine is a system that runs the Silk Test Classic software process in which you develop, edit,
compile, run, and debug 4Test scripts and test plans.

Host machines are always Windows systems.

hotkey
The following table lists the available hotkeys and accelerator keys for each menu:

Menu Name Command with Hotkey Hotkey Accelerator Key

Breakpoint Toggle Alt+B+T F5

Add Alt+B+A -

Delete Alt+B+D -

Delete All Alt+B+E -

Debug Abort Alt+D+A -

Exit Alt+D+X -

Finish Function Alt+D+F -

Reset Alt+D+E -

Run and Debug/Continue Alt+D+R F9

Run to Cursor Alt+D+C Shift+F9

Step Into Alt+D+I F7

Step Over Alt+D+S F8

Edit Undo Alt+E+U Ctrl+Z

Redo Alt+E+R Ctrl+Y

Cut Alt+E+T Ctrl+X

Copy Alt+E+C Ctrl+C

Paste Alt+E+P Ctrl+V

Delete Alt+E+D Del

Find Alt+E+F Ctrl+F

Glossary | 467

Menu Name Command with Hotkey Hotkey Accelerator Key

Find Next Alt+E+N F3

Replace Alt+E+E Ctrl+R

GoTo Line Alt+E+G Ctrl+G

GoTo Definition Alt+E+O F12

Find Error Alt+E+I F4

Data Driven - -

File New Alt+F+N Ctrl+N

Open Alt+F+O Ctrl+O

Save Alt+F+S Ctrl+S

Save As Alt+F+A -

Save All Alt+F+L -

New Project Alt+F+W -

Open Project Alt+F+E -

Close Project Alt+F+J -

Run Alt+F+R -

Debug Alt+F+D -

Check out Alt+F+T Ctrl+T

Check in Alt+F+K Ctrl+K

Print Alt+F+P Ctrl+P

Printer Setup Alt+F+I -

operation file-name Alt+F+# Alt+F+#

Exit Alt+F+X Alt+F4

Help Help Topics Alt+H+H -

Library Browser Alt+H+L -

Tutorials Alt+H+T -

About Silk Test Classic Alt+H+A -

Include Open Alt+I+O -

Open All Alt+I+P -

Close Alt+I+C -

Close All Alt+I+L -

Save Alt+I+S -

Acquire Lock Alt+I+A -

Release Lock Alt+I+R -

Options General Alt+O+G -

Editor Font Alt+O+D -

Editor Colors Alt+O+E -

468 | Glossary

Menu Name Command with Hotkey Hotkey Accelerator Key

Runtime Alt+O+T -

Agent Alt+O+A -

Extensions Alt+O+X -

Recorder Alt+O+R -

Silk Performer Recorder Alt+O+F -

Class Map Alt+O+M -

Property Sets Alt+O+P -

Silk Central URLs Alt+O+U -

Open Options Set Alt+O+O -

Save Options Set Alt+O+S -

Close Options Set Alt+O+C -

option-file-name Alt+O+# -

Outline Move Left Alt+L+V Alt+Left Arrow

Move Right Alt+L+R Alt+Right Arrow

Transpose Up Alt+L+A Alt+Up Arrow

Transpose Down Alt+L+S Alt+Down Arrow

Expand Alt+L+E Ctrl++

Expand All Alt+L+X Ctrl+*

Collapse Alt+L+O Ctrl+-

Collapse All Alt+L+L Ctrl+/

Comment Alt+L+M Alt+M

Uncomment Alt+L+N Alt+N

Project View Explorer Alt+P+V -

Align Alt+P+A -

&Left Alt+P+L -

&Right Alt+P+R -

Project Description Alt+P+O -

Add File Alt+P+D -

Remove File Alt+P+R -

Record Window Declarations Alt+R+W Ctrl+W

Application State Alt+R+S -

Testcase Alt+R+ Ctrl+E

Method Alt+R+T -

Actions Alt+R+A -

Class Alt+R+C -

Window Identifiers Alt+R+I Ctrl+I

Glossary | 469

Menu Name Command with Hotkey Hotkey Accelerator Key

Window Locations Alt+R+L -

Silk Performer Script Alt+R+P -

Results Select Alt+T+S -

Merge Alt+T+M -

Delete Alt+T+D -

Extract Alt+T+E -

Export Alt+T+X -

Send to Issue Manager - -

Convert to Plan Alt+T+C -

Compact - -

Show Summary Alt+T+H -

Hide Summary Alt+T+I -

View Options Alt+T+V -

Goto Source Alt+T+G -

View Differences Alt+T+W -

Update Expected Value Alt+T+U -

Pass/Fail Report Alt+T+P -

Mark Failures in Plan Alt+T+F -

Compare Two Results Alt+T+O -

Next Result Difference Alt+T+N -

Next Error Difference Alt+T+r -

Run Compile Alt+U+C Alt+F9

Compile all - -

Run All Tests Alt+U+R F9

Debug Alt+U+D Ctrl+F9

Application State Alt+U+A Alt+A

Testcase Alt+U+T Alt+T

Show Status Alt+U+S -

Abort Alt+U+B LShift+RShift

Testplan Goto Script Alt+T+G -

Detail Alt+T+D -

Insert Template Alt+T+I -

Completion Report Alt+T+C -

Mark Alt+T+M -

Mark All Alt+T+A -

Unmark Alt+T+U -

470 | Glossary

Menu Name Command with Hotkey Hotkey Accelerator Key

Unmark All Alt+T+N -

Mark by Query Alt+T+Q -

Mary by Named Query Alt+T+R -

Find Next Mark Alt+T+F -

Define Attributes Alt+T+E -

Manual tests Alt+T+T -

Tools Link Tester Alt+S+L -

Start Silk Performer Alt+S+P -

Data Drive Testcase Alt+S+D -

Enable Extensions Alt+S+E -

Silk Central Test Manager Alt+S+H

View/Transcript Expression Alt+V+E -

Global Variables Alt+V+G -

Local Variables Alt+V+L -

Expand Data Alt+V+X -

Collapse Data Alt+V+C -

Module Alt+V+M -

Breakpoints Alt+V+B -

Call Stack Alt+V+L -

Transcript Alt+V+T -

Window Tile Vertically Alt+W+T -

Tile Horizontally Alt+W+H -

Cascade Alt+W+C -

Arrange Icons Alt+W+E -

Close All Alt+W+L -

Next Alt+W+N F6

Previous Alt+W+P Shift+F6

file-file-name Alt+W+# -

Workflows Basic Alt+K+B -

Data Driven Alt+K+D -

Hungarian notation
Naming convention in which a variable’s name begins with one or more lowercase letters indicating its data
type. For example, the variable name sCommandLine indicates that the data type of the variable is
STRING.

Glossary | 471

identifier
Name used in test scripts to refer to an object in the application. Logical, GUI-independent name. Identifier
is mapped to the tag in a window declaration.

include file
File that contains window declarations and can contain constant, variable, and other declarations.

internationalization or globalization
The process of developing a program core whose feature design and code design don't make assumptions
based on a single language or locale and whose source code base simplifies the creation of different
language editions of a program.

Java Database Connectivity (JDBC)
Java API that enables Java programs to execute SQL statements and interact with any SQL-compliant
database. Often abbreviated as JDBC.

Java Development Kit (JDK)
A free tool for building Java applets and full-scale applications. This is an environment which contains
development and debugging tools, and documentation. Often abbreviated as JDK.

Java Foundation Classes (JFC)
Sun Microsystem's and Netscape's class library designed for building visual applications in Java. Often
abbreviated as JFC.

JFC consists of a set of GUI components named Swing that adopt the native look and feel of the platforms
they run on.

Java Runtime Environment (JRE)
Sun Microsystem's execution-only subset of its Java Development Kit. The Java Runtime Environment
(JRE) consists of the Java Virtual Machine, Java Core Classes, and supporting files, but contains no
compiler, no debugger, and no tools.

The JRE provides two virtual machines: JRE.EXE and JREW.EXE. The only difference is that JREW does
not have a console window.

Java Virtual Machine (JVM)
Software that interprets Java code for a computer’s operating system. A single Java applet or application
can run unmodified on any operating system that has a virtual machine, or VM.

472 | Glossary

JavaBeans
Reusable software components written in Java that perform a single function. JavaBeans can be mixed and
matched to build complex applications because they can identify each other and exchange information.

JavaBeans are similar to ActiveX controls and can communicate with ActiveX controls. Unlike ActiveX,
JavaBeans are platform-independent.

Latin script
The set of 26 characters (A through Z) inherited from the Roman Empire that, together with later character
additions, is used to write languages throughout Africa, the Americas, parts of Asia, Europe, and Oceania.
The Windows 3.1 Latin 1 character set covers Western European languages and languages that use the
same alphabet. The Latin 2 character set covers Central and Eastern European languages.

layout
The order and spacing of displayed text.

levels of localization
The amount of translation and customization necessary to create different language editions. The levels,
which are determined by balancing risk and return, range from translating nothing to shipping a completely
translated product with customized features.

load testing
Testing that determines the actual, which means not simulated, impact of multi-machine operations on an
application, the server, the network, and all related elements.

localization
The process of adapting a program for a specific international market, which includes translating the user
interface, resizing dialog boxes, customizing features if necessary, and testing results to ensure that the
program still works.

localize an application
To make an application suitable for a specific locale: for example, to include foreign language strings for an
international site.

locator
This functionality is supported only if you are using the Open Agent.

Glossary | 473

The locator is the actual name of an object, to which Silk Test Classic maps the identifier for a GUI object.
You can use locator keywords to create scripts that use dynamic object recognition and window
declarations.

logical hierarchy
The hierarchy that is implied from the visible organization of windows as they display to the user.

manual test
In the testplan editor, a manual test is a test that is documented but cannot be automated and, therefore,
cannot be run within the test plan. You might chose to include manual tests in your test plan in order to
centralize the testing process. To indicate that a test description is implemented manually, you use the
keyword value manual in the testcase statement.

mark
In the testplan editor, a mark is a technique used to work with one or more tests as a group. A mark is
denoted by a black stripe in the margin bar of the test plan. Marks are temporary and last only as long as
the current work session. Tests that are marked can be run or reported on independently as a subset of the
total plan.

master plan
In the testplan editor, that portion of a test plan that contains only the top few levels of group descriptions.
You can expand, which means display, the sub-plans of the master plan, which contain the remaining levels
of group description and test description. The master plan/sub-plan approach allows multi-user access to a
test plan, while at the same time maintaining a single point of control for the entire project. A master plan
file has a .pln extension.

message box
Dialog box that has only static text and pushbuttons. Typically, message boxes are used to prompt a user to
verify an action, such as Save changes before closing?, or to alert a user to an error.

method
Operation, or action, to perform on a GUI object. Each class defines its own set of methods. Methods are
also inherited from the class’s ancestors.

minus (-) sign
In a file, an icon that indicates that all information is displayed. Click on the minus sign to hide the
information. The minus sign becomes a plus sign.

474 | Glossary

modal
A dialog box that presents a task that must be completed before continuing with the application. No other
part of the application can be accessed until the dialog box is closed. Often used for error messages.

modeless
A dialog box that presents a simple or ongoing task. May be left open while accessing other features of the
application, for example, a search dialog box.

Multibyte Character Set (MBCS)
A mixed-width character set, in which some characters consist of more than 1 byte.

Multiple Application Domains (.NET)
The .NET Framework supports multiple application domains. A new application domain loads its own
copies of the common language runtime DLLs, data structure, and memory pools. Multiple application
domains can exist in one operation system process.

negative testing
Tests that deliberately introduce an error to check an application’s behavior and robustness. For example,
erroneous data may be entered, or attempts made to force the application to perform an operation that it
should not be able to complete. Generally a message box is generated to inform the user of the problem.

nested declarations
Indented declarations that denote the hierarchical relationships of GUI objects in an application.

No-Touch (.NET)
No-Touch deployment allows Windows Forms applications, which are applications built using Windows
Forms classes of the .NET Framework, to be downloaded, installed, and run directly on the machines of
the user, without any alteration of the registry or shared system components.

object
The principal building block of object-oriented programs. Each object is a programming unit consisting of
data and functionality. Objects inherit their methods and properties from the classes to which they belong.

Glossary | 475

outline
In the test plan editor, a structured, usually hierarchical model that describes the requirements of a test
plan and contains the statements that implement the requirements. The outline supports automatic,
context-sensitive coloring of test plan elements.

In Silk Test Classic, the outline is a 4Test editor mode that supports automatic, context-sensitive coloring
and indenting of 4Test elements. There are two ways of using the 4Test Editor, though Classic 4Test or
Visual 4Test.

Overloaded method
A method that you call with different sets of parameter lists. Overloaded methods cause naming conflicts
which must be resolved to avoid runtime errors when testing Java applications.

Example of an overloaded method How Java support resolves the naming conflict

setBounds(int i1, int i2, int i3, int i4) setBounds(int i1, int i2, int i3, int i4)

setBounds(RECT r1) setBounds_2(RECT r1)

parent object
Superior object in the GUI hierarchy. A parent object is either logically associated with or physically
contains a subordinate object, the child. For example, the main window physically contains the File menu
as well as all other menus.

performance testing
Testing to verify that an operation in an application performs within a specified, acceptable period of time.
Alternately, testing to verify that space consumption of an application stays within specified limits.

physical hierarchy (.NET)
The window handle hierarchy as implemented by the application developer.

plus (+) sign
In a file, an icon that indicates that there is hidden information. You can show the information by clicking on
the plus sign. The plus sign becomes a minus sign.

polymorphism
Different classes or objects performing the same named task, but with different execution logic.

476 | Glossary

project
Silk Test Classic projects organize all the resources associated with a test set and present them visually in
the Project Explorer, making it easy to see, manage, and work within your test environment.

Silk Test Classic projects store relevant information about your project, including references to all the
resources associated with a test set, such as plans, scripts, data, option sets, .ini files, results, and frame/
include files, as well as configuration information, Editor settings, and data files for attributes and queries.
All of this information is stored at the project level, meaning that once you add the appropriate files to your
project and configure it once, you may never need to do it again. Switching among projects is easy - since
you need to configure the project only once, you can simply open the project and run your tests.

properties
Characteristics, values, or information associated with an object, such as its state or current value.

query
User-selected set of characteristics that are compared to the attributes, symbols, or execution
characteristics in a test plan. When the set of characteristics matches a test, the test is marked. This is
called marking by query. For example, you might run a query in order to mark all tests that are defined in
the find.t script and that were created by the developer named Bob.

recovery system
A built-in, automatic mechanism to ensure the application is in a known state. If the application is not in the
expected state, a message is logged to the results file and the problem is corrected. The recovery system
is invoked before and after each test case is executed.

regression testing
A set of baseline tests that are run against each new build of an application to determine if the current build
has regressed in quality from the previous one.

results file
A file that lists information about the scripts and test cases that you ran. In the testplan editor, a results file
also lists information about the test plan that you ran; the format of a results file mimics the outline format
of the test plan it derives from. The name of the results file is script-name.res or testplan-
name.res.

script
A collection of related 4Test test cases and functions that reside in a script file.

Glossary | 477

script file
A file that contains one or more related test cases. A script file has a .t extension, such as find.t.

side-by-side (.NET)
Side-by-side execution is the ability to install multiple versions of code so that an application can choose
which version of the common language runtime or of a component it uses.

Simplified Chinese
The Chinese alphabet that consists of several thousand ideographic characters that are simplified versions
of traditional Chinese characters.

Single-Byte Character Set (SBCS)
A character encoding in which each character is represented by 1 byte. Single byte character sets are
mathematically limited to 256 characters.

smoke test
Tests that constitute a quick set of acceptance tests. They are often used to verify a minimum level of
functionality before either accepting a new build into source control or continuing QA with more in-depth,
time-consuming testing.

Standard Widget Toolkit (SWT)
The Standard Widget Toolkit (SWT) is a graphical widget toolkit for the Java platform. SWT is an alternative
to the AWT and Swing Java GUI toolkits provided by Sun Microsystems. SWT was originally developed by
IBM and is maintained by the Eclipse Foundation in tandem with the Eclipse IDE.

statement
In the testplan editor, lines that implement the requirements of a test plan. The testplan editor has the
following statements:

• testcase
• script
• testdata
• include
• attribute

Statements consist of one of the preceding keywords followed by a colon and a value.

In Silk Test Classic, a statement is a method or function call or 4Test flow-of control command, such as
if..then, that is used within a 4Test test case.

478 | Glossary

status line
Area at the bottom of the window that displays the status of the current script, the line and column of the
active window (if any), and the name of the script that is currently running. When the cursor is positioned
over the toolbar, it displays a brief description of the item.

stress testing
Tests that exercise an application by repeating the same commands or operation a large number of times.

subplan
Test plan that is referenced by another test plan, normally the master test plan, by using an include
statement. Portion of a test plan that resides in a separate file but can be expanded inline within its master
plan. A subplan may contain the levels of group description and test description not covered in the master
plan. A subplan can inherit information from its master plan. You add a subplan by inserting an include
statement in the master plan. A subplan file has a .pln extension, as in subplan-name.pln.

suite
A file that names any number of 4Test test script files. Instead of running each script individually, you run
the suite, which executes in turn each of your scripts and all the test cases it contains.

Swing
A set of GUI components implemented in Java that are based on the Lightweight UI Framework. Swing
components include:

• Java versions of the existing Abstract Windowing Toolkit (AWT) components, such as Button, Scrollbar,
and List.

• A set of high-level Java components, such as tree-view, list-box, and tabbed-pane components.

The Swing tool set lets you create a set of GUI components that automatically implements the appearance
and behavior of components designed for any OS platform, but without requiring window-system-specific
code.

Swing components are part of the Java Foundation Class library beginning with version 1.1.

symbols
In the testplan editor, used in a test plan to pass data to 4Test test cases. A symbol can be defined at a
level in the test plan where it can be shared by a group of tests. Its values are actually assigned at either
the group or test description level, depending on whether the values are shared by many tests or are
unique to a single test. Similar to a 4Test identifier, except that its name begins with a $ character.

tag
This functionality is available only for projects or scripts that use the Classic Agent.

Glossary | 479

The actual name or index of the object as it is displayed in the GUI. The name by which Silk Test Classic
locates and identifies objects in the application.

target machine
A target machine is a system (or systems) that runs the 4Test Agent, which is the software process that
translates the commands in your scripts into GUI-specific commands, in essence, driving and monitoring
your applications under test.

One Agent process can run locally on the host machine, but in a networked environment, the host machine
can connect to any number of remote Agents simultaneously or sequentially.

Target machines can be Windows systems.

template
A hierarchical outline in the testplan editor that you can use as a guide when creating a new test plan.
Based on the window declarations in the frame file.

test description
In the testplan editor, a terminal point in an outline that specifies a test case to be executed. Test
descriptions by default are displayed in blue.

test frame file
Contains all the data structures that support your scripts:

• window declarations
• user-defined classes
• utility functions
• constants
• variables
• other include files

test case
In a script file, an automated test that ideally addresses one test requirement. Specifically, a 4Test function
that begins with the testcase keyword and contains a sequence of 4Test statements. It drives an
application to the state to be tested, verifies that the application works as expected, and returns the
application to its base state.

In a test plan, a testcase is a keyword whose value is the name of a test case defined in a script file. Used
in an assignment statement to link a test description in a test plan with a 4Test test case defined in a script
file.

Test case names can have a maximum of 127 characters. When you create a data driven test case, Silk
Test Classic truncates any test case name that is greater than 124 characters.

480 | Glossary

test plan
In general, a document that describes test requirements. In the testplan editor, a test plan is displayed in an
easy-to-read outline format, which lists the test requirements in high-level prose descriptions. The structure
can be flat or many levels deep. Indentation indicates the level of detail. A test plan also contains
statements, which are keywords and values that implement the test descriptions by linking them to 4Test
test cases. Large test plans can be divided into a master plan and one or more sub plans. A test plan file
has a .pln extension, such as find.pln.

TotalMemory parameter
Total amount of memory available to the Java interpreter. This is the value returned from the
java.lang.Runtime.totalMemory() method.

Traditional Chinese
The set of Chinese characters, used in such countries or regions as Hong Kong SAR, China Singapore,
and Taiwan, that is consistent with the original form of Chinese ideographs that are several thousand years
old.

variable
A named location in which you can store a piece of information. Analogous to a labeled drawer in a file
cabinet.

verification statement
4Test code that checks that an application is working by comparing an actual result against an expected
(baseline) result.

Visual 4Test
Visual 4Test is one of the two editors you can use with Silk Test Classic. Visual 4Test, enabled by default, is
similar to Visual C++ and contains colors. Classic 4Test is similar to C and does not contain colors.

To switch between editor modes, click Edit > Visual 4Test to check or uncheck the check mark. You can
also specify your editor mode on the General Options dialog box.

window declarations
Descriptions of all the objects in the application’s graphical user interface, such as menus and dialog
boxes. Declarations are stored in an include file which has a .inc extension, typically the frame.inc file.

Glossary | 481

window part
Predefined identifiers for referring to parts of the window. Associated with common parts of MoveableWin
and Control classes, such as LeftEdge, MenuBar, ScrollBar.

XPath
The XML Path Language (XPath) models an XML document as a tree of nodes and enables you to
address parts of the XML document. XPath uses a path notation to navigate through the hierarchical
structure of the XML document. Dynamic object recognition uses a Find or FindAll function and an
XPath query to locate the objects that you want to test.

482 | Glossary

Index
.NET, Open Agent

testing applications 238
operator

testplan editor 110
+ and - operators

rules 119

4Test
versus native Java controls 261

4Test classes
definition 462

4Test code
marking as GUI specific 351

4Test Editor
compatible information or methods 462
not enough characters displayed 444

4Test methods
comparing with native methods 267

4test.inc
relationship with messages sent to the result file 444

A

Abstract Windowing Toolkit
overview 462

accented characters
definition 462

Accessibility
enabling for the Open Agent 330
improving object recognition 329
Open Agent 330

accessing
files in projects 64

accessing data
member-of operator 328

acquiring locks 109
active object

highlight during recording 136
adding comments

test plan editor 110
adding files

projects 69
adding folders

projects 70
adding information to the beginning of a file

using file functions 445
adding method to TextField class

example 344
adding properties

recorder 438
adding root certificates

Android 281
Android emulators 282

adding Tab method to DialogBox class
example 344

Adobe Flex

adding configuration information 214
Adobe Air support 208
automation support for custom controls 230
automationName property 216
coding containers 218
containers 219
creating applications 215
defining custom controls 226
multiview containers 219
passing parameters 214
passing parameters at runtime 214
passing parameters before runtime 214
run-time loading 213
security settings 205
select method 209, 218
testing initialization 219
testing playback 220
testing recording 220

advanced techniques
Open Agent 319

agent
definition 462
unable to connect 417

agent not responding 416
agent options

differences between Classic Agent and Open Agent 53
setting for Web testing 88
setting window timeout 45

agent support
Java AWT 252
Swing 252

AgentClass class
classes for non-window objects 335

agents
configuring ports 45
options 23
record functionality 43
setting default 41
using both agents 42

Agents
assigning to window declarations 23
comparison 56
connecting to default 42
differences 56
driving the associated applications simultaneously 180
parameter comparison 60
parameters 60
supported methods 61
supported SYS functions 61

AJAX applications
script hangs 308

Android
configuring emulator 274
enabling USB-debugging 273
installing USB drivers 272
prerequisites 281
recommended settings 274
recording test cases 50, 151

Index | 483

setting proxy for emulator 273
testing 271
testing on emulators 272
testing on physical devices 271
troubleshooting 279

Android emulators
prerequisites 282

animation mode
test cases 384

AnyWin class
cannot extend class 439

Apache Flex
automationIndex property 216
automationName property 216
class definition file 233
Component Explorer 221
Component Explorer sample application 221
controls are not recognized 415
custom controls 357
customizing scripts 205, 225
enabling your application 210
exception values 208
Flash player settings 204
linking automation packages 211
locator attributes 206
overview 203
precompiling the application 212
prerequisites 204, 221
recording Component Explorer sample test case 223
selecting an item in the FlexDataGrid control 210
styles 206
testing 203
testing custom controls 225
testing custom controls using automation support 230
testing custom controls using dynamic invoke 229
testing multiple applications on the same Web page

208
troubleshooting 415
using dynamic invoke 207
verifying scripts 205, 225
workflow 219

Apache Flex applications
custom attributes 133

API playback
compared to native playback 300

appearance
verifying by using a bitmap 158

applet
definition 463

applets
controls not recognized 262, 430

application behavior differences
supporting 347

application configurations
adding 155
definition 149
modifying 155
reasons for failure of creating 156
removing 155

application state
definition 463

application states

behavior of based on NONE 148
overview 147
testing 155

applications
configuring 47, 155
local and single 178
preparing for automated testing 448
single and remote 179

applications with invalid data
testing 166

applying masks
exclude all differences 399
exclude some differences or just selected areas 398

AppStateList
using 374

array indexing
indexed values in test scripts 261

assigning attributes
Testplan Detail dialog box 120

attaching a comment to a result set 401
attribute definitions

modifying 121
attribute types

dynamic object recognition 129
editing 129
Oracle Forms 257

attribute values
editing 129

attributes
assigning to test plans 120
custom 133, 253, 269
defining along with values 119
defining for existing classes 340
definition 339, 463
modifying definition 121
syntax 340
test plans 118
verification 339
verifying 339

attributes and values
overview 118

autocomplete
using 371

AutoComplete
AppStateList 374
customizing MemberList 371
DataTypeList 374
FAQs 372
FunctionTip 374
MemberList 375
overview 371
turning off 373

automated testing
making locators easier to recognize 448

automatically generated code
data-driven test cases 163

AWT
overview 462
predefined classes 262
recording menus 267

AWT classes
predefined 262

484 | Index

B

band (.NET)
definition 463

base state
about 91
definition 463

based on NONE
application state behavior 148

basic workflow
Open Agent 47

basic workflow issue troubleshooting 415
Beans

definition 473
bi-directional languages

support 366
BiDi text

definition 463
bidirectional text

definition 463
bitmap comparison

excluding parts of the bitmap 397
rules 395

bitmap differences
scanning 400

Bitmap Tool
applying a mask 398
baseline and result bitmaps 395
capturing a bitmap 392
capturing bitmaps 392
comparing bitmaps 394
designate bitmap as baseline 396
designating a bitmap as a results file 396
editing masks 398
exiting from scan mode 396
mask prerequisites 398
moving to the next or previous difference 401
opening bitmap files 397
overview 391
saving captured bitmaps 394
starting 397
starting from icon 397
starting from the results file 397
starting from the Run dialog box 397
un-setting a designated bitmap 396
using masks 397
zooming windows 396

bitmaps
analyzing 391
analyzing for differences 400
baseline 395
Bitmap Tool overview 391
capturing during recording 393
capturing Zoom window in scan mode 393
comparison command rules 395
designate as baseline 396
designate as results file 396
exiting from scan mode 396
functions 395
graphically show differences between baseline and

result bitmaps 400
result 395

saving captured bitmaps 394
saving masks 400
scanning differences 400
showing areas of difference 400
starting the Bitmap Tool 397
statistics 396
un-setting designated bitmaps 396
verifying 158
verifying appearance 158
viewing statistics comparing baseline and result

bitmaps 396
when to use the Bitmap Tool 392, 450
zooming in on differences 401

breakpoints
about 410
deleting 411
setting 410
setting temporary 410
viewing 411

browser configuration settings
xBrowser 302

browser extensions
disabling 86

browser recognized
as client/server application 238

browser specifiers
testing Web applications 290

browser test failure
troubleshooting 450

browser type
GetProperty 308

browsers
configuring 87

browsertype
using 308

building queries
tables 171

bytecode
definition 463

C

call stack
definition 464

calling DLLs
within 4Test scripts 331

calling nested methods
InvokeJava method 265

calling Windows DLLs from 4Test
overview 330

cannot double-click
file to open Silk Test Classic 438

cannot extend
classes 439

cannot find items
Classic 4Test 78, 448

cannot open results file 439
cannot open Silk Test Classic

by double-clicking a file 438
cannot save files

projects 77, 447
cannot start

Index | 485

Silk Test Classic 77, 447
captions

GUI-specific 353
capturing a bitmap

Bitmap Tool 392
capturing bitmaps

during recording 393
Bitmap Tool 392

categorizing test plans
overview 113

change the default number of results sets 402
changes not applied

include files or scripts 442
changing element colors

result files 402
charts

presenting results 405
checking the precedence of operators 413
child object

definition 464
Chrome

changing browser type for replay 304
configuration settings 302
cross-browser scripts 307
prerequisites 305

class
definition 464

class definition file
Java 261

class hierarchy
4Test (Open Agent) 338

class library
definition 464

class mapping
definition 464

class methods
viewing in Library Browser 377

class properties
NumChildren alternative 341

classes
4Test 334
declarations 350
defining attributes 340
defining properties 338
defining with Open Agent 336
hierarchy (Open Agent) 338
logical 338
overview 334
WPF 247
xBrowser 314

classes for non-window objects
AgentClass 335
ClipboardClass 335
CursorClass 335

Classic 4Test
cannot find items 78, 448
definition 464

Classic Agent
comparison to Open Agent 56
migrating to the Open Agent 53

Classic Agent parameters
comparison to Open Agent 60

CLASSPATH
disabling when Java is installed 267

Click
mobile Web 284

client area
definition 464

client/server applications
overview 234

client/server testing
challenges 234
code for template.t 199
concurrency testing 236
configuration testing 236
configurations 175
functional testing 237
multi_cs.t script 187
multi-application testing 194
multi-testcase code template 187
parallel template 187
parallel.t script 187
serially 192
template.t explained 200
testing databases 193
types of testing 236
verifying tables 234

clients
testing concurrently 191

Clipboard methods
4Test 361
code sample 361

ClipboardClass class
classes for non-window objects 335

closing windows
recovery system 94
specifying buttons 98
specifying keys 98
specifying menus 98

code that never executes 413
columns

testing in Web applications 292
comparing

result files 401
comparing bitmaps

Bitmap Tool 394
compile errors

Unicode content 370
compiling

conditional compilation 350
compiling code

conditionally 351
completion reports

generating for test plans 109
Component Explorer

Apache Flex 221
recording sample test case 223
testing 221

concurrency
processing 180

concurrency testing
code example 196
explanation of code example 197
overview 236

486 | Index

concurrent programming
threads 182

concurrently testing
clients 191

conditional compilation
result 352

conditionally compiling code
outcome 352

configuration test failures
troubleshooting 238

configuration testing
client/server testing 236
overview 236

configuring
network of computers 179

configuring applications
custom 48, 316
Java 258
mobile Web 48, 222
overview 47, 155
standard 48, 316
Web 48, 222

configuring sample Web application
insurance company 311

contact information 19, 20
containers

invisible 362
Control class

cannot extend class 439
control is not responding 416
controls

recognized as custom controls 354
testing for Web applications 293
verifying that no longer displayed 161

create test case
basic workflow for the Open Agent 47

creating a new project
insurance company Web application 310

Creating a suite 381
creating data-driven test cases

workflow 162
creating masks

exclude all differences 399
exclude some differences or just selected areas 398

creating new queries
combining queries 122

creating script
both agents 42

creating stable locators
overview 131

creating test cases
Open Agent 149

cross-platform methods
using in scripts 350

cs.inc
overview 202

CursorClass class
classes for non-window objects 335

custom applications
configuring 48, 316

custom attributes
about 133, 253, 269

Apache Flex applications 133
setting to use in locators 141
Web applications 134
Windows Forms applications 135
WPF applications 135

custom classes
filtering 361

custom controls
creating custom classes 359
dialog box 360
FAQs about dynamic invoke 356
invoke call returns unexpected string 356
Java 251
managing 357
overview 355
supporting 354, 359
testing (Apache Flex) 357
testing in Flex using automation support 230
testing in Flex using dynamic invoke 229
WPF 243

custom object
definition 464

custom verification properties
defining 343

Customer Care 19, 20
customizing results 402
CustomWin

large number of objects 266

D

data member
definition 465

data members
using properties instead 445

data source
configuring DSN 167

data sources
setting up 167
setting up for data-driven 167

data-driven
workflow 162

data-driven test case
definition 465

data-driven test cases
adding to test plans 171
automatically generated code 163
creating 168
data sources 167
overview 162
passing data to 170
running 169
running test case using sample records for each table

170
selecting test case 169
setting up data sources 167
tips and tricks 164
working with 163

data-driving test cases
Oracle 168

databases
manipulating from test cases 193

Index | 487

testing 193
DataTypeList

using 374
DB Tester

using with Unicode content 363
DBCS

definition 465
debugger

about 408
executing a script 408
exiting 410
menus 409
starting 409

debugging
designing and testing 408
enabling transcript 412
scripts 410
step into and step over 409
test scripts 408
tips 413
view transcripts 413

declarations
definition 465
dialog boxes 323
main window 324
menu 324
modified 361
overview 323
windows 326

default agent
setting 41

default browser
specifying 89

default error handling 419
DefaultBaseState

adding tests that use Open Agent 92
definition 465
function 92
wDynamicMainWindow object 93

defaults.inc
overview 201

DefaultScriptEnter method
overriding 95

DefaultScriptExit method
overriding 95

DefaultTestCaseEnter method
overriding 95

DefaultTestCaseExit method
overriding 95

DefaultTestPlanEnter method
overriding 95

DefaultTestPlanExit method
overriding 95

defining
custom verification properties 343

defining a custom verification property
example 344

defining attributes
classes 340
with values 119

defining classes
Open Agent 336

defining custom verification properties
overview 341

defining method example
adding method to TextField class 344

defining methods
examples 344
overview 341
single GUI objects 341

defining properties
classes 338

defining symbols
Testplan detail dialog box 117

defining your own exceptions 421
deleting a results set 402
deriving methods

from existing methods 343
designing and recording test cases

test cases 143
DesktopWin class

using 338
determining where values are defined

large test plans 107
device not connected

mobile 279
DHTML

manually creating tests popup menus 306
testing popup menus 288

diacritic
definition 465

Dialog
not recognized 309

dialog box declarations
overview 323

dialog boxes
declarations 323
displaying double-byte characters 368
specifying how to invoke 329

DialogBox class
adding Tab method example 344

Difference Viewer
about 385
definition 465

differences
moving to next or previous 401

differences between Classic Agent and Open Agent
agent options 53

differences between the Classic Agent and the Open Agent
object recognition 54

disabling extensions
browser 86

display issues
Unicode content 368

distributed testing
client/server testing configurations 175
configuration tasks 174
configuring test environment 174
Open Agent 174
parallel processing 180
reporting distributed results 190
running tests on one remote target 188
running tests serially on multiple targets 189
specifying a network protocol 174

488 | Index

specifying target machine driven by a thread 189
statement types 185
supported networking protocols for the Open Agent

178
troubleshooting 203
using templates 187

dividing test plans
master plan and sub-plans 107

DLL calling conventions
stdcall 330

dlls
aliasing names 331
calling from within 4Test scripts 331
definition 466
passing arguments to functions 332
using support files 334

DLLs
calling 330

do...except
statements 352

do...except statements to trap and handle exceptions 422
do...except to handle exceptions 173
Document Object Model

advantages 290
useful information 291

Document Object Model extension
description 290

documenting manual tests
test plans 105

documenting user-defined methods
examples 378

DOM
advantages 290
useful information 291

DOM extension
description 290

double-byte character set
definition 465

double-byte characters
displaying 368
displaying in dialog boxes 368
displaying in the Editor 368
issues 363

double-byte files
reusing single-byte 364

downloads 19, 20
DSN

configuring for data-driven test cases 167
Dynamic HTML

manually creating tests for popup menus 306
testing popup menus 288

dynamic instantiation
definition 465
recording without window declarations 147

dynamic invoke
FAQs 356
overview 356
simplify scripts 357
unexpected return value 356

dynamic link library
definition 466

dynamic object recognition

basic XPath concepts 127
locator keyword 136
overview 125
supported attribute types 129
supported XPath subset 127
XPath 126

dynamically invoking methods
Flex 207
SAP 286
Silverlight 249
Windows Forms 238
Windows Presentation Foundation (WPF) 244

DynamicInvoke
Apache Flex custom controls 229
Flex 207
Java AWT 254, 270
Java Swing 254, 270
Java SWT 254, 270
SAP 286
Silverlight 249
Windows Forms 238
Windows Presentation Foundation (WPF) 244

DynamicInvokeMethods
Silverlight 249

E

embedded browser applications
enabling extensions (Classic Agent) 83

enabling
definition 466

enabling extensions
automatically using basic workflow 81
manually on target machines 82

Enabling extensions manually on a Host Machine 81
entering testdata statement

manually 111
error handling

custom 420
default 419

error messages
handling differences 346
troubleshooting 416

error-handling
writing a function 425

errors
handling 419
navigating to 403

errors and the results file 386
Euro symbol

displaying 441
examples

adding a method to TextField class 344
adding Tab method to DialogBox class 344

exception
defining your own 421
definition 466
handling using do...except 173

exception values
Apache Flex 208
errors 426

excluded characters

Index | 489

recording 173
replay 173

executables
GUI-specific 353

existing files with Unicode content
specifying file formats 365

existing tests
adding to projects 67

exporting results to a structured file for further manipulation
404

expressions
about 412
evaluating 412
using 412

extending class hierarchy
overview 334

extension dialog boxes
adding test applications 84

Extension Enabler
deleting applications 86

Extension Enabler dialog box
comparison with Extensions dialog box 86

extensions
automatically configurable 79
disabling 86
enabling automatically using basic workflow 81
enabling for AUTs 79
enabling for HTML applications 83
enabling manually on target machines 82
host machines 80
overview 79
set manually 80
target machines 80
verifying settings 85

Extensions
deleting applications 86

Extensions dialog box
comparison with Extension Enabler dialog box 86

F

FAQs
deciding between 4Test methods and native methods

267
disabling CLASSPATH 267
invoking Java code 267
Java 266
many Java CustomWin objects 266
recording AWT menus 267
testing JavaScript objects 267
using Java plug-in outside JVM 267
xBrowser 306

file
frame 466
include 472

file format issues
Unicode content 370

file formats
about 364
existing files with Unicode content 365
new files with Unicode content 366

file types

Silk Test Classic 68
files

adding to projects 69
moving in a project 71
removing from projects 72

files not displayed
recent files 78, 447

files not found
projects 76, 446

filtering
custom classes 361

Find dialog
example test cases 449

finding values
test cases 169

Firefox
changing browser type for replay 304
configuration settings 302
cross-browser scripts 307
locators 308

firewalls
port numbers 45

fix incorrect values in a script 403
Flash player

opening applications in 204
security settings 205

Flex
adding configuration information 214
Adobe Air support 208
attributes 206
automation support for custom controls 230
automationIndex property 216
automationName property 216
class definition file 233
Component Explorer 221
Component Explorer sample application 221
containers 219
creating applications 215
custom controls 357
customizing scripts 205, 225
defining custom controls 226
enabling your application 210
exception values 208
Flash player settings 204
linking automation packages 211
multiview containers 219
overview 203
passing parameters 214
passing parameters at runtime 214
passing parameters before runtime 214
precompiling the application 212
prerequisites 204, 221
recording Component Explorer sample test case 223
run-time loading 213
security settings 205
select method 209, 218
selecting an item in the FlexDataGrid control 210
styles 206
testing 203
testing custom controls 225
testing custom controls using automation support 230
testing custom controls using dynamic invoke 229

490 | Index

testing multiple applications on the same Web page
208

testing playback 220
testing recording 219, 220
using dynamic invoke 207
verifying scripts 205, 225
workflow 219

folders
adding to projects 70
available controls 70
moving in a project 71
removing from projects 71
renaming in projects 71

fonts
displaying differently 369

forward case-sensitive search
setup example 170

frame file
definition 466

frequently asked questions
deciding between 4Test methods and native methods

267
disabling CLASSPATH 267
dynamic invoke 356
invoking Java code 267
Java 266
recording AWT menus 267
testing JavaScript objects 267
to many Java CustomWin objects 266
using Java plug-in outside JVM 267

Frequently Asked Questions
AutoComplete 372

Fully customize a chart 405
fully qualified object name

definition 466
functional test design

incremental 235
functional testing

overview 237
functionality not supported

Open Agent 416
FunctionTip

using 374

G
general protection faults

troubleshooting 441
generating completion reports

test plans 109
generating pass/fail reports

test plan results file 406
GetMachineData

multi-application testing example 197
GetProperty method

Flex 207
Java 254, 270
Silverlight 249

GetText
code sample 361

getting started
Silk Test Classic 17

global and local variables with the same name 413

global variables
GUI specifiers 351
overview 181
protecting access 182
running from test plan versus running from script 442

global variables with unexpected values 413
globalization

definition 472
glossary

overview 462
Google Chrome

changing browser type for replay 304
configuration settings 302
limitations 305
modifying sample test case to replay 313
prerequisites 305

graphical controls
support 355

group description
definition 466

groups
sharing projects 64

GUI objects
hierarchy 467
recording methods 342

GUI specifiers
4Test code 351
global variables 351
inheritance 351
overview 323, 350
syntax 352
usages 352

GUI-specific captions
support 353

GUI-specific executables
supporting 353

GUI-specific menu hierarchies
support 354

GUI-specific objects
support 353

GWT
locating controls 132

H

handles
definition 467

handling GUI differences
porting tests 345

hidecalls
keyword 341

hierarchy of GUI objects
definition 467

host machine
definition 467

hotkey
definition 467

HTML applications
enabling extensions 83

HTML definitions
tables 293

Hungarian notation

Index | 491

definition 471

I

identifier
definition 472

identifiers
overview 328
stable 131

images
testing in Web applications 294

IME
using 368

IME issues
Unicode content 370

IMEs
differing in appearance 370

improving
window declarations 327

improving object recognition
Accessibility 329

improving recognition
defining new window 327

include file
definition 472

include files
changes not applied 442
conditionally loading 345
handling very large files 202
loading for different test application versions 346
maximum size 202

include scripts
changes not applied 442

incorrect use of break statements 414
incorrect values for loop variables 414
incremental test design

functional 235
indexing

schemes for 4Test and native Java methods 261
infinite loops 414
information service 45
inheritance

GUI specifiers 351
innerHTML

xBrowser 307
innerText

xBrowserf 307
Input Method Editor

setting up 367
Input Method Editor issues

Unicode content 370
Input Method editors

differing in appearance 370
Input Method Editors

using 368
installing language support

Unicode content 367
installing USB drivers

Android 272
insurance company sample Web application

testing 310
insurance company Web application

configuring 311
creating a new project 310
modifying test case to replay in Google Chrome 313
modifying test case to replay in Mozilla Firefox 313
recording test cases for Web site 311
replaying test cases 312

internationalization
configuring environment 367
definition 472
useful sites 364

internationalized content
issues with displaying 363

internationalized objects
support 362

Internet Explorer
configuration settings 302
cross-browser scripts 307
link.select focus issue 308
locators 308
misplaced rectangles 308

Internet Explorer 10
unexpected Click behavior 310

invalid data
testing applications 166

invalidated-handle error
troubleshooting 309

invisible containers
about 362

invoke
SAP 286
Windows Forms 238
Windows Presentation Foundation (WPF) 244

invoke method
callable methods 356

invokeMethods
drawing line in multiline text field 265

InvokeMethods
SAP 286
Windows Forms 238
Windows Presentation Foundation (WPF) 244

invoking
dialog boxes 329
Java applications and applets 264
Java code from 4Test scripts 267

invoking applets
Java 264

invoking applications
JRE 264
JRE using -classpath 264

invoking test cases
multi-application environments 195

iOS
installing Silk Test application 276
installing Silk Test application automatically 277
recommended settings 278
recording test cases 50, 151
setting proxy 278
testing 276
testing on physical devices 276

492 | Index

J

Java
accessing objects and methods 265
applet controls not recognized 262, 430
calling nested native methods 265
disabling CLASSPATH 267
enabling support 258
FAQs 266
invoking applets 264
invoking from 4Test scripts 267
javaex.inc 261
predefined class definition file 261
security privileges 259
testing scroll panes 266

Java applets
invoking 264
supported browsers 255

Java Applets
configuring 259

Java applications
Silk Test Java file missing in plug-in 261, 430
configuring standalone applications 259
prerequisites 257
standard names 85
troubleshooting 261, 430

Java applications and applets
invoking 264
preparing for testing 260
testing 260

Java AWT
agent support 252
dynamically invoking methods 254, 270
DynamicInvoke 254, 270
locator attributes 254
object recognition 252
Open Agent 251
supported controls 253

Java AWT menus
playing back 252
recording 252

Java AWT/Swing
priorLabel 255
testing standard Java objects 251

Java database connectivity
definition 472

Java Development Kit
definition 472

Java extension
enabling 258

Java FAQs
overview 266

Java Foundation Class
playing back menus 252
recording menus 252

Java Foundation Classes
definition 472

Java Network Launching Protocol
configuring test applications 253

Java objects
accessing nested 265

Java plug-in

using outside JVM 267
Java Runtime Environment

definition 472
Java scroll panes

testing 266
Java security policy

changing 259
Java security privileges

changing 259
Java support

enabling 258
manually configuring for Sun JDK 258
Sun JDK 258
supported classes 262

Java Swing
dynamically invoking methods 254, 270
DynamicInvoke 254, 270

Java SWT
locator attributes 269
dynamically invoking methods 254, 270
DynamicInvoke 254, 270

Java SWT and Eclipse
Open Agent 268

Java Virtual Machine
definition 472

Java-equivalent window classes
predefined 262

JavaBeans
definition 473

JavaScript
support 256
testing 267

JDBC
definition 472

JDK
definition 472

JFC
definition 472
playing back menus 252
recording menus 252

JFC classes
predefined 263

JNLP
configuring test applications 253

JRE
definition 472
invoking applications 264
invoking applications using -classpath 264

JVM
definition 472

K

keywords
hidecalls 341
locator 136

L

Language bar
only English listed 370

large test plans

Index | 493

determining where values are defined 107
overview 107

Latin script
definition 473

layout
definition 473

Library Browser
adding information 376
adding user-defined files 377
not displaying user-defined methods 443
not-displayed Web classes 378
overview 375
source file 376
viewing class methods 377
viewing functions 377

licenses
handling limited licenses 203

licensing
available license types 16

linking descriptions to scripts
Testplan Details dialog box 111

linking descriptions to test cases
Testplan Details dialog box 111

linking test plans to test cases
example 113

links
testing 294

load testing
definition 473

loading include files
conditionally 345

local applications
single 178

local sub-plan copies
refreshing 108

localization
definition 473

localization levels
definition 473

localizing applications
definition 473

locally testing multiple applications
sample include file (Classic Agent) 432
sample script file (Classic Agent) 432

locator
definition 473
keyword 136

locator attributes
Apache Flex controls 206
excluded characters 173
Java AWT applications 254
Java SWT 269
Rumba controls 285
SAP 286
Silverlight controls 247
Swing applications 254
Windows API-based controls 315
Windows Forms controls 238
WPF controls 242
xBrowser controls 297

locator generator
configuring for xBrowser 300

locator keyword
overview 136

locator keywords
recording window declarations 152

locator recognition
enhancing 448

Locator Spy
recording locators 153

locators
customizing 130
incorrect in xBrowser 308
object types 126
recording using Locator Spy 153
search scopes 126
setting custom attributes 141
supported subset 129
using attributes 127
xBrowser 308

locks
acquiring 109
overview 109
releasing 109
test plans 109

logging Elapsed Time, Thread, and Machine Information
405

logging errors
programmatically 423

logic errors
evaluating 385

logical controls
different implementations 346

logical hierarchy
definition 474

login windows
handling 96
non-Web applications (Open Agent) 96

looking at statistics
bitmaps 396

lsLeaveOpenLocators
specifying windows to be left open (Open Agent) 97

lwLeaveOpenWindows
specifying windows to be left open (Open Agent) 97

M

machine handle operator
specifying 190

machine handle operators
alternative syntax 191

main function
using in scripts 172

main window
declarations 324

manual test
definition 474
describing the state 105

manual test state
describing 105

mark
definition 474

marked tests
printing 114

494 | Index

marking commands
interactions 114

marking failed testcases 403
masks

applying 398
creating one that excludes all differences 399
creating one that excludes some differences or

selected areas 398
editing 398
prerequisites 398
saving 400

master plan
definition 474

master plans
connecting with sub-plans 108

maximum size
Silk Test Classic files 443

MBCS
definition 475

member-of operator
using to access data 328

MemberList
customizing 371
using 375

menu
declarations 324

menu hierarchies
GUI-specific 354

merging results 403
message box

definition 474
messages sent to the result file

relationship with exceptions defined in 4test.inc 444
method

definition 474
methods

adding to existing classes 341
adding to single GUI objects 341
Agent support 61
defining 341
defining for single GUI objects 341
deriving new from existing 343
recording for GUI objects 342
redefining 343

Microsoft Accessibility
improving object recognition 329

migrating
from the Classic Agent to the Open Agent 53

minus (-) sign
definition 474

missing peripherals
test machines 17

mobile
troubleshooting 279

mobile applications
recording 278
recording test cases 50, 151
testing 271

mobile browsers
limitations 282

mobile devices
interacting with 279

performing actions against 279
mobile recording

about 278
mobile testing

Android 271
Android emulators 272
iOS 276
overview 271
physical Android devices 271
physical iOS devices 276

mobile Web
Click 284

mobile Web applications
configuring 48, 222
limitations 282

modal
definition 475

modeless
definition 475

modified declarations
using 361

modifying identifiers
test frames 289

modules
viewing a list 413

MoveableWin
cannot extend class 439

moving files
between projects 72
on Files tab 71

moving folders
in a project 71

Mozilla Firefox
changing browser type for replay 304
configuration settings 302
modifying sample test case to replay 313

multi-application environments
cs.inc 202

multi-application testing
code for template.t 199
invoking example 199
invoking example explained 200
invoking test cases 195
overview 194
template.t explained 200

multi-test case
statements 195

multibyte character set
definition 475

Multiple Application Domains (.NET)
definition 475

multiple applications
setting up the recovery system 431

multiple Flex applications
testing on same Web page 208

multiple machines
driving 182
troubleshooting 430

multiple tests
recovering 181

multiple verifications
test cases 423

Index | 495

multiple-application environments
test case structure 194

N

Named Query command
differences with Query 123

native Java controls
versus 4Test 261

native Java methods
comparing with 4Test methods 267

native playback
compared to API playback 300

native user input
advantages 300

navigating to errors 403
negative testing

definition 475
nested declarations

definition 475
nested Java objects

accessing 265
network

configuring 179
network testing

types of testing 236
networking

supported protocols for the Open Agent 178
networks

enabling on remote host 179
new files with Unicode content

specifying file formats 366
no-touch (.NET)

definition 475
non-Web applications

handling login windows (Open Agent) 96
not all actions captured

recorder 444
NumChildren

alternative class property 341

O

object
definition 475

object files
advantages 322
locations 322
overview 321

object properties
overview 157
verifying 157
verifying (Open Agent) 157

object recognition
creating stable locators 130
differences between the Classic Agent and the Open

Agent 54
dynamic 125
Exists method 130
FindAll method 130
identifying multiple objects 130
improving by defining new window 327

improving with Accessibility 329
Java AWT 252
objects recognized as custom controls 355
Swing 252
using attributes 127

object types
locators 126

object-oriented programming languages
classes 257

objects
checking for existence 130
internationalized 362
properties 157
verifying properties 157
verifying properties (Open Agent) 157
verifying state 159

objects recognized as custom controls
reasons 355

Open Agent
adding tests to the DefaultBaseState 92
comparison to Classic Agent 56
configuring port numbers 45, 180
configuring ports 45
location 45
migrating to from Classic Agent 53
overview 23
port numbers 46
recording test cases 49, 150
setting recording options 44
setting recording preferences 139
setting replay options 44, 142
setting the recovery system 91
starting from script 46
stopping from script 46

Open Agent parameters
comparison to Classic Agent 60

opening
TrueLog Options dialog box 389

opening projects
existing 67

operators
precedence 413

OPT_AGENT_CLICKS_ONLY
option 23

OPT_ALTERNATE_RECORD_BREAK
option 24

OPT_APPREADY_RETRY
option 24

OPT_APPREADY_TIMEOUT
option 24

OPT_BITMAP_MATCH_COUNT
option 24

OPT_BITMAP_MATCH_INTERVAL
option 25

OPT_BITMAP_MATCH_TIMEOUT
option 25

OPT_BITMAP_PIXEL_TOLERANCE
option 26

OPT_CLASS_MAP
option 26

OPT_CLOSE_CONFIRM_BUTTONS
option 26

496 | Index

OPT_CLOSE_DIALOG_KEYS
option 26

OPT_CLOSE_MENU_NAME
option 26

OPT_CLOSE_WINDOW_BUTTONS
option 26

OPT_CLOSE_WINDOW_MENUS
option 27

OPT_CLOSE_WINDOW_TIMEOUT
option 27

OPT_COMPATIBILITY
option 27

OPT_COMPATIBLE_TAGS
option 27

OPT_COMPRESS_WHITESPACE
option 27

OPT_DROPDOWN_PICK_BEFORE_GET
option 28

OPT_ENABLE_ACCESSIBILITY
option 28

OPT_ENSURE_ACTIVE_WINDOW
option 29

OPT_EXTENSIONS
option 29

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES
option 29

OPT_ITEM_RECORD
option 29

OPT_KEYBOARD_DELAY
option 29

OPT_KEYBOARD_LAYOUT
option 29

OPT_KILL_HANGING_APPS
option 30

OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE 30
OPT_MATCH_ITEM_CASE

option 30
OPT_MENU_INVOKE_POPUP

option 30
OPT_MENU_PICK_BEFORE_GET

option 30
OPT_MOUSE_DELAY

option 31
OPT_MULTIPLE_TAGS

option 31
OPT_NO_ICONIC_MESSAGE_BOXES

option 31
OPT_PAUSE_TRUELOG

option 31
OPT_PLAY_MODE

option 31
OPT_POST_REPLAY_DELAY

option 32
OPT_RADIO_LIST

option 32
OPT_RECORD_LISTVIEW_SELECT_BY_TYPEKEYS

option 32
OPT_RECORD_MOUSE_CLICK_RADIUS

option 32
OPT_RECORD_MOUSEMOVES

option 32
OPT_RECORD_SCROLLBAR_ABSOLUT

option 32
OPT_REL1_CLASS_LIBRARY

option 33
OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT

option 33
OPT_REPLAY_HIGHLIGHT_TIME

option 33
OPT_REPLAY_MODE

option 33
OPT_REQUIRE_ACTIVE

option 33
OPT_SCROLL_INTO_VIEW

option 34
OPT_SET_TARGET_MACHINE

option 34
OPT_SHOW_OUT_OF_VIEW

option 34
OPT_SYNC_TIMEOUT

option 34
OPT_TEXT_NEW_LINE

option 35
OPT_TRANSLATE_TABLE

option 35
OPT_TRIM_ITEM_SPACE

option 35
OPT_USE_ANSICALL

option 35
OPT_USE_SILKBEAN

option 35
OPT_VERIFY_ACTIVE

option 35
OPT_VERIFY_APPREADY

option 35
OPT_VERIFY_CLOSED

option 36
OPT_VERIFY_COORD

option 36
OPT_VERIFY_CTRLTYPE

option 36
OPT_VERIFY_ENABLED

option 36
OPT_VERIFY_EXPOSED

option 36
OPT_VERIFY_RESPONDING

option 37
OPT_VERIFY_UNIQUE

option 37
OPT_WAIT_ACTIVE_WINDOW

option 37
OPT_WAIT_ACTIVE_WINDOW_RETRY

option 38
OPT_WINDOW_MOVE_TOLERANCE

option 38
OPT_WINDOW_RETRY

option 38
OPT_WINDOW_SIZE_TOLERANCE

option 39
OPT_WINDOW_TIMEOUT

option 39
OPT_WPF_CUSTOM_CLASSES

option 39
OPT_WPF_PREFILL_ITEMS

Index | 497

option 40
OPT_XBROWSER_SYNC_EXCLUDE_URLS

option 41
OPT_XBROWSER_SYNC_MODE

option 40
OPT_XBROWSER_SYNC_TIMEOUT

option 41
optimizing replay

setting replay options 142
options

agents 23
recording 139
replaying 139
sets 347

options set
adding to projects 67
editing in projects 68
including in projects 67
using in projects 67

options sets
porting 347
specifying 347

Oracle DSN
data-driving test cases 168

Oracle Forms
about 256
attributes 257
prerequisites 256
supported versions 256

organizing
projects 69

outline
definition 476

overriding
default recovery system 95

P
packaged projects

emailing 75
packaging

projects 73
page synchronization

xBrowser 297
parallel processing

spawn statement 186
statements 185

parallel statements
using 186

parallel test cases
using templates 187

parallel testing
asynchronous 184

parent object
definition 476

pass/fail chart
creating 406

passing arguments
scripts 381
to DLL functions 332

passing data
data-driven test cases 170

peak load testing 237

performance testing
definition 476

physical hierarchy (.NET)
definition 476

plus (+) sign
definition 476

polymorphism
concept 335
definition 476

popup menus
manually creating tests 306

port numbers
Open Agent 46

porting tests
another GUI 345
differences between GUIs 345

ports
Open Agent 45

pre-fill
setting during recording and replaying 142

predefined attributes
test plan editor 118

predefined classes
AWT 262

prerequisites
Flex 204, 221
Google Chrome 305
testing Java applications 257

printing
marked tests 114

priorLabel
Java AWT/Swing technology domain 255
Win32 technology domain 317

privileges required
Silk Test Classic 441

Product Support 19, 20
project

definition 477
Project Explorer

overview 65
sorting resources 72
turning on and off 72
Unicode characters do not display 369

project files
editing 78, 448
not loaded 77, 446

project-related information
storing 63

projects
about 63
accessing files 64
adding an options set 67
adding existing tests 67
adding files 69
adding folders 70
cannot load project file 77, 446
cannot save files 77, 447
creating 47, 66, 222
editing project files 78, 448
editing the options set 68
emailing packaged projects 75
exporting 76

498 | Index

files not found 76, 446
including an options set 67
moving files between 72
moving files in projects 71
moving folders in projects 71
opening existing projects 67
organizing 69
packaging 73
removing files 72
removing folders 71
renaming 70
renaming folders 71
sharing among a group 64
storing information 63
troubleshooting 76, 446
turning Project Explorer on and off 72
viewing associated files 73
viewing resources 73
working with folders 70

properties
definition 477
objects 157
using instead of data members 445
verifying 339

property list
confirming 344

protocols
networking, Open Agent 178

proxy server
setting for Android emulator 273
setting for iOS 278

Q

queries
building 171
combining 124
combining to create new 122
creating 123
deleting 124
editing 124
including symbols 122
test plans 121

query
definition 477

Query command
differences with Named Query 123

R

recent files
files not displayed 78, 447

recognizing controls
as custom controls 354

recognizing objects
xBrowser 296

recorder
adding properties 438
does not capture all actions 444

recording
actions into existing tests 154
available actions 156

available functionality 43
AWT menus 267
locators using Locator Spy 153
methods for GUI objects 342
mobile applications 278
object highlighting 136
Open Agent options 44
remote 181
resolving window declarations 154
setting classes to ignore 141
setting options 139
setting pre-fill 142
setting WPF classes to expose 142, 244
test cases for mobile applications 50, 151
test cases with the Open Agent 49, 150
test frames 321
using locators or tags 154
without window declarations 147

recording a close method
Open Agent 99

recording actions
existing tests 154

recording options
setting for xBrowser 140, 301

recording preferences
setting for Open Agent 139

recording test cases
insurance company Web site 311
mobile applications 50, 151
Open Agent 49, 150

recording test frames
Web applications 288

recording window declarations
locator keywords 152
main window 327
menu hierarchy 327

recovery system
closing windows 94
defaults.inc file 201
definition 477
flow of control 94
modifying 95
Open Agent 90
overriding default 95
setting for the Open Agent 91
specifying new window closing procedures 98
starting the application 95

regression testing
definition 477

releasing locks 109
remote applications

multiple 179
networking 178
single 179

removing the unused space in a results file 405
renaming

projects 70
replacing values

test cases 169
replay

Dialog not recognized 309
Open Agent options 44

Index | 499

replay options
setting 142

replaying
setting classes to ignore 141
setting options 139
setting pre-fill 142
setting WPF classes to expose 142, 244

replaying test cases
insurance company Web application 312

reporting
distributed results 190

reports
presenting results 405

reraise statement
error handling 420

resolving window declarations
using locators or tags 154

result files
changing the color of elements 402
comparing 401
converting to test plans 103
using 401

results
customize a chart 405
customizing 402
deleting a set 402
displaying a different set 407
errors and results file 386
exporting to a structured file 404
fixing incorrect values in a script 403
interpreting 384
logging Elapsed Time, Thread, and Machine

Information 405
marking failed testcases 403
merging 403
merging overview 387
presenting 405
removing unused space in the results file 405
results file overview 384
sending to Issue Manager 405
starting the Bitmap Tool from the results file 397
storing 404
storing and exporting 404
testplan pass-fail report and chart 387
viewing an individual summary 404

results file
definition 477
overview 384

root certificates
adding 281
adding, Android emulators 282
generating 281
generating, Android emulators 282

Rumba
about 284
enabling and disabling support 285
locator attributes 285
Unix display 285

Rumba locator attributes
identifying controls 285

running a test plan 383
running global variables

test plan versus script 442
running test cases

data driven 169
running tests

overview 381
running the currently active script or suite 383
Runtime

about 451
comparing with Silk Test Classic 451
installing 451
starting 451

S

sample applications
Web applications 288

SAP
invoking methods 286
locator attributes 286
overview 286
testing 286

saving captured bitmaps
Bitmap Tool 394

saving changes
sub-plans 109

saving existing files
Save as dialog box opens 370

script
definition 477

script deadlocks
4Test handling 237

script file
definition 478

script files
saving 155

ScriptEnter method
overriding default recovery system 95

ScriptExit method
overriding default recovery system 95

scripting
common problems 439

scripts
adding verifications while recording 157
deadlock handling 237
passing arguments to 381
saving 155
using main function 172

search scopes
locators 126

search setup example
forward case-sensitive search 170

security privileges
Java 259

selecting test cases
to data drive 169

sending results directly to Issue Manager 405
serial number 19, 20
Set attributes

adding members 119
removing members 119

SetProperty method
Flex 207

500 | Index

Java 254, 270
Silverlight 249

SetText
code sample 361

setting agent options
Web testing 88

setting classes to ignore
transparent classes 141

setting default Agent
Runtime Options dialog box 42
toolbar 42

setting options
recording and replaying 139
TrueLog 389
TrueLog Explorer 389

setting recording options
xBrowser 140, 301

setting the recovery system
Open Agent 91

setting up IME
Unicode content 367

setting up the recovery system
multiple local applications 431

setup steps
using the Classic Agent to test Web applications 288

shared data
specifying 110

sharing initialization files
test plans 108

show areas of difference between a baseline and a result
bitmap

graphically 400
side-by-side (.NET)

definition 478
Silk Test Classic

about 17
not starting 77, 447

Silk Test Classic files
maximum size 443

Silverlight
invoking methods 249
locator attributes 247
object recognition 247
scrolling 250
testing 247
troubleshooting 250

Silverlight locator attributes
identifying controls 247

Simplified Chinese
definition 478

single applications
local 178
remote 179

single GUI objects
defining methods 341

single-application environments
test case structure 195

single-application tests
recovery-system file 201

single-byte character set (SBCS) 478
single-byte files

reusing as double-byte 364

smoke test 478
sorting resources

Project Explorer 72
spawn

multi-application testing example 197
spawn statement

using 186
specifiers

GUI 323
specifying

target machine for a single command 190
specifying browser

testing Web applications 88
specifying new window closing procedures

recovery system 98
specifying windows to be left open

Open Agent 97
stable identifiers

about 131
stable locators

creating 131
standard applications

configuring 48, 316
Standard Widget Toolkit (SWT) 478
starting

command line 319
starting Bitmap Tool

from icon 397
from the results file 397

starting from the command line
Silk Test Classic 319

starting Open Agent
scripts 46

starting the Bitmap Tool
Run dialog box 397

statement
definition 478

statements
do...except 352
parallel 186
type 353

status line 479
stdcall

DLL calling conventions 330
step into 409
step over 409
stopping a running testcase before it completes 384
stopping Open Agent

scripts 46
storing and exporting results 404
storing results 404
str function

does not round correctly 446
stress testing 479
sub-plans

connecting with master plans 108
copying 108
opening 108
refreshing local copies 108
saving changes 109

subplan
definition 479

Index | 501

suite
creating 381
definition 479

Sun JDK
Java support 258
manually configuring Java support 258

supported browsers
testing Java applets 255

supported controls
Java AWT 253
Swing 253
Web applications 288

supported Java classes
overview 262

SupportLine 19, 20
suppressing controls

Classic Agent 315
Open Agent 241, 268, 316

Swing
agent support 252
definition 479
locator attributes 254
object recognition 252
Open Agent 251
supported controls 253

symbols
assigning values 117
definition 479
including in queries 122
overview 115
specifying as arguments for testcase statements 117
using 115

symbolvalue
assigning to symbol 117

synchronization options
xBrowser 299

synchronizing threads with semaphores 183
system dialog boxes

cannot display multiple languages 369

T

tables
building queries 171
HTML definitions 293
testing in Web applications 292
verifying in client/server applications 234

tag
definition 479

target machine
definition 480

target machines
manually enabling extensions 82

template
definition 480

templates
test plans 101

test application settings
copying 85

test applications
adding to extension dialog boxes 84
deleting from Extension Enabler dialog box 86

deleting from Extensions dialog box 86
duplicating settings 85
loading different include files for different application

versions 346
test automation

obstacles 17
test case

definition 480
test case example

word processor feature 148
test case structure

multiple-application environments 194
single-application environments 195

test cases
about 143
anatomy of basic test case 144
constructing 145
creating (Open Agent) 149
data 146
data-driven 162
designing 144
designing and recording, Open Agent 125
example word processor feature 148
finding and replacing values 169
overview 143
running 51, 224, 382
running data driven 169
running in animation mode 384
saving 146
types 144
with multiple verifications 423

test description
definition 480

test frame file 480
test frames

modifying identifiers 289
overview 289
recording 321
saving 329
Web applications 289

test machines
missing peripherals 17

test plan 481
test plan editor

adding comments 110
predefined attributes 118
symbol definition statements 116

test plan outlines
change levels 104
indent levels 104

test plan queries
overview 121

test plan results
adding comments 104
generating pass/fail reports 406

test plan templates
inserting 105

test plans
acquiring and releasing locks 109
adding comments to results 104
adding data 110
adding data-driven test cases 171

502 | Index

assigning attributes and values 120
attributes and values 118
categorizing 113
changing colors 106
connecting sub-plans with master plans 108
converting results files to test plans 103
copying sub-plans 108
creating 103
creating sub-plans 108
dividing into master plan and sub-plans 107
documenting manual tests 105
editor statements 110
example outline 101
generating completion reports 109
indent and change levels in outlines 104
inserting templates 105
large test plans 107
linking 111
linking manually to a test plan 112
linking scripts to using the Testplan Detail dialog box

112
linking test cases to using the Testplan Detail dialog

box 112
linking to data-driven test cases 112
linking to scripts 106, 112
linking to test cases 106, 112
linking to test cases example 113
locks 109
marking 114
marking tests 114
marking-command interactions 114
opening sub-plans 108
overview 100
predefined attributes 118
printing marked tests 114
queries 121
refreshing local sub-plan copies 108
sharing initialization files 108
stopping 445
structure 100
templates 101
user defined attributes 118
working with 103

test results
interpreting 384
reporting 190
viewing 52, 385

test scripts
debugging 408

test-cases
working with data-driven 163

testcase statements
specifying symbols as arguments 117

TestCaseEnter method
overriding default recovery system 95

TestCaseExit method
overriding default recovery system 95

testcases
designing 144
overview 143
types 144

testdata statement

entering manually 111
entering with Testplan Details dialog box 111

testing
application states 155
concurrency 236
configuration 236
databases 193
driving multiple machines 182
functional 237
peak load 237
strategies 235
volume 237

testing .NET applications
Open Agent 238

testing applications
invalid data 166
Open Agent 174

testing asynchronous in parallel 184
testing controls

Web applications 293
testing custom controls

Flex 225
testing images

Web applications 294
testing Java

configuring Silk Test Classic 257
prerequisites 257

testing links
Web applications 294

testing methodology
Web applications 290

testing multiple applications
overview 194
window declarations 195

testing multiple machines
overview 188
running tests serially on multiple targets 189

testing on multiple machines
Open Agent 174

testing popup menus
DHTML 288
Dynamic HTML 288

testing serially
client and server 192

testing text
Web applications 295

testing Web applications
Classic Agent setup steps 288
different browsers 290
methodology 290
specifying browser 88
testing text 295
Web page objects 290
xBrowser 296

Testplan Detail dialog box
defining symbols 117
linking scripts to test plans 112
linking test cases to test plans 112

Testplan Details dialog box
entering testdata statement 111
linking descriptions to scripts and test cases 111

testplan editor

Index | 503

operator 110
Testplan Editor

predefined attributes 118
statements 110

testplan pass-fail report and chart 387
testplan queries

overview 121
TestPlanEnter method

overriding default recovery system 95
TestPlanExit method

overriding default recovery system 95
tests

marking 114
porting to another GUI 345
recording actions 154
running 381
running and interpreting results 381

text boxes
Return key 349

text click recording
overview 379

text fields
return key 349

text recognition
overview 379

textContents
xBrowser 307

threads
concurrent programming 182
specifying target machines 189
synchronizing with semaphores 183

timestamps 308
tips and tricks

data-driven test cases 164
TotalMemory parameter 481
Traditional Chinese 481
transcript

enabling 412
trapping the exception number 421
troubleshooting

4Test Editor does not display enough characters 444
Apache Flex 415
basic workflow issues 415
configuration test failures 238
custom error handling 420
error messages 416
exception handling 419
general tips 449
invalidated-handle error 309
Java applications 261, 430
mobile 279
Open Agent 415
other problems 438
projects 76, 446
recognition 448
Silverlight 250
testing on multiple machines 430
Web applications 450
window not found 419
writing an error-handling function 425

troubleshooting Unicode content
characters not displayed properly 370

compile errors 370
dialog boxes cannot display multiple languages 369
fonts look different 369
IME looks different 370
only English when clicking Language bar icon 370
only pipes are recorded 369
only pipes can be entered in files 369
pipes and squares 369
pipes and squares are displayed in Win32 AUT 369
pipes and squares in the Project tab 369
Save as dialog box when saving existing files 370
Unicode characters do not display 369

troubleshooting XPath 135
TrueLog

limitations 388
prerequisites 388
replacement characters for non-ASCII 388
setting options 389
wrong non-ASCII characters 388

TrueLog Explorer
about 388
modifying your script to resolve Window Not Found

Exception 391
overview 388
setting options 389
toggling at runtime using a script 390
viewing results 390

TrueLog Options dialog box
modifying your script to resolve exceptions 391
opening 389

type
statements 353

typographical errors 414

U

unable to connect to agent 417
unexpected Click behavior

Internet Explorer 310
unicode content

configuring Microsoft Windows XP PC 367
using DB Tester 363

Unicode content
installing language support 367
setting up IME 367
support 362
troubleshooting 368
troubleshooting display issues 368
troubleshooting file format issues 370
troubleshooting IME issues 370

uninitialized variables 414
unique data

specifying 110
Unix display

Rumba 285
user defined attributes

test plans 118
user interface

overview 19
user-defined methods

documentation examples 378
using basic workflow

504 | Index

enabling extensions 81
using file functions

adding information to the beginning of a file 445

V

values
assigning to test plans 120
finding and replacing 169
test plans 118

variable
definition 481

variables
changing values 412
using 411
viewing 411

verification logic
adding to scripts while recording 157

verification properties
defining 340

verification statement 481
verifications

adding to scripts 157
defining properties 340
fuzzy 160
overview 157

verifying
Apache Flex scripts 205, 225
control no longer displayed 161
object properties 157
window no longer displayed 161

verifying appearance
bitmaps 158

verifying bitmaps
overview 158

verifying state
objects 159

view trace listing
enabling 412

viewing
test results 52, 385

viewing an individual summary 404
viewing class methods

Library Browser 377
viewing files

associated with projects 73
viewing resources

included within projects 73
viewing results

TrueLog Explorer 390
viewing statistics

comparing baseline and result bitmaps 396
virus detectors

conflicts 440
Visual 4Test

definition 481
Visual Basic applications

standard names 85

W

wDynamicMainWindow object

DefaultBaseState 93
web applications

images 294
Web applications

characters not displayed properly 370
columns 292
configuring 48, 222
controls 293
custom attributes 134
empty page 450
error with IE and Accessibility 450
links 294
no HTML elements 450
Open Agent 288
recording test frames 288
sample applications 288
setup steps for testing with the Classic Agent 288
supported controls 288
tables 292
test frames 289
testing by using xBrowser 296
testing text 295
troubleshooting 450
xBrowser technology domain 295
xBrowser test objects 296

Web classes
not displayed in Library Browser 378

Web pages
testing objects 290

Web testing
setting agent options 88

WebSync 19, 20
Win32

pipes and squares are displayed in AUT 369
priorLabel 317

window declarations
improving 327
overview 326
recording for main window 327
recording only pipes 369
recording without 147
testing multiple applications 195

window is not active 417
window is not enabled 418
window is not exposed 418
window not found

troubleshooting 419
window not found exceptions

preventing 44
setting in agent options 45
setting manually 44

window part 482
window timeout

setting 44
setting in agent options 45
setting manually 44

windows
declarations 326
verifying that no longer displayed 161

Windows API-based applications
attributes 315
overview 315

Index | 505

testing 314
Windows Forms

attributes 238
invoking methods 238
locator attributes 238
overview 238

Windows Forms applications
custom attributes 135

Windows Presentation Foundation
controls 242
locator attributes 242
overview 241

Windows Presentation Foundation (WPF)
invoking methods 244

Windows XP
unicode content 367

WinForms applications
custom attributes 135

workflow
data-driven 162

workflow bars
disabling 166
enabling 166

works order number 19, 20
WPF

class reference 247
classes that derive from WPFItemsControl 243
controls 242
custom controls 243
invoking methods 244
locator attributes 242
overview 241
sample application 241
setting classes to expose during recording and

replaying 142, 244
WPF applications

custom attributes 135
WPF locator attributes

identifying controls 242
WStartup

handling login windows (Open Agent) 96

X
xBrowser

API and native playback 300
browser configuration settings 302

browser type distinctions 308
changing browser type for replay 304
class and style not in locators 309
classes 314
configuring locator generator 300
cross-browser scripts 307
Default BaseState 297
Dialog not recognized 309
DomClick not working like Click 309
exposing functionality 309
FAQs 306
FieldInputField.DomClick not opening dialog 309
font type verification 306
innerHTML 307
innerText 307
innerText not being used in locators 307
Internet Explorer misplaces rectangles 308
link.select focus issue 308
locator attributes 297
mouse move recording 309
navigating to new pages 308
object recognition 296
page synchronization 297
playback options 300
recording an incorrect locator 308
recording locators 308
setting recording options 140, 301
setting synchronization options 299
test objects 296
testing 295
textContents 307
timestamps 308

xPath
supported subset 127

XPath
basic concepts 126
definition 482
sample queries 128
troubleshooting 135

Z

Zoom window
capturing in scan mode 393

zooming windows
Bitmap Tool 396

506 | Index

	Contents
	Licensing Information
	Getting Started
	Automation Under Special Conditions (Missing Peripherals)
	Silk Test Product Suite
	Silk Test Classic UI
	Contacting Micro Focus
	Information Needed by Micro Focus SupportLine

	What's New in Silk Test Classic
	Mobile Browser Support
	Easy Record and Replay
	Microsoft Windows 8.1 Support
	Internet Explorer Support
	Mozilla Firefox Support
	Google Chrome Support
	Rumba Support
	Apache Flex Support
	Agent-Specific Documents

	Open Agent
	How Silk Test Classic Assigns an Agent to a Window Declaration
	Agent Options
	Setting the Default Agent
	Setting the Default Agent Using the Runtime Options Dialog Box
	Setting the Default Agent Using the Toolbar Icons

	Connecting to the Default Agent
	Creating a Script that Uses Both Agents
	Overview of Record Functionality Available for the Silk Test Agents
	Setting Record and Replay Options for the Open Agent
	Setting the Window Timeout Value to Prevent Window Not Found Exceptions
	Manually Setting the Window Timeout Value
	Setting the Window Timeout Value in the Agent Options Dialog Box

	Configuring Open Agent Port Numbers
	Configuring the Port that Clients Use to Connect to the Information Service
	Open Agent Port Numbers
	Stopping the Open Agent After Test Execution

	Basic Workflow for the Open Agent
	Creating a New Project
	Configuring Applications
	Configuring Web Applications
	Configuring Standard Applications
	Recording Test Cases for Standard and Web Applications
	Recording Test Cases for Mobile Web Applications
	Running a Test Case
	Viewing Test Results

	Migrating from the Classic Agent to the Open Agent
	Differences for Agent Options Between the Classic Agent and the Open Agent
	Differences in Object Recognition Between the Classic Agent and the Open Agent
	Differences in the Classes Supported by the Open Agent and the Classic Agent
	Differences in the Parameters Supported by the Open Agent and the Classic Agent
	Overview of the Methods Supported by the Silk Test Classic Agents
	SYS Functions Supported by the Open Agent and the Classic Agent

	Silk Test Classic Projects
	Storing Project Information
	Accessing Files Within Your Project
	Sharing a Project Among a Group
	Project Explorer
	Creating a New Project
	Opening an Existing Project
	Converting Existing Tests to a Project
	Using Option Sets in Your Project
	Editing an Options Set

	Silk Test Classic File Types
	Organizing Projects
	Adding Existing Files to a Project
	Renaming Your Project
	Working with Folders in a Project
	Adding a Folder to the Files Tab of the Project Explorer
	Moving Files and Folders
	Removing a Folder from the Files tab of the Project Explorer
	Renaming a Folder on the Files Tab of the Project Explorer
	Sorting Resources within the Global Tab of the Project Explorer

	Moving Files Between Projects
	Removing Files from a Project
	Turning the Project Explorer View On and Off
	Viewing Resources Within a Project

	Packaging a Silk Test Classic Project
	Emailing a Packaged Project

	Exporting a Project
	Troubleshooting Projects
	Files Not Found When Opening Project
	Silk Test Classic Cannot Load My Project File
	Silk Test Classic Cannot Save Files to My Project
	Silk Test Classic Does Not Run
	My Files No Longer Display In the Recent Files List
	Cannot Find Items In Classic 4Test
	Editing the Project Files

	Enabling Extensions for Applications Under Test
	Extensions that Silk Test Classic can Automatically Configure
	Extensions that Must be Set Manually
	Extensions on Host and Target Machines
	Enabling Extensions Automatically Using the Basic Workflow
	Enabling Extensions on a Host Machine Manually
	Manually Enabling Extensions on a Target Machine
	Enabling Extensions for Embedded Browser Applications that Use the Classic Agent
	Enabling Extensions for HTML Applications (HTAs)
	Adding a Test Application to the Extension Dialog Boxes
	Verifying Extension Settings
	Why Applications do not have Standard Names
	Duplicating the Settings of a Test Application in Another Test Application
	Deleting an Application from the Extension Enabler or Extensions Dialog Box
	Disabling Browser Extensions
	Comparison of the Extensions Dialog Box and the Extension Enabler Dialog Box
	Configuring the Browser
	Setting Agent Options for Web Testing
	Specifying a Browser for Silk Test Classic to Use in Testing a Web Application
	Specifying your Default Browser

	Understanding the Recovery System for the Open Agent
	Setting the Recovery System for the Open Agent
	Base State
	DefaultBaseState Function
	Adding Tests that Use the Open Agent to the DefaultBaseState
	DefaultBaseState and the wDynamicMainWindow Object
	Flow of Control
	The Non-Web Recovery Systems Flow of Control
	How the Non-Web Recovery System Closes Windows
	How the Non-Web Recovery System Starts the Application

	Modifying the Default Recovery System
	Overriding the Default Recovery System
	Handling Login Windows
	Handling Login Windows in Non-Web Applications that Use the Open Agent

	Specifying Windows to be Left Open for Tests that Use the Open Agent
	Specifying New Window Closing Procedures
	Specifying Buttons, Keys, and Menus that Close Windows
	Recording a Close Method for Tests that Use the Open Agent

	Test Plans
	Structure of a Test Plan
	Overview of Test Plan Templates
	Example Outline for Word Search Feature
	Converting a Results File to a Test Plan
	Working with Test Plans
	Creating a New Test Plan
	Indent and Change Levels in an Outline
	Adding Comments to Test Plan Results
	Documenting Manual Tests in the Test Plan
	Describing the State of a Manual Test
	Inserting a Template
	Changing Colors in a Test Plan
	Linking the Test Plan to Scripts and Test Cases

	Working with Large Test Plans
	Determining Where Values are Defined in a Large Test Plan
	Dividing a Test Plan into a Master Plan and Sub-Plans
	Creating a Sub-Plan
	Copying a Sub-Plan
	Opening a Sub-Plan
	Connecting a Sub-Plan with a Master Plan
	Refreshing a Local Copy of a Sub-Plan
	Sharing a Test Plan Initialization File
	Saving Changes
	Overview of Locks
	Acquiring and Releasing a Lock
	Generating a Test Plan Completion Report

	Adding Data to a Test Plan
	Specifying Unique and Shared Data
	Adding Comments in the Test Plan Editor
	Testplan Editor Statements
	The # Operator in the Testplan Editor
	Using the Testplan Detail Dialog Box to Enter the testdata Statement
	Entering the testdata Statement Manually

	Linking Test Plans
	Linking a Description to a Script or Test Case using the Testplan Detail Dialog Box
	Linking a Test Plan to a Data-Driven Test Case
	Linking to a Test Plan Manually
	Linking a Test Case or Script to a Test Plan using the Testplan Detail Dialog Box
	Linking the Test Plan to Scripts and Test Cases
	Example of Linking a Test Plan to a Test Case

	Categorizing and Marking Test Plans
	Marking a Test Plan
	How the Marking Commands Interact
	Marking One or More Tests
	Printing Marked Tests

	Using Symbols
	Overview of Symbols
	Symbol Definition Statements in the Test Plan Editor
	Defining Symbols in the Testplan Detail Dialog box
	Assigning a Value to a Symbol
	Specifying Symbols as Arguments when Entering a testcase Statement

	Attributes and Values
	Overview of Attributes and Values
	Predefined Attributes
	User Defined Attributes
	Adding or Removing Members of a Set Attribute
	Rules for Using + and -
	Defining an Attribute and its Values
	Assigning Attributes and Values to a Test Plan
	Assigning an Attribute from the Testplan Detail Dialog Box
	Modifying the Definition of an Attribute

	Queries
	Overview of Test Plan Queries
	Overview of Combining Queries to Create a New Query
	Guidelines for Including Symbols in a Query
	The Differences between Query and Named Query Commands
	Create a New Query
	Edit a Query
	Delete a Query
	Combining Queries

	Designing and Recording Test Cases with the Open Agent
	Dynamic Object Recognition
	XPath Basic Concepts
	Object Type and Search Scope
	Using Attributes to Identify an Object

	Supported XPath Subset
	XPath Samples
	Supported Locator Attributes
	Using Locators
	Using Locators to Check if an Object Exists
	Identifying Multiple Objects with One Locator
	Locator Customization
	Stable Identifiers
	Creating Stable Locators
	Example: Locating the Expand Icon in a Dynamic GWT Tree

	Custom Attributes
	Custom Attributes for Apache Flex Applications
	Java SWT Custom Attributes
	Custom Attributes for Web Applications
	Custom Attributes for Windows Forms Applications
	Custom Attributes for WPF Applications

	Troubleshooting Performance Issues for XPath

	Highlighting Objects During Recording
	Overview of the Locator Keyword
	Setting Recording and Replay Options
	Setting Recording Preferences for the Open Agent
	Setting Recording Options for xBrowser
	Defining which Custom Locator Attributes to Use for Recognition
	Setting Classes to Ignore
	Setting WPF Classes to Expose During Recording and Playback
	Setting Pre-Fill During Recording and Replaying
	Setting Replay Options for the Open Agent

	Test Cases
	Overview of Test Cases
	Anatomy of a Basic Test Case
	Types of Test Cases
	Test Case Design
	Constructing a Test Case
	Data in Test Cases
	Saving Test Cases
	Recording Without Window Declarations
	Overview of Application States
	Behavior of an Application State Based on NONE
	Example: A Feature of a Word Processor

	Creating Test Cases with the Open Agent
	Application Configuration
	Recording Test Cases for Standard and Web Applications
	Recording Test Cases for Mobile Web Applications
	Recording Window Declarations that Include Locator Keywords
	Recording Locators Using the Locator Spy
	Recording Additional Actions Into an Existing Test
	Specifying Whether to Use Locators or Tags to Resolve Window Declarations
	Saving a Script File
	Testing an Application State
	Configuring Applications
	Modifying an Application Configuration
	Reasons for Failure of Creating an Application Configuration
	Actions Available During Recording

	Verification
	Verifying Object Properties
	Verifying Object Properties (Open Agent)
	Adding a Verification to a Script while Recording

	Overview of Verifying Bitmaps
	Verifying Appearance Using a Bitmap

	Overview of Verifying an Objects State
	Fuzzy Verification
	Verifying that a Window or Control is No Longer Displayed

	Data-Driven Test Cases
	Data-Driven Workflow
	Working with Data-Driven Test Cases
	Code Automatically Generated by Silk Test Classic
	Tips And Tricks for Data-Driven Test Cases
	Testing an Application with Invalid Data
	Enabling and Disabling Workflow Bars
	Data Source for Data-Driven Test Cases
	Configuring Your DSN
	Setting Up a Data Source
	Using an Oracle DSN to Data Drive a Test Case

	Creating the Data-Driven Test Case
	Selecting a Test Case to Data Drive
	Finding and Replacing Values
	Running a Data-Driven Test Case
	Running a Test Case Using a Sample Record for Each Table Used by the Data-Driven Test Case
	Passing Data to a Test Case
	Example Setup for Forward Case-Sensitive Search
	Building Queries
	Adding a Data-Driven Test Case to a Test Plan
	Using a main Function in the Script
	Using do...except to Handle an Exception

	Characters Excluded from Recording and Replaying

	Testing in Your Environment with the Open Agent
	Distributed Testing with the Open Agent
	Configuring Your Test Environment
	Client/Server Testing Configurations
	Networking Protocols Used by the Open Agent
	Single Local Applications
	Remote Applications
	Single Remote Applications
	Multiple Remote Applications

	Configuring a Network of Computers
	Enabling Networking on a Remote Host
	Configuring Open Agent Port Numbers

	Running Test Cases in Parallel
	Concurrency
	Global Variables
	Recovering Multiple Tests
	Remote Recording
	Threads and Concurrent Programming
	Driving Multiple Machines
	Protecting Access to Global Variables
	Synchronizing Threads with Semaphores
	Testing In Parallel but Not Synchronously
	Statement Types
	Parallel Processing Statements
	Using Parallel Statements
	Using a Spawn Statement

	Using Templates
	Using the Parallel Template
	Client/Server Template

	Testing Multiple Machines
	Running Tests on One Remote Target
	Running Tests Serially on Multiple Targets
	Specifying the Target Machine Driven By a Thread
	Specifying the Target Machine For a Single Command
	Reporting Distributed Results
	Alternative Machine Handle Operator
	Testing Clients Concurrently
	Testing Clients Plus Server Serially
	Testing Databases

	Testing Multiple Applications
	Overview of Multi-Application Testing
	Test Case Structure in a Multi-Application Environment
	Invoking a Test Case in a Multi-Application Environment
	Test Case Structure in a Single-Application Environment
	Window Declarations for Multi-Application Testing
	Concurrency Test Example Code
	Concurrency Test Explained
	Code for template.t
	template.t Explained
	defaults.inc
	cs.inc
	Include File Size

	Troubleshooting Distributed Testing
	Handling Limited Licenses

	Testing Apache Flex Applications
	Overview of Apache Flex Support
	Configuring Security Settings for Your Local Flash Player
	Configuring Flex Applications to Run in Adobe Flash Player
	Configuring Flex Applications for Adobe Flash Player Security Restrictions
	Customizing Apache Flex Scripts
	Styles in Apache Flex Applications
	Locator Attributes for Apache Flex Controls
	Dynamically Invoking Apache Flex Methods
	Testing Multiple Flex Applications on the Same Web Page
	Adobe AIR Support
	Apache Flex Exception Values
	Overview of the Flex Select Method Using Name or Index
	Selecting an Item in the FlexDataGrid Control
	Enabling Your Flex Application for Testing
	Linking Automation Packages to Your Flex Application
	Precompiling the Flex Application for Testing
	Run-Time Loading
	Run-Time Loading

	Using the Command Line to Add Configuration Information
	Passing Parameters into a Flex Application
	Passing Parameters into a Flex Application Before Runtime
	Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

	Creating Testable Flex Applications
	Flex AutomationName and AutomationIndex Properties
	Setting the Flex automationName Property
	Setting the Flex Select Method to Use Name or Index

	Coding Flex Containers
	Adding and Removing Containers from the Automation Hierarchy
	Multiview Containers

	Flex Automation Testing Workflow
	Flex Automated Testing Initialization
	Flex Automated Testing Recording
	Flex Automated Testing Playback

	Testing the Silk Test Component Explorer Flex Sample Application
	Configuring Security Settings for Your Local Flash Player
	Launching the Component Explorer
	Creating a New Project
	Configuring Web Applications
	Recording a Sample Test Case for the Component Explorer
	Running a Test Case
	Customizing Apache Flex Scripts

	Testing Flex Custom Controls
	Defining a Custom Control in the Test Application
	Testing a Custom Control Using Dynamic Invoke
	Testing a Custom Control Using Automation Support
	Implementing Automation Support for a Custom Control
	Flex Class Definition File

	Client/Server Application Support
	Client/Server Testing Challenges
	Verifying Tables in ClientServer Applications
	Evolving a Testing Strategy
	Incremental Functional Test Design
	Network Testing Types
	Concurrency Testing
	Configuration Testing
	Functional Testing
	Peak Load Testing
	Volume Testing

	How 4Test Handles Script Deadlock
	Troubleshooting Configuration Test Failures

	Testing .NET Applications with the Open Agent
	Windows Forms Applications
	Locator Attributes for Windows Forms Applications
	Dynamically Invoking Windows Forms Methods
	Suppressing Controls (Open Agent)

	WPF Applications
	Supported Controls for WPF
	Locator Attributes for Windows Presentation Foundation (WPF) Controls
	Classes that Derive from the WPFItemsControl Class
	Custom WPF Controls
	Setting WPF Classes to Expose During Recording and Playback
	Dynamically Invoking WPF Methods
	WPF Class Reference

	Microsoft Silverlight Applications
	Locator Attributes for Silverlight Controls
	Dynamically Invoking Silverlight Methods
	Scrolling in Silverlight
	Troubleshooting when Testing Silverlight Applications
	Silverlight Class Reference

	Testing Java AWT/Swing Applications with the Open Agent
	Testing Standard Java Objects and Custom Controls
	Recording and Playing Back JFC Menus
	Recording and Playing Back Java AWT Menus
	Object Recognition for Java AWT/Swing Applications
	Agent Support for Java AWT/Swing Applications
	Supported Controls for Java AWT/Swing Applications
	Java AWT and Swing Class Reference

	Configuring a Test Application that Uses the Java Network Launching Protocol (JNLP)
	Custom Attributes
	Locator Attributes for Java AWT/Swing Controls
	Dynamically Invoking Java Methods
	Determining the priorLabel in the Java AWT/Swing Technology Domain
	Supported Browsers for Testing Java Applets
	Overview of JavaScript Support
	Oracle Forms Support
	Prerequisites for Testing Oracle Forms
	Attributes for Oracle Forms Applications

	Classes in Object-Oriented Programming Languages
	Configuring Silk Test Classic to Test Java
	Prerequisites for Testing Java Applications
	Enabling Java Support
	Configuring Silk Test Classic Java Support for the Sun JDK
	Manually Configuring Silk Test Classic Java Support
	Configuring Standalone Java Applications and Java Applets

	Java Security Privileges Required by Silk Test Classic

	Testing Java Applications and Applets
	Preparing for Testing Stand-Alone Java Applications and Applets
	Indexed Values in Test Scripts
	When to Use 4Test Versus Native Java Controls
	Predefined Class Definition File for Java
	Troubleshooting Java Applications
	What Can I Do If the Silk Test Java File Is Not Included in a Plug-In?
	What Can I Do If Java Controls In an Applet Are Not Recognized?

	Supported Java Classes
	Predefined Java-Equivalent Window Classes
	Predefined AWT Classes
	Predefined JFC Classes

	Invoking Java Applications and Applets
	Invoking Java Applets
	Invoking JRE Applications
	Invoking JRE Applications Using -classpath
	invokeMethods Example: Draw a Line in a Text Field

	Accessing Java Objects and Methods
	Accessing Nested Java Objects
	Calling Nested Methods
	Testing Java Scroll Panes

	Frequently Asked Questions About Testing Java Applications
	Why Do I See so Many Java CustomWin Objects?
	Why Do I Need to Disable the Classpath if I have Java Installed but Am not Testing It?
	How Do I Decide Whether to Use 4Test Methods or Native Methods?
	How Can I Record AWT Menus?
	Can I Use the Java Plug-In to Test Applets Outside My Browsers Native JVM?
	Can I Test JavaScript Objects?
	Can I Invoke Java Code from 4Test Scripts?

	Testing Java SWT and Eclipse Applications with the Open Agent
	Suppressing Controls (Open Agent)
	Custom Attributes
	Locator Attributes for Java SWT Controls
	Dynamically Invoking Java Methods
	Java SWT Classes for the Open Agent

	Testing Mobile Web Applications
	Testing Mobile Web Applications on Android
	Testing Mobile Web Applications on a Physical Android device
	Testing Mobile Web Applications on an Android Emulator
	Installing a USB Driver
	Enabling USB-Debugging
	Manually Setting the Open Agent as a Proxy for an Android Emulator
	Recommended Settings for Android Devices
	Configuring the Android Emulator for Silk Test Classic

	Testing Mobile Web Applications on iOS
	Testing Mobile Web Applications on a Physical iOS Device
	Installing the Silk Test Application on an iOS Device
	Automatically Installing the Silk Test Application on an iOS Device
	Setting the Proxy for an iOS Device
	Recommended Settings for iOS Devices

	Recording Mobile Applications
	Interacting with a Mobile Device
	Troubleshooting when Testing Mobile Web Applications
	Manually Adding a Root Certificate to Test a Secure Web Application
	Installing the Root Certificate to Test a Secure Web Application

	Limitations for Testing Mobile Web Applications
	Clicking on Objects in a Mobile Website

	Testing Rumba Applications
	Enabling and Disabling Rumba
	Locator Attributes for Identifying Rumba Controls
	Testing a Unix Display
	Rumba Class Reference

	Testing SAP Applications
	Locator Attributes for SAP Controls
	Dynamically Invoking SAP Methods
	Configuring Automation Security Settings for SAP
	SAP Class Reference

	Testing Web Applications with the Open Agent
	Supported Controls for Web Applications
	Sample Web Applications
	Testing Dynamic HTML (DHTML) Popup Menus
	Web Application Setup Steps
	Recording the Test Frame for a Web Application
	Test Frames
	Overview of Test Frames
	Modifying the Identifiers

	Testing Methodology for Web Applications
	Testing Web Applications on Different Browsers

	Testing Objects in a Web Page
	Document Object Model Extension
	Advantages of DOM
	Useful Information About DOM
	Testing Columns and Tables
	Definition of a Table
	Testing Controls
	Testing Images
	Testing Links
	Testing Text in Web Applications

	Using the xBrowser Technology Domain
	Testing a Web Application Using the xBrowser TechDomain
	Test Objects for xBrowser
	Object Recognition for xBrowser Objects
	xBrowser Default BaseState
	Locator Attributes for xBrowser controls
	Page Synchronization for xBrowser
	Setting xBrowser Synchronization Options

	Configuring the Locator Generator for xBrowser
	Comparing API Playback and Native Playback for xBrowser
	Setting Recording Options for xBrowser
	Browser Configuration Settings for xBrowser
	Changing the Browser Type When Replaying Tests
	Prerequisites for Replaying Tests with Google Chrome
	Limitations for Testing with Google Chrome
	Manually Creating Tests for Dynamic Popup Menus
	xBrowser Frequently Asked Questions
	How do I Verify the Font Type Used for the Text of an Element?
	What is the Difference Between textContents, innerText, and innerHtml?
	I Configured innerText as a Custom Class Attribute, but it Is Not Used in Locators
	What Should I Take Care Of When Creating Cross-Browser Scripts?
	How Can I See Which Browser I Am Currently Using?
	Which Locators are Best Suited for Stable Cross-Browser Testing?
	Logging Output of My Application Contains Wrong Timestamps
	My Test Script Hangs After Navigating to a New Page
	Recorded an Incorrect Locator
	Rectangles Around Elements in Internet Explorer are Misplaced
	Link.Select Does Not Set the Focus for a Newly Opened Window in Internet Explorer
	DomClick(x, y) Is Not Working Like Click(x, y)
	FileInputField.DomClick() Will Not Open the Dialog
	The Move Mouse Setting Is Turned On but All Moves Are Not Recorded. Why Not?
	I Need Some Functionality that Is Not Exposed by the xBrowser API. What Can I Do?
	Why Are the Class and the Style Attributes Not Used in the Locator?
	Dialog is Not Recognized During Replay
	Why Do I Get an Invalidated-Handle Error?
	Why Are Clicks Recorded Differently in Internet Explorer 10?

	Testing the Insurance Company Sample Web Application
	Creating a New Project for the Insurance Company Web Application
	Configuring the Insurance Company Web Application
	Recording a Test Case for the Insurance Company Web Site
	Replaying a Test Case for the Insurance Company Web Site
	Modifying the Insurance Company Test Case to Replay Tests in a Different Browser Instead Of Internet Explorer

	xBrowser Classes

	Testing Windows API-Based Applications
	Overview of Windows API-Based Application Support
	Locator Attributes for Windows API-Based Applications
	Suppressing Controls (Classic Agent)
	Suppressing Controls (Open Agent)
	Configuring Standard Applications
	Determining the priorLabel in the Win32 Technology Domain

	Using Advanced Techniques with the Open Agent
	Starting from the Command Line
	Starting Silk Test Classic from the Command Line

	Recording a Test Frame
	Overview of Object Files
	Advantages of Object Files
	Object File Locations
	Specifying where Object Files Should be Written To and Read From

	Declarations
	GUI Specifiers
	Overview of Dialog Box Declarations
	Main Window and Menu Declarations

	Window Declarations
	Overview of Window Declarations
	Improving Silk Test Classic Window Declarations
	Improving Object Recognition by Defining a New Window
	Recording Window Declarations for the Main Window and Menu Hierarchy
	Use the member-of Operator to Access Data

	Overview of Identifiers
	Save the Test Frame
	Specifying How a Dialog Box is Invoked

	Improving Object Recognition with Microsoft Accessibility
	Using Accessibility with the Open Agent
	Enabling Accessibility for the Open Agent

	Calling Windows DLLs from 4Test
	Aliasing a DLL Name
	Calling a DLL from within a 4Test Script
	Passing Arguments to DLL Functions
	Using DLL Support Files Installed with Silk Test Classic

	Extending the Class Hierarchy
	Classes
	Overview of Classes
	Polymorphism
	CursorClass, ClipboardClass, and AgentClass
	Defining New Classes with the Open Agent
	Defining New Class Properties
	DesktopWin
	Logical Classes
	Class Hierarchy (Open Agent)

	Verifying Attributes and Properties
	Attribute Definition and Verification
	Defining a New Attribute for an Existing Class
	Defining New Verification Properties
	Syntax for Attributes
	Hidecalls Keyword
	An Alternative to NumChildren as a Class Property

	Defining Methods and Custom Properties
	Defining a New Method
	Defining a New Method for a Single GUI Object
	Recording a Method for a GUI Object
	Deriving a New Method from an Existing One
	Defining Custom Verification Properties
	Redefining a Method
	Confirming the Property List

	Examples
	Example: Adding a Method to TextField Class
	Example: Adding Tab Method to DialogBox Class
	Example: Defining a Custom Verification Property

	Porting Tests to Other GUIs
	Handling Differences Among GUIs
	Conditionally Loading Include Files
	Load Different Include Files for Different Versions of the Test Application
	Different Error Messages
	One Logical Control can Have Two Implementations
	Options Sets and Porting
	Specifying Options Sets
	Supporting Differences in Application Behavior
	Text Box Requires Return Keystroke
	Using Cross-Platform Methods in Your Scripts

	About GUI Specifiers
	Class Declarations
	Conditional Compilation
	Conditionally Compile Code
	GUI with Inheritance
	GUI with Global Variables
	Marking 4Test Code as GUI Specific
	Syntax of a GUI Specifier
	What Happens when the Code is Compiled
	Where You Use GUI Specifiers
	do...except Statements
	Type Statements

	Supporting GUI-Specific Objects
	Supporting GUI-Specific Captions
	Supporting GUI-Specific Executables
	Supporting GUI-Specific Menu Hierarchies

	Supporting Custom Controls
	Why Silk Test Classic Sees Controls as Custom Controls
	Reasons Why Silk Test Classic Sees the Control as a Custom Control
	Supporting Graphical Controls
	Custom Controls (Open Agent)
	Dynamic Invoke
	Frequently Asked Questions About Dynamic Invoke
	Which Methods Can I Call With the DynamicInvoke Method?
	Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?
	How Can I Simplify My Scripts When I Use Many Calls To DynamicInvokeMethods?

	Testing Apache Flex Custom Controls
	Managing Custom Controls (Open Agent)
	Supporting a Custom Control
	Custom Controls Dialog Box

	Using Clipboard Methods
	Get and Set Text Sample Code
	Using the Modified Declaration

	Filtering Custom Classes
	Invisible Containers

	Supporting Internationalized Objects
	Overview of Silk Test Classic Support of Unicode Content
	Using DB Tester with Unicode Content
	Issues Displaying Double-Byte Characters
	Learning More About Internationalization
	Silk Test Classic File Formats
	Reusing Silk Test Classic Single-Byte Files as Double-Byte
	Specifying File Formats for Existing Files with Unicode Content
	Specifying File Formats for New Files with Unicode content

	Working with Bi-Directional Languages
	Configuring Your Environment
	Configuring Your Microsoft Windows XP PC for Unicode Content
	Installing Language Support
	Setting Up Your Input Method Editor

	Displaying Double-Byte Characters
	Displaying Double-Byte Characters in Dialog Boxes
	Displaying Double-Byte Characters in the Editor

	Using an IME with Silk Test Classic

	Troubleshooting Unicode Content
	Display Issues
	Why Are My Window Declarations Recording Only Pipes?
	What Are Pipes and Squares Anyway?
	Why Can I Only Enter Pipes Into a Silk Test Classic File?
	Why Do I See Pipes and Squares in the Project Tab?
	Why Cannot My System Dialog Boxes Display Multiple Languages?
	Why Do I See Pipes and Squares in My Win32 AUT?
	Why Do the Fonts on My System Look so Different?
	Why Do Unicode Characters Not Display in the Silk Test Project Explorer
	Why Is My Web Application Not Displaying Characters Properly?

	File Formats
	Why Am I Getting Compile Errors?
	Why Does Silk Test Classic Open Up the Save As Dialog Box when I Try to Save an Existing File?

	Working with Input Method Editors
	Why is English the Only Language Listed when I Click the Language Bar Icon?
	Why Does This IME Look so Different from Other IMEs I Have Used

	Using Autocomplete
	Overview of AutoComplete
	Customizing your MemberList
	Frequently Asked Questions about AutoComplete
	Turning AutoComplete Options Off
	Using AppStateList
	Using DataTypeList
	Using FunctionTip
	Using MemberList

	Overview of the Library Browser
	Library Browser Source File
	Adding Information to the Library Browser
	Add User-Defined Files to the Library Browser with Silk Test Classic
	Viewing Functions in the Library Browser
	Viewing Methods for a Class in the Library Browser
	Examples of Documenting User-Defined Methods
	Web Classes Not Displayed in Library Browser

	Text Recognition Support

	Running Tests and Interpreting Results
	Running Tests
	Creating a suite
	Passing Arguments To a Script
	Running a Test Case
	Running a Test Plan
	Running the currently active script or suite
	Stopping a Running Testcase Before it Completes
	Setting a Test Case to Use Animation Mode

	Interpreting Results
	Overview of the Results File
	Viewing Test Results
	Difference Viewer Overview
	Errors And the Results File
	Testplan Pass/Fail Report and Chart
	Merging testplan results overview

	Analyzing Results with the Silk TrueLog Explorer
	TrueLog Explorer
	TrueLog Limitations and Prerequisites
	Why is TrueLog Not Displaying Non-ASCII Characters Correctly?

	Opening the TrueLog Options Dialog Box
	Setting TrueLog Options
	Toggle TrueLog at Runtime Using a Script
	Viewing Results Using the TrueLog Explorer
	Modifying Your Script to Resolve Window Not Found Exceptions When Using TrueLog

	Analyzing Bitmaps
	Overview of the Bitmap Tool
	When to use the Bitmap Tool
	Capturing Bitmaps with the Bitmap Tool
	Capturing a Bitmap with the Bitmap Tool
	Capturing a Bitmap During Recording
	Capturing All or Part of the Zoom Window in Scan Mode
	Saving Captured Bitmaps

	Comparing Bitmaps
	Rules for Using Comparison Commands
	Bitmap Functions
	Baseline and Result Bitmaps
	Designating a Bitmap as a Baseline
	Designating a Bitmap as a Results File
	Un-Setting a Designated Bitmap

	Zooming the Baseline Bitmap, Result Bitmap, and Differences Window
	Looking at Statistics
	Viewing Statistics by Comparing the Baseline Bitmap and the Result Bitmap

	Exiting from Scan Mode
	Starting the Bitmap Tool
	Starting the Bitmap Tool from its Icon and Opening Bitmap Files
	Starting the Bitmap Tool from the Results File
	Starting the Bitmap Tool from the Run Dialog Box

	Using Masks
	Prerequisites for the Masking Feature
	Applying a Mask
	Editing an Applied Mask
	Creating and Applying a Mask that Excludes Some Differences or Just Selected Areas
	Creating and Applying a Mask that Excludes All Differences
	Saving a Mask

	Analyzing Bitmaps for Differences
	Scanning Bitmap Differences
	Showing Areas of Difference
	Graphically Show Areas of Difference Between a Baseline and a Result Bitmap
	Moving to the Next or Previous Difference
	Zooming in on the Differences

	Working with Result Files
	Attaching a comment to a result set
	Comparing Result Files
	Customizing results
	Deleting a results set
	Change the default number of results sets
	Changing the Colors of Elements In the Results File
	Fix incorrect values in a script
	Marking Failed Testcases
	Merging results
	Navigating to errors
	Viewing an individual summary
	Storing and Exporting Results
	Storing results
	Exporting Results to a Structured File for Further Manipulation
	Removing the unused space in a results file
	Sending Results Directly to Issue Manager
	Logging Elapsed Time Thread and Machine Information

	Presenting Results
	Fully customize a chart
	Generate a Pass/Fail Report on the Active Test Plan Results File
	Producing a Pass/Fail Chart
	Displaying a different set of results

	Debugging Test Scripts
	Designing and testing with debugging in mind
	Overview of the Debugger
	Executing a script in the debugger
	Starting the debugger
	Debugger menus
	Stepping into and over functions
	Working with scripts
	Exiting the debugger

	Breakpoints
	Setting Breakpoints
	Viewing Breakpoints
	Deleting Breakpoints

	Variables
	Viewing variables
	Changing the value of variables

	Expressions
	Overview of Expressions
	Evaluate expressions

	Enabling View Trace Listing
	Viewing a list of modules
	View the debugging transcripts
	Debugging Tips
	Checking the precedence of operators
	Code that never executes
	Global and local variables with the same name
	Global variables with unexpected values
	Incorrect use of break statements
	Incorrect values for loop variables
	Infinite loops
	Typographical errors
	Uninitialized variables

	Troubleshooting the Open Agent
	Troubleshooting Apache Flex Applications
	Why Cannot Silk Test Classic Recognize Apache Flex Controls?

	Troubleshooting Basic Workflow Issues
	Error Messages
	Agent not responding
	Control is not responding
	Functionality Not Supported on the Open Agent
	Unable to Connect to Agent
	Window is not active
	Window is not enabled
	Window is not exposed
	Window not found

	Handling Exceptions
	Default Error Handling
	Custom Error Handling
	Trapping the exception number
	Defining your own exceptions
	Using do...except statements to trap and handle exceptions
	Programmatically Logging an Error
	Performing More than One Verification in a Test Case
	Writing an Error-Handling Function
	Exception Values

	Troubleshooting Java Applications
	What Can I Do If the Silk Test Java File Is Not Included in a Plug-In?
	What Can I Do If Java Controls In an Applet Are Not Recognized?

	Multiple Machines Testing
	Setting Up the Recovery System for Multiple Local Applications
	two_apps.t
	two_apps.inc

	Other Problems
	Adding a Property to the Recorder
	Cannot Double-Click a Silk Test Classic File and Open Silk Test Classic
	Cannot Extend AnyWin, Control, or MoveableWin Classes
	Cannot open results file
	Common Scripting Problems
	Conflict with Virus Detectors
	Displaying the Euro Symbol
	Do I Need Administrator Privileges to Run Silk Test Classic?
	General Protection Faults
	Running Global Variables from a Test Plan Versus Running Them from a Script
	Include File or Script Compiles but Changes are Not Picked Up
	Library Browser Not Displaying User-Defined Methods
	Maximum Size of Silk Test Classic Files
	Recorder Does Not Capture All Actions
	Relationship between Exceptions Defined in 4test.inc and Messages Sent To the Result File
	The 4Test Editor Does Not Display Enough Characters
	Stopping a Test Plan
	Using a Property Instead of a Data Member
	Using File Functions to Add Information to the Beginning of a File
	Why Does the Str Function Not Round Correctly?

	Troubleshooting Projects
	Files Not Found When Opening Project
	Silk Test Classic Cannot Load My Project File
	Silk Test Classic Cannot Save Files to My Project
	Silk Test Classic Does Not Run
	My Files No Longer Display In the Recent Files List
	Cannot Find Items In Classic 4Test
	Editing the Project Files

	Recognition Issues
	How Can the Application Developers Make Applications Ready for Automated Testing?

	Tips
	Example Test Cases for the Find Dialog Box
	When to use the Bitmap Tool

	Troubleshooting Web Applications
	What Can I Do If the Page I Have Selected Is Empty?
	Why Do I Get an Error Message When I Set the Accessibility Extension?

	Using the Runtime Version of Silk Test Classic
	Installing the Runtime Version
	Starting the Runtime Version
	Comparing Silk Test Classic and Silk Test Classic Runtime Menus and Commands

	Glossary
	4Test Classes
	4Test-Compatible Information or Methods
	Abstract Windowing Toolkit
	accented character
	agent
	applet
	application state
	attributes
	Band (.NET)
	base state
	bidirectional text
	Bytecode
	call stack
	child object
	class
	class library
	class mapping
	Classic 4Test
	client area
	custom object
	data-driven test case
	data member
	declarations
	DefaultBaseState
	diacritic
	Difference Viewer
	double-byte character set (DBCS)
	dynamic instantiation
	dynamic link library (DLL)
	enabling
	exception
	frame file
	fully qualified object name
	group description
	handles
	hierarchy of GUI objects
	host machine
	hotkey
	Hungarian notation
	identifier
	include file
	internationalization or globalization
	Java Database Connectivity (JDBC)
	Java Development Kit (JDK)
	Java Foundation Classes (JFC)
	Java Runtime Environment (JRE)
	Java Virtual Machine (JVM)
	JavaBeans
	Latin script
	layout
	levels of localization
	load testing
	localization
	localize an application
	locator
	logical hierarchy
	manual test
	mark
	master plan
	message box
	method
	minus (-) sign
	modal
	modeless
	Multibyte Character Set (MBCS)
	Multiple Application Domains (.NET)
	negative testing
	nested declarations
	No-Touch (.NET)
	object
	outline
	Overloaded method
	parent object
	performance testing
	physical hierarchy (.NET)
	plus (+) sign
	polymorphism
	project
	properties
	query
	recovery system
	regression testing
	results file
	script
	script file
	side-by-side (.NET)
	Simplified Chinese
	Single-Byte Character Set (SBCS)
	smoke test
	Standard Widget Toolkit (SWT)
	statement
	status line
	stress testing
	subplan
	suite
	Swing
	symbols
	tag
	target machine
	template
	test description
	test frame file
	test case
	test plan
	TotalMemory parameter
	Traditional Chinese
	variable
	verification statement
	Visual 4Test
	window declarations
	window part
	XPath

