B I d ;
L]

Silk Test 16.0

Silk Test Classic
Open Agent Help

Borland Software Corporation
700 King Farm Blvd, Suite 400
Rockville, MD 20850

Copyright © Micro Focus 2015. All rights reserved. Portions Copyright © 1992-2009 Borland
Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom, and other countries.

BORLAND, the Borland logo, and Borland product names are trademarks or registered
trademarks of Borland Software Corporation or its subsidiaries or affiliated companies in the
United States, United Kingdom, and other countries.

All other marks are the property of their respective owners.

2015-02-11

Contents

Licensing INTOrMatioN ... 16
Getting Started ... ————————— 17
Automation Under Special Conditions (Missing Peripherals) ccccoiiiiiiis 17

SilK TESt ProdUCE SUITE et e s eee e 18

SilK TESE CIASSIC Ul e e s e e 19
Contacting MICIO FOCUS ittt e e e es 19
Information Needed by Micro Focus SUpportLine ccceeviiiiiieeniie e 20

What's New in Silk TeSt CIaSSIC ...coooviiiiiiiiiiiiieeee e 21
MODIIE BrOWSEE SUPPOIT .oeeiiiieiiiieiee ettt ettt e e s st e e s s e e e e s b e e e e s abneeeeeaas 21

Easy Record and REPIAY ...cooiiiiiiiiiiiie e 21
Microsoft WINAOWS 8.1 SUPPOIT ...eeiiiiiiiiiiiie ittt ettt 21
INternet EXPIOrEr SUPPOIT oottt et e e st e e e e s b e e e e e 22
Mozilla FIrefOX SUPPOIT .ottt e st e e s b e e e e eees 22
G00gle ChromME SUPPOIT oooieiiiiiie ettt e s e e e e e s 22
RUMDE SUPPOIT ettt e e e e et e e e e e e e s 22
APACNE FIBX SUPPOIT oottt e s e e e e e ees 22
AJeNt-SPECIfic DOCUMENTS ...ttt s e e 22

(@] 011 o 1o [T o | PP PP PPN 23
How Silk Test Classic Assigns an Agent to a Window Declaration —cccccoiiiiiiiineenen. 23

F e [=] 018 @] 1[0] oI PP TP PR STPTRPPP 23
Setting the Default AQENt e 41
Setting the Default Agent Using the Runtime Options Dialog BOX —cccccceeeiiiinnee 42

Setting the Default Agent Using the Toolbar ICONS ... 42

Connecting to the Default AQENT ... 42
Creating a Script that Uses Both AQENTS eeeiiiiiiiiiiei e 42
Overview of Record Functionality Available for the Silk Test Agents cccccveieeiiiiiniinee 43
Setting Record and Replay Options for the Open Agent ... 44
Setting the Window Timeout Value to Prevent Window Not Found Exceptions —................ 44
Manually Setting the Window Timeout Value ... 44

Setting the Window Timeout Value in the Agent Options Dialog Box ccc........ 45

Configuring Open Agent Port NUMDEIS oo 45
Configuring the Port that Clients Use to Connect to the Information Service — 45

Open Agent POrt NUMDEIS ..ottt 46
Stopping the Open Agent After Test EXECULION eeiviiiiiiiiie e 46
Basic Workflow for the Open Agent ... a7
Creating @ NEW PrOJECE ..ottt e et e e e e e e e e e e s ennb e eeeeas 47
Configuring APPlICALIONS ooeii et e e e e e e e e 47
Configuring Web APPIICAtIONS ... e 48
Configuring Standard APPlCAtIONS ...ooooiiiiiie e 48
Recording Test Cases for Standard and Web Applications cccooiiiiiiiiiiis 49
Recording Test Cases for Mobile Web Applications ceuiiiiiiiiiieeeee e 50
RUNNING 8 TESE CABSE .eeeiiiiiiiie ettt e e e e e e e e e bbb e e e e e e e e e e e e e s nnbbeneeees 51
VIEWING TESE RESUILS oo e e e e e e e e e e e bn e eee s 52
Migrating from the Classic Agent to the Open Agentcccccccieiiiiiiieeeeeee, 53
Differences for Agent Options Between the Classic Agent and the Open Agent 53
Differences in Object Recognition Between the Classic Agent and the Open Agent 54
Differences in the Classes Supported by the Open Agent and the Classic Agent 56
Differences in the Parameters Supported by the Open Agent and the Classic Agent 60
Overview of the Methods Supported by the Silk Test Classic Agents cccccceeeeeeiininiins 61

SYS Functions Supported by the Open Agent and the Classic Agent ..., 61

Contents | 3

SilK TeSt ClasSSIC PrOJECIS .ooeiiiiiiiiiiii i e e e e 63

Storing Project INfOrmation ... 63
Accessing Files Within YOUr ProjECt ..o 64
Sharing a Project AMONG @ GIOUDP cooieiiiiiiiiiti et e ettt e e e e e e e et eeeeaaaaaeeaeanas 64
[o] [Tt o d o] (o] {1 PP U T OTPPPPUTTT 65
Creating @ NEW PrOJECE ...ttt e e e e e e e e e e s aeeeees 66
Opening an EXIStING PrOJECT euiiiiiiiiei it e e e e e e e 67
Converting EXisting TEStS t0 @ PrOJECE ...oeiiiiiiiiiiiiieiie e 67
Using Option Sets in YOUr PrOJECT oot 67
Editing an OPLIONS S .. e e e 68

Silk TeSt ClassSiC File TYPES et e e e e e as 68
Organizing PrOJECIS oottt et r e e e e e e e e e s et e e e e e e e e e e e e aaa 69
Adding Existing Files t0 @ ProjeCt ..o 69
ReNamMiNg YOUr PrOJECE .oooiiiiiiiiii ittt e e e e e e e e e e 70
Working with Folders in @ ProjeCt oeeiiiiiiiiiii e 70
Moving Files BEtWEEN PrOJECIS oottt a e 72
Removing Files from a ProjeCt ..o 72
Turning the Project Explorer View On and Off ... 72
Viewing Resources Within @ Project ... 73
Packaging a Silk Test ClasSiC PrOJECE ceoiiiiiiiiiiiiie e 73
Emailing a Packaged ProjECt ...t 75
EXPOrtiNg @ PrOJECE oottt ettt e e e e e e e bbb e e e e e e e e e e e e annes 76
TroubleShOOtING PrOJECES ...ttt e e e e e e e e e e e e e e e 76
Files Not Found When Opening ProjeCt ooooiiiiiiiiiiiiiieeeeeee e 76

Silk Test Classic Cannot Load My Project File ... 77

Silk Test Classic Cannot Save Files to My Project cccooiiiiiiiiiiiiiiicieeeeeeee 77

Silk Test Classic DOES NOt RUN ...oooiiiiiiiie ittt 77

My Files No Longer Display In the Recent Files LiSt ..., 78
Cannot Find Items IN CIASSIC 4TESt ..eviiiiiiiiiieee et 78
Editing the ProjeCt FIleS ... e 78
Enabling Extensions for Applications Under Test cccccceeiiiiiiiieeiiinieeeeenns 79
Extensions that Silk Test Classic can Automatically Configure —cccoiiiiiiiiie 79
Extensions that Must be Set Manually —ooooiiiiiiiii e 80
Extensions on Host and Target Machines ..o 80
Enabling Extensions Automatically Using the Basic Workflow ..., 81
Enabling Extensions on a Host Machine Manually ..., 81
Manually Enabling Extensions on a Target Machine ... 82
Enabling Extensions for Embedded Browser Applications that Use the Classic Agent ... 83
Enabling Extensions for HTML Applications (HTAS) ..eeeiiiiiiiiiiiiieee e 83
Adding a Test Application to the Extension Dialog BOXES ccooiviiiiiiiiiiiiiieieeee e 84
Verifying EXIENSION SEHINGS .ooeiiiiiiiiiiiii ettt e e e e e e e e e e e e e 85
Why Applications do not have Standard Names ... 85
Duplicating the Settings of a Test Application in Another Test Application oceee 85
Deleting an Application from the Extension Enabler or Extensions Dialog Box 86
Disabling BrowSser EXIENSIONS ..ooiiiiiiiiiiiiiieie ittt ettt e e e e e e e e e e e e e e e annes 86
Comparison of the Extensions Dialog Box and the Extension Enabler Dialog Box 86
Configuring the BrOWSEI ...ttt e e e e e e e s bbb e e e e e e e e e e e e annneees 87
Setting Agent Options for Web Testing oooiiiiiiiiiiieee e 88
Specifying a Browser for Silk Test Classic to Use in Testing a Web Application 88
Specifying your Default BIOWSEI .o 89
Understanding the Recovery System for the Open Agent ... 90
Setting the Recovery System for the Open Agent ... 91
BASE STALE . e e e 91
DefaultBaseState FUNCHION ooiiiiiiiiee e 92
Adding Tests that Use the Open Agent to the DefaultBaseState cccccoviiiiiiiiiiiennennnn. 92

4 | Contents

DefaultBaseState and the wDynamicMainWindow Object ... 93

FIOW OF CONIOL oot e e bt e et e e e s e e e s anreeee e 94
The Non-Web Recovery Systems Flow of Control ... 94
How the Non-Web Recovery System Closes Windows —ccuveeeeieieeeenniiiniiiie 94
How the Non-Web Recovery System Starts the Application ..., 95
Modifying the Default RECOVEIY SYSIEM ... 95
Overriding the Default Recovery SYStem ... 95
Handling Login WINAOWS eiiiiiiiiiiiie ettt 96
Specifying Windows to be Left Open for Tests that Use the Open Agent 97
Specifying New Window Closing ProCcedures cceuueeiiiiiiiiiiiiiiiiiiiieeeee e 98
Specifying Buttons, Keys, and Menus that Close Windows —oooiiiiiiiiieeenenennn, 98
Recording a Close Method for Tests that Use the Open Agent cccceovvieeeennnnn, 99
TSt PlaNS e 100
Structure of @ TESE PlAaN oo 100
Overview of Test Plan TeMPIAteS ..o 101
Example Outline for Word Search FEature oeeiiiiiiiiiiiiiiee e 101
Converting a Results File to @ TeSt PIan ..o 103
Working With TESE PIANS ..o e e 103
Creating a New TeSt Plan ..o 103
Indent and Change Levels in an Outline ... 104
Adding Comments to Test Plan ReSUItS ... 104
Documenting Manual Tests in the Test Plan ... 105
Describing the State of a Manual TESt eeiiiiiiii e 105
INSerting @ TEMPIALE ..o e e 105
Changing Colors in @ TeSt Plan ... 106
Linking the Test Plan to Scripts and TeSt CaSES cevieiieeeiiiiiiiiiiiieeee e 106
Working with Large TeSt PIANS ... 107
Determining Where Values are Defined in a Large Test Plan cccccoiiiiiiiinnnee. 107
Dividing a Test Plan into a Master Plan and Sub-Plans ccccccciiiiiiiiiiinnne, 107
Creating @ SUD-Plan ..o 108
Copying @ SUD-PIan ..o 108
Opening a SUD-PIan ..o 108
Connecting a Sub-Plan with a Master Plan ..., 108
Refreshing a Local Copy of @ SUb-Plan ... 108
Sharing a Test Plan Initialization File ... 108
SAVING ChANGES oot e e e e e e e e e e e e 109
OVEIVIEW OF LOCKS .ottt ettt 109
Acquiring and Releasing a LOCK ..o 109
Generating a Test Plan Completion REPOIt ... 109
Adding Data to @ TESt PIAN ..ot a e 110
Specifying Unique and Shared Data cccccoeiiiiiiiiiiiii e 110
Adding Comments in the Test Plan Editor ... 110
Testplan Editor STAtEMENTS eeiiiiiiiiee e 110
The # Operator in the Testplan Editor ... 110
Using the Testplan Detail Dialog Box to Enter the testdata Statement — 111
Entering the testdata Statement Manually ... 111
LINKING TESE PIANS oo e e e e e e e eeeaaae s 111
Linking a Description to a Script or Test Case using the Testplan Detail Dialog Box
... 111
Linking a Test Plan to a Data-Driven Test Case ccoeeeiiiiiiiiiiiiiiieieeee e 112
Linking to a Test Plan Manually ... 112
Linking a Test Case or Script to a Test Plan using the Testplan Detail Dialog Box
... 112
Linking the Test Plan to Scripts and TeSt CaSES eeviiiiieeiiiiiiiiiiiiieee e 112
Example of Linking a Test Plan to @ Test Case ooooiiiiiiiiiiiiiiiiee e 113
Categorizing and Marking TESt PIaNS euiiiiiiiiiiie e 113

Contents | 5

6 | Contents

Marking @ TESt PIaN oo 114

How the Marking Commands INtEract ooooiiiiiiiiiiiiie e 114
Marking ONe OF MOre TESIS .oiiiiiiiiiiieiee ettt e e e e e e e 114
Printing Marked TeSIS oot e e e e e 114

USING SYMDI0IS ettt e e e e e e e e e b e e e e e e e e e e e e e aannaee 115
Overview Of SYMDOIS e 115
Symbol Definition Statements in the Test Plan Editor ... 116
Defining Symbols in the Testplan Detail Dialog box ..., 117
Assigning a Value to a Symbol ... 117
Specifying Symbols as Arguments when Entering a testcase Statement —............ 117
ATIDULES AN VAIUES ..o 118
Overview of Attributes and Values oooiiiiii e 118
Predefined AMINDULES ..o 118

User Defined ATHDULES ..o 118
Adding or Removing Members of a Set Attribute ..., 119

RUIES fOr USING + @NA - oo e e 119
Defining an Attribute and itS Values ... 119
Assigning Attributes and Valuesto a Test Plan ... 120
Assigning an Attribute from the Testplan Detail Dialog BOX —oeveviiieeiiiiiiiiinnee. 120
Modifying the Definition of an Attribute ... 121

L0 T 1T =PSRN 121
Overview of Test Plan QUEIES ..o e e e e e e e eeaanaaanees 121
Overview of Combining Queries to Create a New QUErY ...oooovvieiiiiiiiiiiiiiiieeeeeenn, 122
Guidelines for Including Symbols in @ QUEIY ..o 122

The Differences between Query and Named Query Commands cccceeeevnnen. 123
Create a NEeW QUETY oo e e e e 123

EdIt @ QUEIY et 124
Delete @ QUETY ettt e e e e e e 124
CombinNiNg QUETIES .ottt et e e e e e e s an e e e e 124
Designing and Recording Test Cases with the Open Agent 125
Dynamic Object RECOGNITION .o e e 125
XPath BasiC CONCEPLS iiiiiiiiiieiie ettt e et e e e e e e e s eeeeeeeas 126
Supported XPath SUDSEL ... 127

XPath SamPIES oo 128
Supported Locator ATHDULES .o 129

USING LOCALOIS ettt e e e e et e e e e e e e e e e e e s nnnnbaeaeeeaaaaeens 129

Using Locators to Check if an Object EXIStS ...oceiiiiiiiiiiiiee e 130
Identifying Multiple Objects with One Locator —cooiiiiiiiiiiiieee e 130
Locator CUSIOMIZALION ...oiieeei ettt 130
Troubleshooting Performance Issues for XPath ..., 135
Highlighting Objects During ReCOrding ...coooeoiiiiiiieee e 136
Overview of the Locator KEYWOIT coooiiiiieeeee ettt e e 136
Setting Recording and Replay OPLiONS . 139
Setting Recording Preferences for the Open Agent ..., 139
Setting Recording Options for XBrOWSEr uuiiiiiiiiieiee e 140
Defining which Custom Locator Attributes to Use for Recognition cccccceeeeeee. 141
Setting Classes t0 IgNOIE .o 141
Setting WPF Classes to Expose During Recording and Playback — 142
Setting Pre-Fill During Recording and Replaying cccoveiiniiiiiiiiiiiieieeeee e 142
Setting Replay Options for the Open Agent ... 142

TESE CABSES oottt e e e e n e 143
OVEIVIEW Of TESE CASES .oiiiiiiiiieiiiiiie ettt e e 143
Anatomy Of & BaSiC TESt CASE ..eiiiiiiiiiiiiiiiie et 144

TYPES Of TESE CASES .eeeeiiiiiiiiie ettt e e e e bbb e e e e e e e e e e as 144

TESE CASE DESION ittt e e e e e e e s e eaaaae s 144
CoNStruCting @ TESE CASE .oiiiiiiiiiiiittt ettt e e e e e e e e e e 145

(D=1 r= W] g T [T =YY 1= 146

SAVING TESE CASES ciiiiiiiiiiiiite ettt et et e e e e e e s e bbb e e e e e e e e e e e e s e annbbeaeees 146
Recording Without Window Declarations —cc.eueeiiiiiiiiiiiieceeee e 147
Overview of Application StatesS oooiiiiiiiii e 147
Behavior of an Application State Based on NONE ... 148
Example: A Feature of a WOrd ProCeSSOI ...ooooiiiiiiiiiiiiieeee et 148
Creating Test Cases with the Open AQENt ... 149
Application ConfigUIation eeiiiiiiiei e 149
Recording Test Cases for Standard and Web Applications —ccccoceiiiiiiiiiiinnne. 150
Recording Test Cases for Mobile Web Applications ... 151
Recording Window Declarations that Include Locator Keywords —ccvvveeeee. 152
Recording Locators Using the LOCAtOr SPY ..eeeeiiiieeiiiiiiiiiieeee e 153
Recording Additional Actions Into an EXisting TeSt ..., 154
Specifying Whether to Use Locators or Tags to Resolve Window Declarations ...154
Saving @ SCHPL FIle oo 155
Testing an Application STate eeiiiiiiiiee e 155
Configuring APPlICALIONS .oeeeiii e 155
Modifying an Application Configuration oooiiiiiiiii e 155
Reasons for Failure of Creating an Application Configuration —cccccccciiiiiinnns 156
Actions Available During RECOIdING uviiiiiiiiiiaiiiiiieee e 156

RV 1] (0= 11 o] I TP PPPP PP TPPI 157
Verifying ODJECt PrOPertieS ..o 157
Overview of Verifying BitMaps oooiiiiiiiieee e 158
Overview of Verifying an Objects State ..., 159
FUzzy VENIfICAtION oo a e e e 160
Verifying that a Window or Control is No Longer Displayed —cccccoviiiiiiiiiienen. 161
Data-Driven TESt CASES ..oooiciiiiieiiitiie ettt ettt e s e et e e s re e e e e e 162
Data-Driven WOTKFIOW ..o 162
Working with Data-Driven TESt CASES ...ceiiiiiiiiiiiiiiiiieie e a e 163

Code Automatically Generated by Silk Test ClasSiC covvveeeeiiiiiiiiiiiiieieeeeee e 163

Tips And Tricks for Data-Driven TeSt CASES uveeeiiiiieiiiiiiiiiiiiieeeee e 164
Testing an Application with Invalid Data ..o 166
Enabling and Disabling WOrkflow Bars ... 166

Data Source for Data-Driven TESt CASES vvvviiiiiiieeeiiiieiee et 167
Creating the Data-Driven TESt CASE ..oooiiieiiiiiiiiieee ettt 168
Characters Excluded from Recording and Replaying ooooiiiiiiiiiiiieeieeee 173
Testing in Your Environment with the Open Agent cccciiiiiiiiiieieeeeeeee, 174
Distributed Testing with the Open AgENt ... e 174
Configuring Your TesSt ENVIFONMENT uiiiiiiiiiieaeii e 174
Running Test Cases in Parallel ... 180
Testing Multiple MacChines ..o 188
Testing Multiple APPlICAtIONS .o 194
Troubleshooting Distributed TEStING uviiiiiiiiiieeii e 203
Testing Apache Flex APPlICAtIONS ..o 203
Overview of Apache FIeX SUPPOIT ... 203
Configuring Security Settings for Your Local Flash Player —ccccccoiiiiiiiiiinne. 204
Configuring Flex Applications to Run in Adobe Flash Player —ccccccceiiiiiiiinis 204
Configuring Flex Applications for Adobe Flash Player Security Restrictions 205
Customizing Apache FIEeX SCHPIS oo 205
Styles in Apache Flex AppliCatiONS eeiiiiiiiiiii e 206
Locator Attributes for Apache Flex CoNntrolS ... 206
Dynamically Invoking Apache Flex Methods ..o 207
Testing Multiple Flex Applications on the Same Web Page cccoceveiiiiiinn, 208
AdODE AIR SUPPOIT ittt ettt et e e e e e e e e e bbb e e eeeeaaaeeeas 208
Apache Flex EXCeption ValUBS eiiiiiiiiiiee et 208
Overview of the Flex Select Method Using Name or Index —cccccoeiiiiiiiiiiiiieeen. 209

Contents | 7

8 | Contents

Selecting an Item in the FlexDataGrid Control ..o, 210

Enabling Your Flex Application for TEStING .eooveviiiiiiiie e 210
Testing the Silk Test Component Explorer Flex Sample Application 221
Testing Flex Custom CONLIOIS ..o 225
Client/Server AppliCation SUPPOIT ..o e e e 234
Client/Server Testing Challenges ... 234
Verifying Tables in ClientServer Applications ooiiiiiiiiiiiiie e 234
Evolving @ TESHING Srategy ...eveeeeeeiiiieeaiiiitiie et e e 235
Incremental Functional TeSt DeSIgN ...oooiiiiiiieiieeee e 235
NEtWOrk TESING TYPES oeeeieiiit ettt e e e e e e e e e e e e e e e e e e aannaees 236

How 4Test Handles Script DeadloCK ... 237
Troubleshooting Configuration Test Failures ..., 238
Testing .NET Applications with the Open Agent ... 238
Windows FOrms APPlICALtIONS .o 238

WPE APPHCALIONS oottt e e e e e e e e e e e annnes 241
Microsoft Silverlight ApplicatioNS oooiiiii e 247
Testing Java AWT/Swing Applications with the Open Agent ..., 251
Testing Standard Java Objects and Custom Controls —ccceveeeeiiiiiiiiniiieiee, 251
Recording and Playing Back JFC MENUS oooiiiiiiiiiiiiieeeee et 252
Recording and Playing Back Java AWT MENUS cooiiiiiiiiiiiiiiiiiieeeee e 252
Object Recognition for Java AWT/Swing Applications —oooiiiiiiiiiiieeee 252

Agent Support for Java AWT/Swing Applications —oooiiiiiiiiiiie e 252
Configuring a Test Application that Uses the Java Network Launching Protocol (JNLP)
... 253

CUSIOM ATIDULES oot 253
Locator Attributes for Java AWT/SWIiNg CONtrolS oooeiiiiiiiiiiiiiiiiieeeee e 254
Dynamically Invoking Java MethodS ueiiiiiiiiii e 254
Determining the priorLabel in the Java AWT/Swing Technology Domain 255
Supported Browsers for Testing Java AppIets ... 255
Overview oOf JavaSCript SUPPOIT oo 256
Oracle FOIMS SUPPOIT oottt ettt e e e e e e s e e e e e e e e e e e e annnes 256
Classes in Object-Oriented Programming Languages cccceveeeeeeeeeeenennnniinieneen 257
Configuring Silk Test Classic t0 TESt JAVA uveiiiiiiiieeiiii e 257
Testing Java Applications and APPIEtS ..o 260
Frequently Asked Questions About Testing Java Applications —ccccvvvvieeeen. 266
Testing Java SWT and Eclipse Applications with the Open Agent ..., 268
Suppressing Controls (Open AQENL) i 268
CUSIOM AHIDULES oot 269
Locator Attributes for Java SWT CONIOIS ...eoviiiiiiiieeiiieecc e 269
Dynamically Invoking Java MethodS ueiiiiiiiiiii e 270

Java SWT Classes for the Open AQENt ..o 270
Testing Mobile Web AppliCatioNS ...oooiiiii e 271
Testing Mobile Web Applications on Android —oeeiiiiiiiiiiiee s 271
Testing Mobile Web Applications on iOS ... 276
Recording Mobile AppliCatioNS ... 278
Interacting with & MoDbile DEVICE eeiiiiiiiiiiiiee e 279
Troubleshooting when Testing Mobile Web Applications —cccccooiiiiiiiiiiiiinnnnnn. 279
Limitations for Testing Mobile Web Applications —ccccoooiiii 282
Clicking on Objects in a Mobile Website ... 284
Testing RUMDbDa APPIICALIONSeeiiiiiiieee et aa e e 284
Enabling and Disabling RUMDa ... 285
Locator Attributes for Identifying Rumba Controls ... 285
Testing @ UNiX DISPIAY oottt e e e e 285
Rumba Class REFEIENCE ooiiiiiieiiee e 285
Testing SAP APPIICAtIONS ..o a e e 286
Locator Attributes for SAP CONLrolS oceeviiieie e 286

Dynamically Invoking SAP Methods ..o 286

Configuring Automation Security Settings for SAP ... 287

SAP Class REfEIENCE ...oiiiiiieiie e 287
Testing Web Applications with the Open Agent ... 288
Supported Controls for Web Applications ..o 288
Sample Web AppliCatioNS ..o 288
Testing Dynamic HTML (DHTML) Popup MeNnuUS cooiiiiiiiiiiieieieeee e 288

Web Application SEtUP STEPS oot 288
Recording the Test Frame for a Web Application ..., 288
TESEFTAMES oo 289
Testing Methodology for Web Applications ocvveieiiiiiiie e 290
Testing Objects iN @ WED PAge ooiiiiiiee e 290

Using the xBrowser Technology DOMaIN c.eevviiiiiiiiieiiiece e 295
Testing Windows API-Based APPlICAtIONS oiiiiiiiiiiieeiieee et 314
Overview of Windows API-Based Application SUPPOrt ccccceevviiiieeiniiiiineene 315
Locator Attributes for Windows API-Based Applications ccccccevviveeeeiiineenenn 315
Suppressing Controls (Classic AGENE) i iiieeee e 315
Suppressing Controls (OPen AGENE) .o 316
Configuring Standard APpPlICAtIONS ccoiiiiiiiiei e 316
Determining the priorLabel in the Win32 Technology Domain cccceveivinnnn. 317
Using Advanced Techniques with the Open Agent cccirviiiiccceeenn, 319
Starting from the Command LINE ... 319
Starting Silk Test Classic from the Command Line ... 319
Recording @ TESE FramE ...ttt e e e e e e e e e e e e e e e an 321
Overview Of ODJECE FIlES ..o 321
DECIArAtIONS oottt e e 323
WiINAOW DECIAratiONS ...oiiiiiiiiiiiee ettt e 326
Overview Of IdeNtifIErS ..o 328

Save the TESE Frame et 329
Specifying How a Dialog Box is INVOKed oeiiiiiiiiiiiiie e 329
Improving Object Recognition with Microsoft Accessibility ... 329
Using Accessibility with the Open Agent ... 330
Enabling Accessibility for the Open Agent ... 330
Calling WIindows DLLS from 4TESt .oeeiiiiiiiiieee ettt e e e e e 330
AlIaSING @ DLL NAME oottt e e e ee e e e e e e e e e 331
Calling a DLL from within @ 4TeSt SCHPt ..oooiiieeee e 331
Passing Arguments to DLL FUNCLIONS ..o 332

Using DLL Support Files Installed with Silk Test ClasSiC cccvvveeeeiiieeiiiiiie 334
Extending the Class HIErarChy ... 334
ClaSSES i e e e e e s e e e 334
Verifying Attributes and PropertiesS ... 339
Defining Methods and Custom Properties eeeeieiioeiiiiiiiieeeeeee e 341
EXAMPIES e e e e as 344
Porting Tests t0 Other GUIS ... 345
Handling Differences Among GUIS ..o 345

ADOUL GUI SPECIFIEIS et 350
Supporting GUI-Specific ODJECES oo 353
Supporting CuStOM CONIOIS ..o e e e e e e e e e e e e 354
Why Silk Test Classic Sees Controls as Custom Controls —ccccceeiviiiiiiiiieeeen. 354
Reasons Why Silk Test Classic Sees the Control as a Custom Control 355
Supporting Graphical CONtrolS ..o 355
Custom Controls (OPen AQENL) oo 355

Using Clipboard MethOaS eeeiiiiiiie e 361
Filtering CUSIOM CIaSSES .ooiiiiiiiiiiiee ettt a e 361
Supporting Internationalized ODJECES ...oiiiiiii i 362
Overview of Silk Test Classic Support of Unicode Content ccccceeiiiiiiiiiiinnen. 362

Contents | 9

10 | Contents

Using DB Tester with Unicode Content oeiiiiiiiiiiiieieeeeee e 363

Issues Displaying Double-Byte Characters ...t 363
Learning More About Internationalization —eeeeiiiiiiiiiii e 364

Silk Test Classic File FOrMALS ooiiiiiiiiiieeiieee e 364
Working with Bi-Directional LANQUAgES oooooiiiiiiiiiiieeee e 366
Configuring Your ENVIFONMENT ..ottt 367
Troubleshooting Unicode CONTENE ueiiiiiiiieiiee e 368

USING AULOCOMIPIETE .ttt et e e e e e e e e e s bbb e b e e e e e e aaee e e s 371
Overview Of AULOCOMPIELE ..o 371
Customizing your MemDEILIST ...eeeiiiiiiiiie e e e 371
Frequently Asked Questions about AutoComplete ... 372
Turning AutoComplete OptionNs Off ..o 373

USING APPSTALELIST oo e e e e e e e e e e e 374

USING DAtATYPELIST ..ottt e e e e e e e e e e 374

USING FUNCHONTIP oottt ettt e e e e e e s et eeeaaaeeas 374

USING MEMDEILIST .ttt a e e e e e e e e as 375
Overview of the LiDrary BrOWSEI ...ttt 375
Library Browser SOUrce File ..o 376
Adding Information to the Library BrOWSEr cceeiiiiiiiiiiieeeeeeieeeee e 376

Add User-Defined Files to the Library Browser with Silk Test Classic — 377
Viewing Functions in the Library BrOWSEr ..ot 377
Viewing Methods for a Class in the Library Browser ..., 377
Examples of Documenting User-Defined Methods ..o 378

Web Classes Not Displayed in Library BrowSer —cccccoviiiiieiiiiiinee e 378

Text RECOGNItION SUPPOIT ..ottt e s e s s 379
Running Tests and Interpreting ResuUlts cccoooiiiiiiiiiiie e, 381
RUNNING TOSES ittt et e e e e e e e e e s e e bt ab e e e e e e aaaeeeesaannnns 381
Creating @ SUITE ittt e e e e e e e e e s bbb e e e e e e e e e e e e e e s 381
Passing Arguments TO @ SCHPE ..o a e 381
RUNNING 8 TESE CASE oottt e e e e e e e e e 382
RUNNING @ TESE PIAN e 383
Running the currently active SCript OF SUILE uiiiiiiiiiiiee e 383
Stopping a Running Testcase Before it Completes ..., 384
Setting a Test Case to Use Animation Mode ... 384
INterpreting RESUILS oot e e e e e e e e aeeeeaaaeeas 384
Overview of the ReSUILS File ..o 384
VIewing TESE RESUILS ..o e e e e 385
Difference VIEWEr OVEIVIEW ...coiiiiiiieiiiiie ettt 385

Errors And the ReSUItS File ..eeeiiii e 386
Testplan Pass/Fail Report and Chart ... 387
Merging testplan results OVEIVIEW ... 387
Analyzing Results with the Silk TrueLog EXPIOrer ... 388
B LU= Mo To = d o] (o] {=] PP UUPRPUPR 388
TrueLog Limitations and PrereqUISIteS eeeeiiiiiieiiiiiiiiieiee e 388
Opening the TrueLog Options Dialog BOX —eeiiiiiiiiiiiiiiiiiiieee e 389
Setting TrueLog OPLIONS ..o e e eeeaeeas 389
Toggle TrueLog at Runtime USINg @ SCHPt ..ooooiiiiiiiieiieeeeee e 390
Viewing Results Using the TrueLog EXPlOrer ... 390
Modifying Your Script to Resolve Window Not Found Exceptions When Using TrueLog
... 391
ANAIYZING BItMAPS oottt e et e e e e e e e e e e e e e e e aa e e e an 391
Overview of the Bitmap TOOI eeeiiiiiii e 391

When to use the Bitmap TOOI oooiiiiii e 392
Capturing Bitmaps with the Bitmap ToOl ... 392
Comparing BIitMaPS oot 394

Rules for Using Comparison CommandsS —ooociviiiiiiiiiieeeeee e e 395

Bitmap FUNCLONS e 395

Baseline and ResUlt BItMAPS ..oceiiiiiiiiiiieeee et 395
Zooming the Baseline Bitmap, Result Bitmap, and Differences Window 396
LOOKING @t STALISLICS ..eeiiiiiieeiei ittt e e e e e e e e e e e e 396
EXiting from Scan MOAE eeieiii s 396
Starting the Bitmap TOOI ... 397

USING MASKS ettt ettt et e e e e e e e e s bbb e e e e e e e e e e e e e e annns 397
Analyzing Bitmaps for Differences ... 400
Working With RESUIL FIlES ..o a e e e 401
Attaching a comment t0 & reSult SEt ..o 401
Comparing ReSUIt FIlES e 401
CUSLOMIZING FESUILS ettt e e e e e e e e e st eeeee e 402
Deleting @ reSUILS SBE oo 402
Change the default number of results SEtS ..., 402
Changing the Colors of Elements In the Results File ..o, 402

FiX iNCOIrect values in @ SCHPL i 403
Marking Failed TESICASES ...ooiiiiiiiiiiii e 403
MEIQING FESUILS ettt e e e e et e e e e e e e e e e e nnnbeeaeeee 403

N EV T P 11 gL R (o I =T 1 o] £ T PP UPPPRPPPR 403
Viewing an individual SUMMATY ..o e 404
Storing and EXporting RESUIS eeeeiiiiee e 404
SEOMNG FESUILS ettt e e et e e e e e e e e e e e s e e b b e eeeeas 404
Exporting Results to a Structured File for Further Manipulation —cccooi. 404
Removing the unused space in aresults file ... 405
Sending Results Directly to ISSUe Manager ...t 405
Logging Elapsed Time Thread and Machine Information —ccoooiiiiiiiinen, 405
Presenting RESUIIS oottt et e e e e e e e re e e e e e e as 405
Fully cuStomize @ Chart ..o 405
Generate a Pass/Fail Report on the Active Test Plan Results File cccccee. 406
Producing a Pass/Fail Chart ... 406
Displaying a different set of reSultS eeiiiiiiiii 407
Debugging TESE SCHIPLIS ooviiiiiieeicie e e e e e e e e e e e 408
Designing and testing with debugging in mind ... 408
Overview Of the DEDUQGOET ...eeiiiiiiieee et e e e e e e e e e 408
Executing a script in the debugger ... 408
Starting the debUgOEr 409
[D1=T 10T [(=] g 0 T=T 01U 1P URP PP 409
Stepping into and over fUNCLIONS ..o 409
WOrKing WIth SCHIPEIS oo e e e e e 410
EXiting the debugger ..o 410
BrEAKPOINTS et e e e et e e e e e e e eaea s 410
Setting BreakpOinNtS ... a e e 410
Viewing BreakpointS ... 411
Deleting BreakpointS .o 411
VariaDIES e e e e e s e e e e 411
VIEWING VAIADIES et a e e e e e e 411
Changing the value of variableS ... 412

[y d o] (1151 (o] £ PP PPPPPPPPTT 412
OVErvieW Of EXPrESSIONS .oiiiiiiiiiiiiiitie et e ettt e e e e e e e e e bbb eeeaaaaaeeeeanns 412
Evaluate eXPreSSIONS ..oooiiiiiiiiiiiiteee ettt a e e a e e e e e e 412
Enabling VIiew Trace LISHING .oceeiiiiiiiiiiiitiieiee ettt e et e e e e e e e e e e e 412
Viewing a list Of MOAUIES ... e 413
View the debugging tranSCrIPLS ...eeeiiiiiiiiie e e e 413
[D1=T 10T fo [T oTo I N o 1< O P TP PPPPPPPTR 413
Checking the precedence of Operators ... 413

Code that NEVEI EXECULES ...ciiiiiiiiie ettt 413

Contents | 11

Global and local variables with the same name ..o, 413

Global variables with unexpected values ... 413
Incorrect use of break StateMeNtS ooviiiiiiii e 414
Incorrect values for loop variablesS ... 414
INFINITE TOOPS et e e e e e e s eeeeeas 414
TYPOGraphiCal ITOIS ...t e e e e e e e 414
Uninitialized variablesS ooo i 414
Troubleshooting the Open AQENt ccoiiiiii i, 415
Troubleshooting Apache Flex AppliCatiONS oooiiiiiiiii e 415
Why Cannot Silk Test Classic Recognize Apache Flex Controls? —ccccccceeeeeeenn. 415
Troubleshooting Basic WOrkflow ISSUBS cooiiiiiiiiii e 415
EITOr MBSSAgES ittt e e e e e e e e e et et et ettt e e e e bbbt bbb e a e e e e aeaaaas 416
AQENt NOt FESPONTING ..ttt e e e e e e e e e e e e e e e s e annbbeaeeeeeeas 416
Control iS NOt FESPONAING ..eeeiiiiiiiii i e e e e e e e e e e 416
Functionality Not Supported on the Open Agent ccuuiiiiiiiiiiiiiieeee e 416
Unable t0 CONNECE 10 AQENT ..t a e 417
WINAOW IS NOL ACHIVE .eeeiieeiiiiiiee e 417
WiIndow is Not enabled ... 418
WiINAOW IS NOL @XPOSEA ettt e e e e et e e e e e e e 418
WINAOW NOTFOUND e 419
Handling EXCEPLIONS ..ottt e e e et e e e e e e e e e e e aanns 419
Default Error HANAIING e 419
Custom Error HANAING ..eeeeeeiiiieee e 420
Trapping the exception NUMDBEr ... oo 421
Defining YOUr OWN @XCEPLIONS oooiiiiiiiitietie ettt e e e e e e e 421
Using do...except statements to trap and handle exceptions —cccccceeiiiiiiinnnen. 422
Programmatically Logging an EIrOr ..o 423
Performing More than One Verification in a Test Case cccccovviiiiiiiiiiiiiieeeeeeees 423
Writing an Error-Handling FUNCLION ... 425
EXCEPLION VAlUES oot e e e 426
Troubleshooting Java APPlICAtIONS ooiii i 430
What Can | Do If the Silk Test Java File Is Not Included in a Plug-In? 430
What Can | Do If Java Controls In an Applet Are Not Recognized? 430
Multiple MachineS TESHNG ...eeeiiiiiiieiii it a e e e e e e e e e e e e e e e e eaans 430
Setting Up the Recovery System for Multiple Local Applications —ccccvveeeee. 431
L0V T =T 0] 61N PP P U PP PRPTPRRR 432
TWO_APPS.INC ettt e e e e e e e et e e e e e e e e e e s annb e e 432
Other ProbIEMS oo e e 438
Adding a Property to the RECOrder ... 438
Cannot Double-Click a Silk Test Classic File and Open Silk Test Classic 438
Cannot Extend AnyWin, Control, or MoveableWin Classes ccccccoviiiiiiiiiieennn. 439
Cannot 0pen results file oo 439
Common Scripting Problems ... 439
Conflict With VIrUS DELECIOIS ..ocoiiiiieei ettt 440
Displaying the Euro Symbol ..o 441
Do | Need Administrator Privileges to Run Silk Test Classic? —cccoooiiiiiiiieeeen. 441
General Protection FAUILS ...oooiiiiiiiii e 441
Running Global Variables from a Test Plan Versus Running Them from a Script
... 442
Include File or Script Compiles but Changes are Not Picked Up coociiiiieeeeen. 442
Library Browser Not Displaying User-Defined Methods ..., 443
Maximum Size of Silk Test ClassiC FileS oevviiiieiee e 443
Recorder Does Not Capture All ACHIONS ...oooiiiiiiiiee e 444
Relationship between Exceptions Defined in 4test.inc and Messages Sent To the Result File
... 444
The 4Test Editor Does Not Display Enough Characters ... 444

12 | Contents

StoppINg @ TESE PIAN e 445

Using a Property Instead of a Data Member ... 445

Using File Functions to Add Information to the Beginning of a File 445

Why Does the Str Function Not Round Correctly? ..., 446
TroubleShOOtING PrOJECES ...t e e e e e e e e e e e e as 446
Files Not Found When Opening ProjeCt cooiiiiiiiiiiiiiiiiieeee e 446

Silk Test Classic Cannot Load My Project File ... 446

Silk Test Classic Cannot Save Files to My Project cccccciiiiiiiiiiiiiiiiiieeeeeee 447

Silk Test ClassiC DOES NOt RUN ...t 447

My Files No Longer Display In the Recent Files LiSt ccouviiiiiiiiiiiiiiieeee, 447
Cannot Find Items IN ClasSIC 4TESE ...uuiiiiiiiiieeee et 448
Editing the Project FIleS ... e 448
RECOGNILION ISSUBS ..ttt e e e e e e e e e e e e e e e s e annbeereees 448
How Can the Application Developers Make Applications Ready for Automated Testing?
... 448

LI oL PP PP PP PP UPUPPPPP PPN 449
Example Test Cases for the Find Dialog BOX — ..oooooeeiiiiiiiiiiiiieieeeeeeee e 449

When to use the Bitmap TOOI oooiiiii e 450
Troubleshooting Web AppliCatioNS ..o 450
What Can | Do If the Page | Have Selected IS Empty? ... 450

Why Do | Get an Error Message When | Set the Accessibility Extension? — 450
Using the Runtime Version of Silk Test ClasSIC cccccceiiiieiiiieeeeeeeeeeeeiiiins 451
Installing the RUNLIME VEISION ..ot a e e e 451
Starting the RUNIIME VEISION . 451
Comparing Silk Test Classic and Silk Test Classic Runtime Menus and Commands 451
(€7 [0151ST- 1 Y/ 462
ATESE ClASSES eeiiiiiiiiiiiia e e e ettt e e e oo oo oottt et et e e e e e e e e e e aa bbb ettt e e e e e e e e e e e e nbnbreaeeeaaaaeaaas 462
4Test-Compatible Information or Methods —oooiiiiiiiii e 462
Abstract WINdowing TOOIKIt ...coiiiiiii i e e e e e e 462
o Tolot=T a1 To ol o= =T =1 ST TPT PR 462
= To =] o | TP PP UP PP PTTPTPRTRR 462
=T o] o] 1= PP TR 463
Yo o [Tor= Vi o] 1] r= 1 (= PP U T PP O PPPRURTP 463
L] o] U (TP PO TP 463
= oL I (V1 = I T O PO PP PP OTPP 463
DASE SEALE oo et a e e e e e eas 463
DIdIrECIONAI TEXE et e e e e e e e eeaeaaeas 463
2 V4= oo o [PP T PP OPOPPP 463
(o= | 1RS] r= To3 G PP PPPPRPRTRP 464
(o3 011 [0 o] o] = od AR U TP PPPRUTTR 464
Lol = TR TP 464
ClaSS lIDFAIY ettt e e e e e e e e aaaaeas 464
(oo S o 0 F=T o] o] o [T PPPRUTTP 464
L0 F= S (o 1 TP OU TSP 464
(ol [=T o) =T == L TP PPPTPUTRRN 464
(olU 1S3 (0] 1 4 1o o] [T o AT U UUT TR 464
data-ariVEN TESE CASE oottt e e e e e e e e e e e e e b r e e e e e e e e e as 465
(o Fo Y= 01T 0] 0 1= ST U UUT TR 465
(o l=Tod = U= Vi o] R TP 465
DefaUltBASESIAE ...coiiiiiiiiiiiit ettt e e e e e e e e e e e eeaaaa s 465
[0 [F= Tod 1| (o PPPPPPPRPOE 465
DIffErENCE VIBWET ettt e e ettt e e e e e e e e e s e ab b e b e e eeaaaaaeeaaas 465
double-byte character Set (DBCS) ..ooiiiiiiiiiiiiee e 465
dyNamicC INSLANTIALION ueieiiiiiii et e e e e e e e s e et e e e e e e e e e e e e e annnenes 465
dynamicC INK IDrary (DLL) ..ottt e e et e e e e e e e e e e e e anees 466
=T aF=1 o] 11 To TR TP PUPP PP 466

Contents | 13

14 | Contents

12> Cod=] 1[0] o PP PPPRTPTRR 466

L1 L0 1= 1= PP P PP PUPPPPPPPPPPRPN 466
fully qualified ODJECE NAME . e 466
(oo 8] ol e =3 ol ¢10] 1 o] o NPT PPPPURPTPT 466
PN ES e r e e e 467
hierarchy of GUI ODJECES ... e 467
NOSE MACKHING et e e as 467
1] 1C) Y T PP T TP 467
HUNGArian NOTALION .ot ee e e e e e e e e e e e e e e e e aannnes 471
o L=T 0111 PP PP PP P PPPPPPPPPPRPRN 472
INCIUAE I8 et e e st e e st e s s e s 472
internationalization or globalization ... 472
Java Database Connectivity (JDBC) ...uuiiiiiiiieaiiii it 472
Java Development Kit (JDK) oot e e e e e e 472
Java Foundation ClasSes (JFC) i a e e 472
Java Runtime Environment (JRE) ..o 472
Java Virtual Machine (JVM) e e e e e e 472
JAVABEANS ..o e 473
= 111 =T o3 | | S PP PPTPPPT 473
oo | PP PO PPPPPPRTT 473
[EVEIS OF IOCALIZALION ..ot 473
ToT=To I (=11 1] o [PP PPPPPPRPRP 473
[oTor=1 7421 1T] o T PP P PP PP PPPPPPPN 473
localize an appliCatioON ..o e 473
[oTor= 1 (o] TP PP PPP P PTPPPPRN 473
ToTo[Tor=1 I 11=T 7= T (o] VU T TP PP 474
MANUAL TEST oot e e s et e e e e et r e e e e st et e e s e nanre e e e e ennnes 474
102 14 OO PP PPPRPP PRI 474
00 Fo TSy (=] g] = T PP PRI 474
MESSATE DOX oo et e e e e e e e e e 474
(00171 (oo TP PP PP P PP PRP PPN 474
00T 1O S T o | o I P T PO P PP PPPPRP 474
(00 Te = PP PP PP PPPPPPPN 475
MNOOBIESS it 475
Multibyte Character Set (MBCS) ...ooiiiiiiiii it a e e e 475
Multiple Application DOMAINS ((NET) it e e 475
NEJALIVE TESTING .eeiiiiiiii ittt et e e e e e e s e bbbttt e e e e e e e e e s e s annnbbbbeeeeaeaaaeaaas 475
NESted dECIAratioNS oiiiiiiiiiee e 475
NO-TOUCKH ((NET) oottt e e e e e e e e st e e e e e re e e e e 475
(o] o] =T ox TSP PPPPPRTTT 475
(01011] TP O PP PPP PP 476
Overloaded MENOA ...t e s 476
PArENt ODJECT oo a e e a e e as 476
PErfOrMAaNCE TESHING oooeiiiiii ettt e e et e e e e e e e e e e e e e s b b e b e e eeeeaaaaaeas 476
physical hierarchy ((NET) et e e e e e e e e e as 476
11T R) T To | o TP PPPPRTPRT 476
POIYMOIPRISIM ettt bbbt e e e e e e e e e s st e e e e e e aaeaeeaan 476
o] (0] 1T o AP P PR 477
o] 0] 01=T o =1 PP TP 477
(o U= oY PP TP T PPRPUTPPP 477
FECOVEIY SYSTOIM oottt e s e e e e e e e e e e e e e e e et eeee e e e enbeba b b bnn e e e e e e e e eeas 477
FEOIESSION TESHING oottt ettt e e e e ettt e e e e e e e e e e s e babbebe e e e e e aaeeeeeaaannnnes 477
FESUIS TIlE oo e e e e 477
o1 1] o] TP PP PPPPRRPTRR 477
o 1] o] 8 111 TP PPPPPPPRPE 478
SIAE-DY-SIAE ((NET) ittt e e e e e e e e s st e b e e e e e e e e e e e e e annnnenes 478

SIMPLIfied ChINESE et e e e e e e e as 478

Single-Byte Character Set (SBCS) oo 478
] 0] (=] ST T PP PUPPPPRTT 478
Standard Widget TOOIKIt (SWT) oo a e e 478
S E 1 (<] 11T 01 S TP RPUPUPPPPP PP 478
(S £= LU K 1] = TP UUTTPT SRR 479
LRI (1] 1] o T TP UUT TR 479
£ U] o] o] = 1 o TP PPPPPRTRP 479
] U 1 U PPPRURTRP 479
YY1 o PP TP 479
£}/ 101 0T < TP UUT TP 479
€21 OO PP PP PP OPPRPP P 479
TArget MACKINE et e e e e e e e e e e e e en e 480
L0101 o] F= 1= PP PTPP TR 480
1025 e (1S ot] o) 1o] o I PP PPPPPPRTT 480
TESEraME filE oo e a e 480
(STl oF= 1S = PSP P UURPPPPPP 480
(1S 0 o] = o TP OTPPPPUPPP 481
TOtalMEMOIrY PArAMELET ittt e e e e e e e e e e e e e e s e s et bbb e e eeeeaaaeeeas 481
TraditioNal ChINESE ...ttt e e e e e e e e e e s e e e e e e e e e e e e e aannnnes 481
(V22 L = L[T PP PTTP TP 481
Verification STAtEMENT ..o e e e e e e as 481
VISUAI 4TSt ittt e e e e e e e e e b e et e e e e e e e e e nbn e treaaaaaaae s 481
WINAOW ECIAratIONS ..ottt e e e e e e e e e e st bareeeaaaee s 481
111 ao [0 T o - o PP TP PPPTT 482
D= 11 TP TP PPPPPPPPPPP 482

Contents | 15

Licensing Information

Unless you are using a trial version, Silk Test requires a license.

The licensing model is based on the client that you are using and the applications that you want to be able
to test. The available licensing modes support the following application types:

Licensing Mode Application Type

Full * Web applications, including the following:

e Apache Flex
e Java-Applets
* Mobile Web applications.

e Android
« i0S

e Apache Flex

e Java AWT/Swing, including Oracle Forms

e Java SWT and Eclipse RCP

¢ .NET, including Windows Forms and Windows
Presentation Foundation (WPF)

¢ Rumba

¢ Windows API-Based

Note: To upgrade your license to a Full license,
visit www.borland.com.

Premium All application types that are supported with a Full
license, plus SAP applications.

Note: To upgrade your license to a Premium
license, visit www.borland.com.

y Note: A Silk Test license is bound to a specific version of Silk Test.

16 | Licensing Information

http://www.borland.com/contact/
http://www.borland.com/contact/

Getting Started

Silk Test Classic is the traditional Silk Test client. With Silk Test Classic you can develop tests using the
4Test language, an object-oriented fourth-generation language (4GL), which is designed specifically for QA
professionals. Silk Test Classic guides you through the entire process of creating test cases, running the
tests, and interpreting the results of your test runs.

Silk Test Classic supports the testing of a broad set of application technologies.
This section provides information to get you up and running with Silk Test Classic.

Note: If you have opted not to display the start screen when you start Silk Test Classic, you can check
for available updates by clicking Help > Check for Product Update.

Automation Under Special Conditions (Missing
Peripherals)

Basic product orientation

Silk Test Classic is a GUI testing product that tries to act like a human user in order to achieve meaningful
test results under automation conditions. A test performed by Silk Test Classic should be as valuable as a
test performed by a human user while executing much faster. This means that Silk Test Classic requires a
testing environment that is as similar as possible to the testing environment that a human user would
require in order to perform the same test.

Physical peripherals

Manually testing the Ul of a real application requires physical input and output devices like a keyboard, a
mouse, and a display. Silk Test Classic does not necessarily require physical input devices during test
replay. What Silk Test Classic requires is the ability of the operating system to perform keystrokes and
mouse clicks. The Silk Test Classic replay usually works as expected without any input devices connected.
However, some device drivers might block the Silk Test Classic replay mechanisms if the physical input
device is not available.

The same applies to physical output devices. A physical display does not necessarily need to be
connected, but a working video device driver must be installed and the operating system must be in a
condition to render things to the screen. For example, rendering is not possible in screen saver mode or if a
session is locked. If rendering is not possible, low-level replay will not work and high-level replay might also
not work as expected, depend on the technology that is used in the application under test (AUT).

Virtual machines

Silk Test Classic does not directly support virtualization vendors, but can operate with any type of
virtualization solution as long as the virtual guest machine behaves like a physical machine. Standard
peripherals are usually provided as virtual devices, regardless of which physical devices are used with the
machine that runs the virtual machine.

Cloud instances

From an automation point of view, a cloud instance is not different to a virtual machine. However, a cloud
instance might run some special video rendering optimization, which might lead to situations where screen
rendering is temporarily turned off to save hardware resources. This might happen when the cloud instance
detects that no client is actively viewing the display. In such a case, you could open a VNC window as a
workaround.

Getting Started | 17

Special cases

Application

launched

without any
window

(headless)

Remote
desktops,

terminal
services, and

remote
applications (all

vendors)

Known
automation
obstacles

Such an application cannot be tested with Silk Test Classic. Silk Test Classic needs to
hook to a target application process in order to interact with it. Hooking is not possible
for processes that do not have a visible window. In such a case you can only run
system commands.

If Silk Test Classic resides and operates within a remote desktop session, it will fully
operate as expected.

Note: You require a full user session and the remote viewing window needs to
be maximized. If the remote viewing window is not displayed for some reason,
for example network issues, Silk Test Classic will continue to replay but might
produce unexpected results, depending on what remote viewing technology is
used. For example, a lost remote desktop session will negatively impact video
rendering, whereas other remote viewing solutions might show no impact at all
once the viewing window was lost.

If Silk Test Classic is used to interact with the remote desktop, remote view, or remote
app window, only low-level techniques can be used, because Silk Test Classic sees
only a screenshot of the remote machine. For some remote viewing solutions even
low-level operations may not be possible because of security restrictions. For example,
it might not be possible to send keystrokes to a remote application window.

Silk Test Classic requires an interactively-logged-on full-user session. Disable anything
that could lock the session, for example screen savers, hibernation, or sleep mode. If
this is not possible because of organizational policies you could workaround such
issues by adding keep alive actions, for example moving the mouse, in regular
intervals or at the end of each test case.

i Note: Depending on the configuration of the actual testing environment and the
technologies that are used for the AUT, the virtualization, and the terminal
services, you may face additional challenges and limitations during the test
automation process.

Silk Test Product Suite

Silk Test is an automated testing tool for fast and reliable functional and regression testing. Silk Test helps
development teams, quality teams, and business analysts to deliver software faster, and with high quality.
With Silk Test you can record and replay tests across multiple platforms and devices to ensure that your
applications work exactly as intended.

The Silk Test product suite includes the following components:

18 | Getting Started

Silk Test Workbench — Silk Test Workbench is the quality testing environment that offers .NET scripting
for power users and easy to use visual tests to make testing more accessible to a broader audience.
SilkANET — The Silk4NET Visual Studio plug-in enables you to create Visual Basic or C# test scripts
directly in Visual Studio.

Silk4J — The Silk4J Eclipse plug-in enables you to create Java-based test scripts directly in your Eclipse

environment.

Silk Test Classic — Silk Test Classic is the traditional, 4Test Silk Test product.

Silk Test Agents — The Silk Test Agent is the software process that translates the commands in your
tests into GUI-specific commands. In other words, the Agent drives and monitors the application you are
testing. One Agent can run locally on the host machine. In a networked environment, any number of
Agents can run on remote machines.

o= e o

Visual test .NET script [«] Vlsu;lg_a sI€ Java 4Test
.NET Testing Framework Java Testing Framework
(NTF) (JTF)
r | | r
Classic
Open Agent
pen Ag Agent

|
Web Other
application application

The product suite that you install determines which components are available. To install all components,
choose the complete install option. To install all components with the exception of Silk Test Classic, choose
the standard install option.

WPF
application

SAP
application

Silk Test Classic Ul

The desktop of Silk Test Classic is the starting point for all test activities.

The main parts of the Silk Test Classic Ul are the following:

Menu Bar Contains all menus that are available for Silk Test Classic. For additional information
about the available menus and menu commands, see Silk Test Classic Menus.

Toolbar The toolbars provide one-click access to commonly used actions.

Basic The Basic Workflow bar guides you through the process of creating a test case. To

Workflow Bar create and execute a test case, click each icon in the workflow bar to perform the relevant
procedures. The procedures and the appearance of the workflow bar differ depending on
whether your test uses the Open Agent or the Classic Agent.

For additional information on the basic workflow for the Open Agent, see Basic Workflow
for the Open Agent.

For additional information on the basic workflow for the Classic Agent, see Basic
Workflow for the Classic Agent.

Start Page The Start Page is your launching point into the functionality of Silk Test Classic, enabling
you to access commonly used actions and useful resources.

Contacting Micro Focus

Micro Focus is committed to providing world-class technical support and consulting services. Micro Focus
provides worldwide support, delivering timely, reliable service to ensure every customer's business
success.

Getting Started | 19

20 | Getting Started

All customers who are under a maintenance and support contract, as well as prospective customers who
are evaluating products, are eligible for customer support. Our highly trained staff respond to your requests
as quickly and professionally as possible.

Visit http://supportline.microfocus.com/assistedservices.asp to communicate directly with Micro Focus
SupportLine to resolve your issues, or email supportline@microfocus.com.

Visit Micro Focus SupportLine at http://supportline.microfocus.com for up-to-date support news and access
to other support information. First time users may be required to register to the site.

Information Needed by Micro Focus SupportLine

When contacting Micro Focus SupportLine, please include the following information if possible. The more
information you can give, the better Micro Focus SupportLine can help you.

« The name and version number of all products that you think might be causing an issue.

e Your computer make and model.

« System information such as operating system name and version, processors, and memory details.
« Any detailed description of the issue, including steps to reproduce the issue.

» Exact wording of any error messages involved.

* Your serial number.

To find out these numbers, look in the subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

http://supportline.microfocus.com/assistedservices.asp
http://supportline.microfocus.com

What's New In Silk Test Classic

Silk Test Classic supports the following new features:

Mobile Browser Support

Use your existing scripts and run them on a mobile device to gain confidence that your Web 2.0 application
will work on mobile devices as well. There is no need to create an additional script which can be executed
only on the mobile device, you can just simply re-use the existing browser script that you have created for

the Desktop-Browsers.

Easy Record and Replay
The new unified workflow makes it easy to record and replay scripts against any application. Even mobile

browser recording is included and comes with a new intuitive and more interactive way of recording. This
guarantees a much better script, as you can select what should be in the script during the actual recording

e = = . o - o Sale Browser LE)
— -
a ﬁlmunuwl’u o
@ - @ -
g - L
L {,‘ .
b

e

Microsoft Windows 8.1 Support

You can now test your applications with Silk Test in Microsoft Windows 8.1.

/ Note: Metro apps are not supported.

What's New in Silk Test Classic

21

Internet Explorer Support

Silk Test now includes recording and playback support for applications running in:

* Internet Explorer 11

Mozilla Firefox Support

Silk Test now includes playback support for applications running in:

* Mozilla Firefox 30
e Mozilla Firefox 31
¢ Mozilla Firefox 32
e Mozilla Firefox 33
* Mozilla Firefox 34

Google Chrome Support

Silk Test now includes playback support for applications running in:

e Google Chrome 36
e Google Chrome 37
* Google Chrome 38
e Google Chrome 39
e Google Chrome 40

Rumba Support

Silk Test now supports Rumba 9.1 and 9.2. Additionally, Silk Test now supports testing the Unix Display.

Apache Flex Support

Silk Test now supports Apache Flex 4.10 applications.

Agent-Specific Documents

Silk Test Classic provides different functionality with each agent. To enable easy access to the functionality
provided by each agent, Silk Test Classic now provides a separate PDF Help for each agent. To access the
PDFs, click Start > All Programs > Silk > Silk Test > Documentation > Silk Test Classic.

22 | What's New in Silk Test Classic

Open Agent

The Silk Test agent is the software process that translates the commands in your test scripts into GUI-
specific commands. In other words, the agent drives and monitors the application you are testing. One
agent can run locally on the host machine. In a networked environment, any number of agents can run on
remote machines.

Silk Test Classic provides two types of agents, the Open Agent and the Classic Agent. The agent that you
assign to your project or script depends on the type of application that you are testing.

When you create a new project, Silk Test Classic automatically uses the agent that is currently selected in
the toolbar. For information about the supported technology domains for each agent, refer to Testing in
Your Environment.

The Open Agent supports dynamic object recognition to record and replay test cases that use XPath
queries to find and identify objects. With the Open Agent, one Agent can run locally on the host machine.
In a networked environment, any number of Agents can replay tests on remote machines. However, you
can record only on a local machine.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

How Silk Test Classic Assigns an Agent to a Window
Declaration

When you record a test with the Open Agent set as the default agent, Silk Test Classic includes a locator to
identify the top-most window of the test application. For instance, this window declaration for a Notepad
application that uses the Open Agent includes the following locator:

window MainWin UntitledNotepad
locator "/MainWin[@caption="Untitled - Notepad™]"

Silk Test Classic determines which Agent to use by detecting whether a locator or Find or FindAll
command is used. If no locator or Find or FindAll command is present, Silk Test Classic uses the
Classic Agent.

In earlier releases, the TAG_IS_OPEN_AGENT tag was defined on the root window declaration of a control
hierarchy to identify that the Open Agent should be used. This is no longer necessary. When Silk Test
Classic detects a locator on the top-most window or detects a Find or FindAll command, the Open
Agent is automatically used. When a window declaration contains both locators and tags and either could
be used for resolving the window, check or uncheck the Prefer Locator check box in the General Options
dialog box to determine which method is used.

Agent Options

The following table lists the AgentClass options that can be manipulated with the GetOption method
and SetOption method. Only options that can be manipulated by the user are listed here; other options
are for internal use only.

Agent Option Agent Supported Description

OPT_AGENT_CLICKS_ONLY Classic Agent BOOLEAN

Open Agent | 23

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

24 | Open Agent

Agent Option

Agent Supported

Description

OPT_ALTERNATE_RECORD_BREAK

OPT_APPREADY_RETRY

OPT_APPREADY_TIMEOUT

OPT_BITMAP_MATCH_COUNT

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

FALSE to use the API-based clicks;
TRUE to use agent-based clicks. The
default is FALSE. This option applies
to clicks on specific HTML options
only. For additional information, see
API Click Versus Agent Click.

This option can be set through the
Compatibility tab on the Agent
Options dialog box,
Agent.SetOption, or
BindAgentOption(), and may be
retrieved through
Agent.GetOption().

BOOLEAN

TRUE pauses recording when Ctrl
+Shift is pressed. Otherwise, Ctrl+Alt
is used. By default, this is FALSE.

NUMBER

The number of seconds that the agent
waits between attempts to verify that
an application is ready. The agent
continues trying to test the application
for readiness if it is not ready until the
time specified with
OPT_APPREADY_TIMEOUT is
reached.

NUMBER

The number of seconds that the agent
waits for an application to become
ready. If the application is not ready
within the specified timeout, Silk Test
Classic raises an exception.

To require the agent to check the
ready state of an application, set
OPT_VERIFY_APPREADY.

This option applies only if the
application or extension knows how to
communicate to the agent that it is
ready. To find out whether the
extension has this capability, see the
documentation that comes with the
extension.

INTEGER

The number of consecutive snapshots
that must be the same for the bitmap
to be considered stable. Snapshots
are taken up to the number of

Agent Option Agent Supported Description

seconds specified by
OPT_BITMAP_MATCH_TIMEOQOUT,
with a pause specified by
OPT_BITMAP_MATCH_INTERVAL
occurring between each snapshot.

Related methods:

« CaptureBitmap

+ GetBitmapCRC

+ SYS_CompareBitmap
« VerifyBitmap

+ WaitBitmap

OPT_BITMAP_MATCH_INTERVAL Classic Agent INTEGER

Open Agent The time interval between snapshots
to use for ensuring the stability of the
bitmap image. The snapshots are
taken up to the time specified by
OPT_BITMAP_MATCH_TIMEOUT.

Related methods:

« CaptureBitmap

+ GetBitmapCRC

- SYS_CompareBitmap
« VerifyBitmap

- WaitBitmap

OPT_BITMAP_MATCH_TIMEOUT Classic Agent NUMBER

Open Agent The total time allowed for a bitmap
image to become stable.

During the time period, Silk Test
Classic takes multiple snapshots of
the image, waiting the number of
seconds specified with
OPT_BITMAP_MATCH_TIMEOUT
between snapshots. If the value
returned by
OPT_BITMAP_MATCH_TIMEOUT is
reached before the number of
bitmaps specified by
OPT_BITMAP_MATCH_COUNT
match, Silk Test Classic stops taking
snapshots and raises the exception
E_BITMAP_NOT_STABLE.

Related methods:
« CaptureBitmap

+ GetBitmapCRC
« VerifyBitmap

Open Agent | 25

26 | Open Agent

Agent Option

Agent Supported

Description

OPT_BITMAP_PIXEL_TOLERANCE

OPT_CLASS_MAP

OPT_CLOSE_CONFIRM_BUTTONS

OPT_CLOSE_DIALOG_KEYS

OPT_CLOSE_MENU_NAME

OPT_CLOSE_WINDOW_BUTTONS

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Classic Agent

Open Agent

- WaitBitmap

INTEGER

The number of pixels of difference
below which two bitmaps are
considered to match. If the number of
pixels that are different is smaller than
the number specified with this option,
the bitmaps are considered identical.
The maximum tolerance is 32767
pixels.

Related methods:

+ SYS CompareBitmap
« VerifyBitmap
« WaitBitmap

LIST OF STRING

The class mapping table for custom
objects, with each entry in the list in
the form custom_class =
standard_class.

LIST OF STRING

The list of buttons used to close
confirmation dialog boxes, which are
dialog boxes that display when
closing windows with the methods
Close, CloseWindows, and
Exit.

LIST OF STRING

The keystroke sequence used to
close dialog boxes with the methods
Close, CloseWindows, and
Exit.

STRING

A list of strings representing the list of
menu items on the system menu used
to close windows with the methods
Close, CloseWindows, and
Exit.

Default is Close.

LIST OF STRING

The list of buttons used to close
windows with the methods Close,
CloseWindows, and EXit.

Agent Option Agent Supported Description

OPT_CLOSE_WINDOW_MENUS Classic Agent LIST OF STRING

Open Agent The list of menu items used to close
windows with the methods Close,
CloseWindows, and EXit.

OPT_CLOSE_WINDOW_TIMEOUT Classic Agent NUMBER

Open Agent The number of seconds that Silk Test
Classic waits before it tries a different
close strategy for the Close method
when the respective window does not
close. Close strategies include Alt+F4
or sending the keys specified by
OPT_CLOSE_DIALOG_KEYS. By
default, this is 2.

OPT_COMPATIBLE_TAGS Classic Agent BOOLEAN

TRUE to generate and operate on
tags compatible with releases earlier
than Release 2; FALSE to use the
current algorithm.

The current algorithm affects tags that
use index numbers and some tags
that use captions. In general, the
current tags are more portable, while
the earlier algorithm generates more
platform-dependent tags.

Enables you to use the behavior of
the specified Silk Test Classic version
for specific features, when the
behavior of these features has
changed in a later version.

Example strings:

« 12
- 11.1
+ 13.0.1

By default, this option is not set.

OPT_COMPRESS_WHITESPACE Classic Agent BOOLEAN

TRUE to replace all multiple
consecutive white spaces with a
single space for comparison of tags.
FALSE (the default) to avoid replacing
blank characters in this manner.

This is intended to provide a way to
match tags where the only difference
is the number of white spaces
between words.

Open Agent | 27

28 | Open Agent

Agent Option

Agent Supported

Description

OPT_DROPDOWN_PICK_BEFORE_GET

OPT_ENABLE_ACCESSIBILITY

Classic Agent

Classic Agent

Open Agent

If at all possible, use "wildcard "
instead of this option.

This option can increase test time
because of the increased time it takes
for compressing of white spaces in
both source and target tags. If Silk
Test Classic processes an object that
has many children, this option may
result in increased testing times.

The tag comparison is performed in
two parts. The first part is a simple
comparison; if there is a match, no
further action is required. The second
part is to compress consecutive white
spaces and retest for a match.

Due to the possible increase in test
time, the most efficient way to use this
option is to enable and disable the
option as required on sections of the
testing that is affected by white space.
Do not enable this option to cover
your entire test.

Tabs in menu items are processed
before the actual tags are compared.
Do not modify the window
declarations of frame files by adding
tabs to any of the tags.

BOOLEAN

TRUE to drop down the combo box
before trying to access the content of
the combo box. This is usually not
needed, but some combo boxes only
get populated after they are dropped
down. If you are having problems
getting the contents of a combo box,
set this option to TRUE.

Default is FALSE.

BOOLEAN

TRUE to enable Accessibility when
you are testing a Win32 application
and Silk Test Classic cannot
recognize objects. Accessibility is
designed to enhance object
recognition at the class level. FALSE
to disable Accessibility.

Note: For Mozilla Firefox and
Google Chrome, Accessibility
is always activated and cannot
be deactivated.

Agent Option Agent Supported

Description

OPT_ENSURE_ACTIVE_WINDOW Open Agent

OPT_EXTENSIONS Classic Agent

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES Cjassic Agent

OPT_ITEM_RECORD Open Agent

OPT_KEYBOARD_DELAY Classic Agent

Open Agent

OPT_KEYBOARD_LAYOUT Classic Agent

Default is FALSE.

BOOLEAN

TRUE ensures that the main window
of the call is active before a call is
executed. By default, this is FALSE.

LIST OF STRING

The list of loaded extensions. Each
extension is identified by the name of
the .dll or .vxx file associated with the
extension.

Unlike the other options,
OPT_EXTENSIONS is read-only and
works only with GetOption().

BOOLEAN

TRUE returns an empty list if no text
is selected. FALSE removes any
blank lines within the selected text.

By default, this is TRUE.

BOOLEAN

For SWT applications, TRUE records
methods that invoke tab items directly
rather than recording the tab folder
hierarchy. For example, you might
record
SWTControls.SWTTabControl
1._TabFolder.Select(). If this
option is set to FALSE, SWT tab
folder actions are recorded. For
example, you might record
SWTControls.SWTTabControl
1.Select("TabFolder'™)

By default, this is TRUE.

NUMBER

Default is 0.02 seconds; you can
select a number in increments of .001
from .001 to up to 1000 seconds.

Be aware that the optimal number can
vary, depending on the application
that you are testing. For example, if
you are testing a Web application, a
setting of .001 radically slows down
the browser. However, setting this to 0
(zero) may cause basic application
testing to fail.

STRING

Open Agent | 29

30 | Open Agent

Agent Option Agent Supported

Description

OPT_KILL_HANGING_APPS Classic Agent

Open Agent

OPT_LOCATOR_ATTRIBUTES_CASE_SENSIT Qpen Agent
IVE

OPT_MATCH_ITEM_CASE Classic Agent

Open Agent

OPT_MENU_INVOKE_POPUP Classic Agent

OPT_MENU_PICK_BEFORE_GET Classic Agent

Provides support for international
keyboard layouts in the Windows
environment. Specify an operating-
system specific name for the
keyboard layout. Refer to the
Microsoft Windows documentation to
determine what string your operating
system expects. Alternatively, use the
GetOption method to help you
determine the current keyboard
layout, as in the following example:
Print (Agent.GetOption
(OPT_KEYBOARD_LAYOUT))

BOOLEAN

Specifies whether to shutdown the
application if communication between
the Agent and the application fails or
times out. Set this option to TRUE
when testing applications that cannot
run multiple instances. By default, this
is FALSE.

BOOLEAN

Set to Yes to add case-sensitivity to
locator attribute names, or to NO to
match the locator names case
insensitive.

BOOLEAN

Set this option to TRUE to have Silk
Test Classic consider case when
matching items in combo boxes, list
boxes, radio lists, and popup lists, or
set this option to FALSE to ignore
case differences during execution of a
Select method. This option has no
effect on a Ver i fy function or a
VerifyContents method.

STRING

The command, keystrokes or mouse
buttons, used to display pop-up
menus, which are menus that popup
over a particular object. To use mouse
buttons, specify <button1>,
<button2>, or <button3> in the
command sequence.

BOOLEAN

TRUE to pick the menu before
checking whether an item on it exists,

Agent Option Agent Supported Description

is enabled, or is checked, or FALSE to
not pick the menu before checking.
When TRUE, you may see menus
pop up on the screen even though
your script does not explicitly call the
Pick method.

Default is FALSE.

OPT_MOUSE_DELAY Classic Agent NUMBER

Open Agent The delay used before each mouse
event in a script. The delay affects
moving the mouse, pressing buttons,
and releasing buttons. By default, this

is 0.02.
OPT_MULTIPLE_TAGS Classic Agent BOOLEAN
Open Agent TRUE to use multiple tags when

recording and playing back. FALSE to
use one tag only, as done in previous
releases.

This option cannot be set through the
Agent Options dialog box. Its default
is TRUE and is only set by the INI file,
option file, and through
Agent.SetOption.

This option overrides the Record
multiple tags check box that displays
in both the Recorder Options dialog
box and the Record Window
Declaration Options dialog box.

If the Record multiple tags check
box is grayed out and you want to
change it, check this setting.

OPT_NO_ICONIC_MESSAGE_BOXES Classic Agent BOOLEAN

TRUE to not have minimized windows
automatically recognized as message
boxes.

Default is FALSE.
OPT_PAUSE_TRUELOG Classic Agent BOOLEAN

TRUE to disable TrueLog at runtime
for a specific portion of a script, or
FALSE to enable TruelLog.

This option has no effect if Truelog is
not enabled.

Default is FALSE.

OPT_PLAY_MODE Classic Agent STRING

Open Agent | 31

32 | Open Agent

Agent Option Agent Supported

Description

Open Agent
OPT_RADIO_LIST Classic Agent

OPT_RECORD_LISTVIEW_SELECT_BY_TYP Qpen Agent
EKEYS

OPT_RECORD_MOUSE_CLICK_RADIUS Open Agent

OPT_RECORD_MOUSEMOVES Classic Agent
Open Agent

OPT_RECORD_SCROLLBAR_ABSOLUT Open Agent

Used to specify playback mechanism.
For additional information for
Windows applications, see Playing
Back Mouse Actions.

NUMBER

The time in seconds to wait after
invoking a function or writing
properties. Increase this delay if you
experience replay problems due to
the application taking too long to
process mouse and keyboard input.
By default, this is 0.00.

BOOLEAN

TRUE to view option buttons as a
group; FALSE to use the pre-Release
2 method of viewing option buttons as
individual objects.

BOOLEAN

TRUE records methods with typekeys
statements rather than with keyboard
input for certain selected values. By
default, this is FALSE.

INTEGER

The number of pixels that defines the
radius in which a mouse down and
mouse up event must occur in order
for the Open Agent to recognize it as
a click. If the mouse down and mouse
up event radius is greater than the
defined value, a PressMouse and
ReleaseMouse event are scripted.
By default, this is set to 5 pixels.

BOOLEAN

TRUE records mouse moves for Web
pages, Win32 applications, and
Windows Forms applications that use
mouse move events. You cannot
record mouse moves for child
domains of the xBrowser technology
domain, for example Apache Flex and
Swing. By default, this is FALSE.

BOOLEAN

TRUE records scroll events with
absolute values instead of relative to
the previous scroll position. By
default, this is FALSE.

Agent Option Agent Supported Description

TRUE to use pre-Release 2 versions
of GetChildren, GetClass, and
GetParent, or FALSE to use
current versions.

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT Qpen Agent BOOLEAN

TRUE to remove the focus from a
window before text is captured. By
default, this is FALSE.

OPT_REPLAY_HIGHLIGHT_TIME Open Agent NUMBER

The number of seconds before each
invoke command that the object is
highlighted.

By default, this is 0, which means that
objects are not highlighted by default.

OPT_REPLAY_MODE Classic Agent NUMBER

Open Agent The replay mode defines how replays
on a control are executed: They can
be executed with mouse and
keyboard (low level) or using the API
(high level). Each control defines
which replay mode is the default
mode for the control. When the
default replay mode is enabled, most
controls use a low level replay. The
default mode for each control is the
mode that works most reliably. If a
replay fails, the user can change the
replay mode and try again. Each
control that supports that mode will
execute the replay in the specified
mode. If a control does not support
the mode, it executes the default
mode. For example, if PushButton
supports low level replay but uses
high level replay by default, it will use
low level replay only if the option
specifies it. Otherwise, it will use the
high level implementation.

Possible values include 0, 1, and 2. 0
is default, 1 is high level, 2 is low
level. By default, this is 0.

OPT_REQUIRE_ACTIVE Classic Agent BOOLEAN

Setting this option to FALSE allows
4Test statements to be attempted
against inactive windows.

Open Agent | 33

34 | Open Agent

Agent Option

Agent Supported

Description

OPT_SCROLL_INTO_VIEW

OPT_SET_TARGET_MACHINE

OPT_SHOW_OUT_OF VIEW

OPT_SYNC_TIMEOUT

Classic Agent

Classic Agent

Classic Agent

Open Agent

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

BOOLEAN

TRUE to scroll a control into view
before recording events against it or
capturing its bitmap. This option
applies only when
OPT_SHOW_OUT_OF_VIEW is set
to TRUE. This option is useful for
testing Web applications in which
dialog boxes contain scroll bars. This
option applies only to HTML objects
when you are using the DOM
extension.

STRING

The IP address and port number to
use for the target machine in
distributed testing using the
SetOption method. To set the
target machine, type:
Agent._SetOption(OPT_SET T
ARGET_MACHINE, <
IPAddress >:< PortNumber

>).

Note: A colon must separate
the IP address and the port
number.

To return the IP address and port
number of the current target machine,
type:
Agent.GetOption(OPT_SET T
ARGET_MACHINE)

BOOLEAN

TRUE to have the agent see a control
not currently scrolled into view;
FALSE to have the Agent consider an
out-of-view window to be invisible.
This option applies only to HTML
objects when you are using the DOM
extension.

NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: When you upgrade from a
Test version prior to Silk Test 13,
and you had set the

Silk

Agent Option Agent Supported Description

OPT_XBROWSER_SYNC_TIMEOUT
option, the Options dialog box wi
display the default value of the
OPT_SYNC_TIMEOQUT, aIthougJ:
your timeout is still set to the valjie
you have defined.

OPT_TEXT_NEW_LINE Classic Agent STRING

The keys to type to enter a new line
using the SetMul tiText method
of the TextField class. The default
value is "<Enter>".

Specifies the name of the translation
table to use. If a translation DLL is in
use, the QAP_SetTranslateTable
entry point is called with the string
specified in this option.

OPT_TRIM_ITEM_SPACE Classic Agent BOOLEAN

TRUE to trim leading and trailing
spaces from items on windows, or
FALSE to avoid trimming spaces.

OPT_USE_ANSICALL Classic Agent BOOLEAN

If set to TRUE, each following DLL
function is called as ANSI. If set to
FALSE, which is the default value,
UTF-8 DLL calls are used. For single
ANSI DLL calls you can also use the
ansicall keyword.

OPT_USE_SILKBEAN Classic Agent BOOLEAN

TRUE to enable the agent to interact
with the SilkBean running on a UNIX
machine.

Default is FALSE.

OPT_VERIFY_ACTIVE Classic Agent BOOLEAN

Open Agent TRUE to verify that windows are
active before interacting with them;
FALSE to not check. See Active and
Enabled Statuses for information
about how this option affects Silk Test
Classic methods.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_APPREADY Classic Agent BOOLEAN

Open Agent | 35

36 | Open Agent

Agent Option

Agent Supported

Description

OPT_VERIFY_CLOSED

OPT_VERIFY_COORD

OPT_VERIFY_CTRLTYPE

OPT_VERIFY_ENABLED

OPT_VERIFY_EXPOSED

Classic Agent

Classic Agent

Classic Agent

Classic Agent

Classic Agent

TRUE to synchronize the agent with
the application under test. Calls to the
agent will not proceed unless the
application is ready.

BOOLEAN

TRUE to verify that a window has
closed. When FALSE, Silk Test
Classic closes a window as usual, but
does not verify that the window
actually closed.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

BOOLEAN

TRUE to check that coordinates
passed to a method are inside the
window before the mouse is pressed,;
FALSE to not check. Typically, you
use the checking feature unless you
need to be able to pass coordinates
outside of the window, such as
negative coordinates.

If this option is set to TRUE and
coordinates fall outside the window,
Silk Test Classic raises the exception
E_COORD_OUTSIDE_WINDOW.

BOOLEAN

TRUE to check that objects are of the
specified type before interacting with
them; FALSE to not check.

When TRUE, Silk Test Classic
checks, for example, that an object
that claims to be a listbox is actually a
listbox. For custom objects, you must
map them to the standard types to
prevent the checking from signaling
an exception, using the Silk Test
Classic class map facility.

Default is FALSE.

BOOLEAN

TRUE to verify that windows are
enabled before interacting with them;
FALSE to not check. For information
about how this option affects various
Silk Test Classic methods, see Active
and Enabled Statuses.

BOOLEAN

Agent Option Agent Supported Description

TRUE to verify that windows are
exposed (that is, not covered,
obscured, or logically hidden by
another window) before interacting
with them; FALSE to not check.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_RESPONDING Classic Agent BOOLEAN

Setting this option to FALSE
suppresses "control not responding"

errors.
OPT_VERIFY_UNIQUE Classic Agent BOOLEAN
Open Agent TRUE to raise the

E_WINDOW_NOT_UNIQUE
exception upon encountering two or
more windows with the same tag;
FALSE to not raise the exception.
When OPT_VERIFY_UNIQUE is
FALSE, Silk Test Classic ignores the
duplication and chooses the first
window with that tag that it
encounters.

You can use a modified tag syntax to
refer to a window with a non-unique
tag, even when
OPT_VERIFY_UNIQUE is TRUE. You
can either include an index number
after the object, as in
myDialog("Cancel[2]"), or you can
specify the window by including the
text of a child that uniquely identifies
the window, such as "myDialog/
uniqueText/...", where the unique text
is the tag of a child of that window.

OPT_WAIT_ACTIVE_WINDOW Open Agent NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active. If a window does not become
active within the specified time, Silk
Test Classic raises an exception.

To require the Open Agent to check
the active state of a window, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW is set
to 2 seconds.

Open Agent | 37

38 | Open Agent

Agent Option

Agent Supported

Description

OPT_WAIT_ACTIVE_WINDOW_RETRY

OPT_WINDOW_MOVE_TOLERANCE

OPT_WINDOW_RETRY

Open Agent

Classic Agent

Classic Agent

Open Agent

NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active before trying to verify again that
the window is active.

To require the Open Agent to retry the
active state of an object, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW_RET
RY is set to 0.5 seconds.

INTEGER

The number of pixels allowed for a
tolerance when a moved window does
not end up at the specified position.

For some windows and GUIs, you
cannot always move the window to
the specified pixel. If the ending
position is not exactly what was
specified and the difference between
the expected and actual positions is
greater than the tolerance, Silk Test
Classic raises an exception.

On Windows, the tolerance can be set
through the Control Panel, by setting
the desktop window granularity
option. If the granularity is zero, you
can place a window at any pixel
location. If the granularity is greater
than zero, the desktop is split into a
grid of the specified pixels in width,
determining where a window can be
placed. In general, the tolerance
should be greater than or equal to the
granularity.

NUMBER

The number of seconds Silk Test
Classic waits between attempts to
verify a window, if the window does
not exist or is in the incorrect state.
Silk Test Classic continues trying to
find the window until the time
specified with
OPT_WINDOW_TIMEOUT is
reached.

The correct state of the window
depends on various options. For

Agent Option Agent Supported Description

example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

* OPT_VERIFY_ENABLED
» OPT_VERIFY_ACTIVE
* OPT_VERIFY_EXPOSED
*+ OPT_VERIFY_UNIQUE

OPT_WINDOW_SIZE_TOLERANCE Classic Agent INTEGER

The number of pixels allowed for a
tolerance when a resized window
does not end at the specified size.

For some windows and GUIs, you
cant always resize the window to the
particular size specified. If the ending
size is not exactly what was specified
and the difference between the
expected and actual sizes is greater
than the tolerance, Silk Test Classic
raises an exception.

On Windows, windows cannot be
sized smaller than will fit comfortably
with the menu bar.

OPT_WINDOW_TIMEOUT Classic Agent NUMBER

Open Agent The number of seconds Silk Test
Classic waits for a window to appear
and be in the correct state. If a
window does not appear within the
specified timeout, Silk Test Classic
raise an exception.

The correct state of the window
depends on various options. For
example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

OPT_VERIFY_ENABLED
OPT_VERIFY_ACTIVE
OPT_VERIFY_EXPOSED
OPT_VERIFY_UNIQUE

OPT_WPF_CUSTOM_CLASSES Open Agent LIST OF STRING

Specify the names of any WPF
classes that you want to expose
during recording and playback. For

Open Agent | 39

40 | Open Agent

Agent Option

Agent Supported

Description

OPT_WPF_PREFILL_ITEMS

OPT_XBROWSER_SYNC_MODE

Open Agent

Open Agent

example, if a custom class called
MyGrid derives from the WPF Grid
class, the objects of the MyGrid
custom class are not available for
recording and playback. Grid objects
are not available for recording and
playback because the Grid class is
not relevant for functional testing
since it exists only for layout
purposes. As a result, Grid objects
are not exposed by default. In order to
use custom classes that are based on
classes that are not relevant to
functional testing, add the custom
class, in this case MyGrid, to the
OPT_WPF_CUSTOM_CLASSES
option. Then you can record,
playback, find, verify properties, and
perform any other supported actions
for the specified classes.

BOOLEAN

Defines whether items in a
WPFItemsControl, like
WPFComboBox or WPFL i stBox,
are pre-filled during recording and
playback. WPF itself lazily loads items
for certain controls, so these items
are not available for Silk Test Classic
if they are not scrolled into view. Turn
pre-filling on, which is the default
setting, to additionally access items
that are not accessible without
scrolling them into view. However,
some applications have problems
when the items are pre-filled by Silk
Test Classic in the background, and
these applications can therefore
crash. In this case turn pre-filling off.

STRING

Configures the supported
synchronization mode for HTML or
AJAX. Using the HTML mode ensures
that all HTML documents are in an
interactive state. With this mode, you
can test simple Web pages. If more
complex scenarios with Java script
are used, it might be necessary to
manually script synchronization
functions, such as
WaitForObject,
WaitForProperty,

Agent Option Agent Supported Description

WaitForDisappearance, or
WaitForChildDisappearance
. Using the AJAX mode eliminates the
need to manually script
synchronization functions. By default,
this value is set to AJAX.

OPT_XBROWSER_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: Deprecated. Use the
option OPT_SYNC_TIMEOUT
instead.

OPT_XBROWSER_SYNC_EXCLUDE_URLS Qpen Agent STRING

Specifies the URL for the service or
Web page that you want to exclude
during page synchronization. Some
AJAX frameworks or browser
applications use special HTTP
requests, which are permanently
open in order to retrieve
asynchronous data from the server.
These requests may let the
synchronization hang until the
specified synchronization timeout
expires. To prevent this situation,
either use the HTML synchronization
mode or specify the URL of the
problematic request in the
Synchronization exclude list setting.

Type the entire URL or a fragment of
the URL, such as http://
test.com/timeService or
timeService.

Setting the Default Agent

Silk Test Classic automatically assigns a default agent to your project or scripts. When you create a new
project, the agent currently selected in the toolbar is the default agent. Silk Test Classic automatically starts
the default agent when you open a project or create a new project. You can configure Silk Test Classic to
automatically connect to the Open Agent or the Classic Agent by default.

To set the default agent, perform one of the following:

* Click Options > Runtime and set the default agent in the Runtime Options dialog box.
¢ Click the appropriate agent icon in the toolbar.

When you enable extensions, set the recovery system, configure the application, or record a test case, Silk
Test Classic uses the default agent. When you run a test, Silk Test Classic automatically connects to the
appropriate agent. Silk Test Classic uses the window declaration, locator, or Find or FindAl'l command
to determine which agent to use.

Open Agent | 41

Setting the Default Agent Using the Runtime Options
Dialog Box

To set the default agent using the Runtime Options dialog box:

1. Inthe main menu, click Options > Runtime. The Runtime Options dialog box opens.
2. Select the agent that you want to use as the default from the Default Agent list box.

3. If you use the Classic Agent, select the type of network you want to use in the Network list box. If you
select the Open Agent, TCP/IP is automatically selected.

4. If you use named agents, select the local agent name from the Agent Name list box. For instance, if
your environment uses multiple agents or a port that uses a value other than the default, select the local
agent.

5. Click OK.
When you record a test case, Silk Test Classic automatically uses the default agent.

Setting the Default Agent Using the Toolbar Icons

From the main toolbar, click the following icons to set the default agent:

£ to use the Classic Agent.

K to use the Open Agent.

Connecting to the Default Agent

Typically, the default agent starts automatically when it is needed by Silk Test Classic. However, you can
connect to the default agent manually if it does not start or to verify that it has started.

To connect to the default Agent, from the main menu, click Tools > Connect to Default Agent.

The command starts the Classic Agent or the Open Agent on the local machine, depending on which agent
is specified as the default in the Runtime Options dialog box. If the Agent does not start within 30
seconds, a message is displayed. If the default Agent is configured to run on a remote machine, you must
connect to it manually.

Creating a Script that Uses Both Agents

42 | Open Agent

You can create a script that uses the Classic Agent and the Open Agent. Recording primarily depends on
the default agent while replaying the script primarily depends on the window declaration of the underlying
control. If you create a script that does not use window declarations, the default agent is used to replay the
script.

Set the default agent to the Classic Agent.
In the Basic Workflow bar, enable extensions for the application automatically.
In the Basic Workflow bar, click Record Testcase and record your test case.

When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s).

Click OK. The frame now contains window declarations from the Classic Agent.
Click File > Save to save the test case.
7. Type a name for the file into the File name field and click Save.

A wnh e

o o

8. Set the default agent to the Open Agent.
9. Click Options > Application Configurations. The Edit Application Configurations dialog box opens.
10.Click Add.

The Select Application dialog box opens.
11.Configure a standard or Web site test configuration.
12.Click OK.
13.Click Record Testcase in the Basic Workflow bar and record your test case.

14.When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s). The frame now contains window declarations from both the Classic Agent and the Open
Agent. Silk Test Classic automatically detects which agent is required for each test based on the
window declaration and changes the agent accordingly.

15.Click File > Save to save the test case.

16.Click Run Testcase in the Basic Workflow bar to replay the test case. Silk Test Classic automatically
recognizes which agent to use based on the underlying window declarations.

You can also use the function Connect([sMachine, sAgentType]) in a script to connect a machine
explicitly with either the Classic Agent or the Open Agent. Using the connect function changes the default
agent temporarily for the current test case, but it does not change the default agent of your project.
However, this does not override the agent that is used for replay, which is defined by the window
declaration.

Overview of Record Functionality Available for the Silk
Test Agents

The Open Agent provides the majority of the same record capabilities as the Classic Agent and the same
replay capabilities.

The following table lists the record functionality available for each Silk Test agent.

Record Classic Agent Open Agent
Command

Window Supported Supported
Declarations

Application Supported Supported
State

Testcase Supported Supported
Actions Supported Supported
Window Supported Not Supported
Identifiers

Window Supported Not Supported
Locations

Window Not Supported Supported
Locators

Class/Scripted Supported Not Supported
Class/ Supported Not Supported
Accessibility

Method Supported Not Supported
Defined Supported Not Supported
Window

Open Agent | 43

Note: Silk Test Classic determines which agent to use by detecting whether a locator or Find or
FindAll command is used. If a locator or Find or FindAll command is present, Silk Test Classic
uses the Open Agent. As a result, you do not need to record window declarations for the Open Agent.
For calls that use window declarations, the agent choice is made based on the presence or absence
of the locator keyword and on the presence or absence of TAG_IS_OPEN_AGENT in a tag or multitag.
When a window declaration contains both locators and tags and either could be used for resolving the
window, check or uncheck the Prefer Locator check box in the General Options dialog box to
determine which method is used.

Setting Record and Replay Options for the Open Agent

You can set agent options using the Recording Options dialog box or you can use SetOption within a
script. If you use SetOption, it overrides the values specified in the Recording Options dialog box. If you
do not set an option with SetOption, the value specified in the Recording Options dialog box is the
default. Choose Options > Recorder to open the Recording Options dialog box. Using the Recording
Options dialog box you can:

» Setrecording preferences.

« Set recording options for xBrowser.

» Set custom attributes to use in locators.

« Set classes to ignore.

* Set WPF classes to expose during recording and playback.
» Set xBrowser synchronization options.

e Set replay options.

Setting the Window Timeout Value to Prevent Window Not
Found Exceptions

44 | Open Agent

The window timeout value is the number of seconds Silk Test Classic waits for a window to display. If the
window does not display within that period, the Window not found exception is raised. For example, loading
an Apache Flex application and initializing the Apache Flex automation framework may take some time,
depending on the machine on which you are testing and the complexity of your Apache Flex application. In
this case, setting the Window timeout value to a higher value enables your application to fully load.

If you suspect that Silk Test Classic is not waiting long enough for a window to display, you can increase
the window timeout value in the following ways:

* Change the window timeout value on the Timing tab of the Agent Options dialog box.
e Manually add a line to the script.

If the window is on the screen within the amount of time specified in the window timeout, the tag for the
object might be the problem.

Manually Setting the Window Timeout Value

In some cases, you may want to increase the window timeout value for a specific test, rather than for all
tests in general. For example, you may want to increase the timeout for Flex application tests, but not for
browser tests.

1. Open the test script.
2. Add the following to the script: Agent.SetOption (OPT_WINDOW_TIMEOUT, numberOfSeconds).

Setting the Window Timeout Value in the Agent
Options Dialog Box

To change the window timeout value in the Agent Options dialog box:

1. Click Options > Agent.
2. Click the Timing tab.
3. Type the value into the Window timeout text box.

The value should be based on the speed of the machine, on which you are testing, and the complexity
of the application that you are testing. By default, this value is set to 5 seconds. For example, loading
and initializing complex Flex applications generally requires more than 5 seconds.

4. Click OK.

Configuring Open Agent Port Numbers

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the agent. Then,
the information service forwards communication to the port that the agent uses. However, if you have a port
number conflict or an issue with a firewall, you must configure the port number for that machine or for the
information service.

The default port of the information service is 22901. When you can use the default port, you can type
hostname without the port number for ease of use. If you do specify a port number, ensure that it matches
the value for the default port of the information service or one of the additional information service ports.
Otherwise, communication will fail.

After changing the port number, restart the Open Agent, Silk Test Classic, Silk Test Recorder, and the
application that you want to test.

Configuring the Port that Clients Use to Connect to the

Information Service
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Agent. Then,
the information service forwards communication to the port that the Agent uses.

The default port of the information service is 22901. When you can use the default port, you can type
hostname without the port number for ease of use. If you do specify a port number, ensure that it matches
the value for the default port of the information service or one of the additional information service ports.
Otherwise, communication will fail.

If necessary, you can change the port number that all clients use to connect to the information service.

1. Navigate to the infoservice.properties.sample file and open it.

This file is located in C:\Documents and Settings\All Users\Application Data\Silk
\Si lkTest\conf, where “C:\Documents and Settings\All Users”is equivalent to the content
of the ALLUSERSPROFILE environment variable, which is set by default on Windows systems.

This file contains commented text and sample alternate port settings.
2. Change the value for the appropriate port.

Open Agent | 45

Typically, you configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

Port numbers can be any number from 1 to 65535.

* infoservice.default._port — The default port where the information service runs. By default,
this port is set to 22901.

e infoservice.additional .ports — A comma separated list of ports on which the information

service runs if the default port is not available. By default, ports 2966, 11998, and 11999 are set as
alternate ports.

3. Save the file as infoservice.properties.
4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Open Agent Port Numbers

When the Open Agent starts, a random available port is assigned to Silk Test Classic, Silk Test Recorder,
and the application that you are testing. The port numbers are registered on the information service. Silk
Test Classic and Silk Test Recorder contact the information service to determine the port to use to connect
to the Open Agent. The information service communicates the appropriate port, and Silk Test Classic or
the Silk Test Recorder connect to that port. Communication runs directly between Silk Test Classic or the
Silk Test Recorder and the agent.

By default, the Open Agent communicates with the information service on port 22901. You can configure
additional ports for the information service as alternate ports that work when the default port is not
available. By default, the information service uses ports 2966, 11998, and 11999 as alternate ports.

Typically, you do not have to configure port numbers manually. However, if you have a port number conflict
or an issue with a firewall, you must configure the port number for that machine or for the information
service. You can use a different port number for a single machine or you can use the same available port
number for all your machines.

Stopping the Open Agent After Test Execution

46 | Open Agent

You can stop the Open Agent from a script, to ensure that the agent does not continue running after the
end of the test execution.

1. Open or create a script that is executed when the test execution is finished.
For example, open an existing script that is used for cleanup after test execution.
2. Add the ShutDown method to the script.

i Note: The Open Agent will restart as soon as the agent is required by another script.

Basic Workflow for the Open Agent

The Basic Workflow bar guides you through the process of creating a test case. To create and execute a
test case, click each icon in the workflow bar to perform the relevant procedures. The procedures and the
appearance of the workflow bar differ depending on whether your test uses the Open Agent or the Classic
Agent.

The Basic Workflow bar is displayed by default. You can display it or hide it by checking and un-checking
the Workflows > Basic check box. If your test uses both the Open Agent and the Classic Agent, the Basic
Workflow bar changes when you switch between the agents.

When you use the Open Agent, the Basic Workflow uses dynamic object recognition to record and replay
test cases that use XPath queries to find and identify objects.

Creating a New Project

You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar.

2. On the Create Project dialog box, type the Project Name and Description.

3. Click OK to save your project in the default location, C:\Users\<Current user>\Documents\Silk
Test Classic Projects.
To save your project in a different location, click Browse and specify the folder in which you want to
save your project.
Silk Test Classic creates a <Project name> folder within this directory, saves the projectname.vtp
and projectname. ini to this location and copies the extension .ini files, which are appexpex. ini,
axext.ini, domex. ini, and javaex. ini, to the extend subdirectory. If you do not want to save
your project in the default location, click Browse and specify the folder in which you want to save your
project. Silk Test Classic then creates your project and displays nodes on the Files and Global tabs for
the files and resources associated with this project.

4. Perform one of the following steps:

< If your test uses the Open Agent, configure the application to set up the test environment.
< If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Configuring Applications

When you configure an application, Silk Test Classic automatically creates a base state for the application.
An application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended execution.

Silk Test Classic has slightly different procedures depending on which type of application you are
configuring:

Basic Workflow for the Open Agent | 47

48

A standard application, which is an application that does not use a Web browser, for example a
Windows application or a Java SWT application.

A Web application, which is an application that uses a Web browser, for example a Web page, a Web
application on a mobile device, or an Apache Flex application.

Configuring Web Applications

Configure the Web application that you want to test to set up the environment that Silk Test Classic will
create each time you record or replay a test case. If you are testing a Web application or an application that
uses a child technology domain of the xBrowser technology domain, for example an Apache Flex
application, use this configuration.

1.

Click Configure Application on the basic workflow bar.

If you do not see Configure Application on the workflow bar, ensure that the default agent is set to the
Open Agent.

The Select Application dialog box opens.

Select the Web tab.

Select the browser that you want to use from the list of available browsers.

If you want to record a test against a Web application, select Internet Explorer or a mobile browser.
You can use one of the other supported browsers to replay tests but not to record them.

Optional: Specify the Web page to open in the Browse to URL text box.

Optional: Check the Create Base State check box to create a base state for the application under test.
By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include

file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

Click OK.

» If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame . inc by default.

« If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

Navigate to the location in which you want to save the frame file.

In the File name text box, type the name for the frame file that contains the default base state and

recovery system. Then, click Save. Silk Test Classic creates a base state for the application. By default,

Silk Test Classic lists the caption of the main window of the application as the locator for the base state.

Then Silk Test Classic opens the Web page.

Record the test case whenever you are ready.

Configuring Standard Applications

A standard application is an application that does not use a Web browser, such as a Windows application
or Java SWT application.

Configure the application that you want to test to set up the environment that Silk Test Classic will create
each time you record or replay a test case.

Basic Workflow for the Open Agent

Start the application that you want to test.
Click Configure Application on the basic workflow bar.

If you do not see Configure Application on the workflow bar, ensure that the default agent is set to the
Open Agent.

The Select Application dialog box opens.
Select the Windows tab.
Select the application that you want to test from the list.

Note: If the application that you want to test does not appear in the list, uncheck the Hide
processes without caption check box. This option, checked by default, is used to filter only those
applications that have captions.

Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

Click OK.

» If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame . inc by default.

« If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

Navigate to the location in which you want to save the frame file.

In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application and opens
the include file.

Record the test case whenever you are ready.

Note: For SAP applications, you must set Ctrl+Alt as the shortcut key combination to use. To change
the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

Recording Test Cases for Standard and Web Applications

This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1.

2.

Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Record Testcase dialog box opens.

Type the name of your test case in the Testcase name text box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

Basic Workflow for the Open Agent | 49

50

« If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

« If you chose another application state, the test case is recorded as testcase testcase_name
() appstate appstate nhame.

4. If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.
Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

5. Click Start Recording. Silk Test Classic performs the following actions:

* Closes the Record Testcase dialog box.
« Starts your application, if it was not already running. If you have not configured the application yet,
the Select Application dialog box opens and you can select the application that you want to test.
« Removes the editor window from the display.
* Displays the Recording window.
* Waits for you to take further action.
6. In the application under test, perform the actions that you want to test.
For information about the actions available during recording, see Actions Available During Recording.
7. To stop recording, click Stop in the Recording window. Silk Test Classic displays the Record Testcase
dialog box, which contains the code that has been recorded for you.
8. To resume recording your interactions, click Resume Recording.
9. To add the recorded interactions to a script, click Paste to Editor in the Record Testcase window. If
you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens.

10.Perform one of the following steps:

* Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

* Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Recording Test Cases for Mobile Web Applications

This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Record Testcase dialog box opens.

2. Type the name of your test case in the Testcase name text box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

« If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

« If you chose another application state, the test case is recorded as testcase testcase_name
() appstate appstate nhame.

Basic Workflow for the Open Agent

4. If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.
Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

5. Click Start Recording. Silk Test Classic performs the following actions:

* Closes the Record Testcase dialog box.
« Starts your application, if it was not already running. If you have not configured the application yet,
the Configure Test dialog box opens and you can select the application that you want to test.
« Removes the editor window from the display.
» Displays the Mobile Recording window.
* Waits for you to take further action.
6. Interact with your application, driving it to the state that you want to test.
7. In the Mobile Recording window, perform the actions that you want to record.
a) Click on the object with which you want to interact. The Choose Action dialog box opens.
b) From the list, select the action that you want to perform against the object.
c) Optional: If the action has parameters, type the parameters into the parameter fields. Silk Test
Classic automatically validates the parameters.
d) Click OK. Silk Test Classic adds the action to the recorded actions and replays it on the mobile
device or emulator.
For information about how to record an interaction with a mobile device, see Interacting with a Mobile
Device.
8. To verify an image or a property of a control during recording, click Ctr1+Alt.
For additional information, see Adding a Verification to a Script while Recording.
9. Optional: To interact with an object that is currently not visible in the Mobile Recording window, use the
Hierarchy View:
a) Click Toggle Hierarchy View. The Hierarchy View opens.
b) In the object tree, right-click on the object on which you want to perform an action.
¢) Click Add New Action. The Choose Action dialog box opens.
d) Proceed as with any other action.
For example, to open the main menu of the device or emulator, right-click on the MobileDevice object in
the object tree and select the action PressMenu().
10.To pause the recording of interactions with the application, for example to move the application into a
different state, click Pause Recording.
11.To resume recording interactions, click Start Recording.
12.To add the recorded interactions to a script, click Stop Recording. If you have interacted with objects in
your application that have not been identified in your include files, the Update Files dialog box opens.
13.Perform one of the following steps:
* Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.
* Choose Paste testcase only and then click OK. This option does not update the window

declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Running a Test Case

When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files

Basic Workflow for the Open Agent | 51

52

whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.
2. Click Run Testcase on the Basic Workflow bar.
If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.
Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

« BaseStateExecutionFinished
« Connecting
« Verify
« Exists
« Is
« Get
« Set
e Print
o ForceActiveXEnum
« Wait
« Sleep
5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.
6. Click Run. Silk Test Classic runs the test case and generates a results file.
For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag

Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can click both Shift keys at the same time to stop the execution of the test.

Viewing Test Results

Whenever you run tests, a results file is generated which indicates how many tests passed and how many
failed, describes why tests failed, and provides summary information.

1. Click Explore Results on the Basic Workflow or the Data Driven Workflow bars.
2. On the Results Files dialog box, navigate to the file name that you want to review and click Open.

By default, the results file has the same name as the executed script, suite, or test plan. To review a file in
the TrueLog Explorer, open a .xIg file. To review a results file, open a . res file.

Basic Workflow for the Open Agent

Migrating from the Classic Agent to the

Open Agent

This section includes several useful topics that explain the differences between the Classic Agent and the
Open Agent. If you plan to migrate from testing using the Classic Agent to the Open Agent, review this
information to learn how to migrate your existing assets including window declarations and scripts.

Differences for Agent Options Between the Classic Agent

and the Open Agent

Before you migrate existing Classic Agent scripts to the Open Agent, review the Agent Options listed below
to determine if any additional action is required to facilitate the migration.

Agent Option

Action for Open Agent

OPT_AGENT_CLICKS_ONLY

Option not needed.

Note: Use OPT_REPLAY_MODE for switching
between high-level (API) clicks and low-level clicks.

OPT_CLOSE_MENU_NAME

Not supported by Open Agent.

OPT_COMPATIBLE_TAGS

Option not needed.

OPT_COMPRESS_WHITESPACE

Not supported by Open Agent.

OPT_DROPDOWN_PICK_BEFORE_GET

Option not needed. The Open Agent performs this action by
default during replay.

OPT_EXTENSIONS

Option not needed.

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES

Not supported by Open Agent.

OPT_KEYBOARD_LAYOUT

Not supported by Open Agent.

OPT_MENU_INVOKE_POPUP

No action. Pop-up menu handling using the Open Agent
does not need such an option.

OPT_MENU_PICK_BEFORE_GET

Option not needed.

OPT_NO_ICONIC_MESSAGE_BOXES

Option not needed.

OPT_PLAY_MODE

Option not needed.

OPT_RADIO_LIST

Open Agent always sees RadioL i st items as individual
objects.

OPT_REL1_CLASS_LIBRARY

Obsolete option.

OPT_REQUIRE_ACTIVE

Use the option OPT_ENSURE_ACT IVE instead.

OPT_SCROLL_INTO_VIEW

Option not needed. Open Agent only requires scrolling into
view for low-level replay. By default, high-level replay is used,
so no scrolling needs to be performed. However,
CaptureBitmap never scrolls an object into view.

OPT_SET_TARGET_MACHINE

Option not needed.

Migrating from the Classic Agent to the Open Agent | 53

Agent Option

Action for Open Agent

OPT_SHOW_OUT_OF VIEW

Option not needed. Out-of-view objects are always
recognized.

OPT_TEXT_NEW_LINE

Option not needed. The Open Agent always uses Enter to
type a new line.

OPT_TRANSLATE_TABLE

Not supported by Open Agent.

OPT_TRAP_FAULTS

Fault trap is no longer active.

OPT_TRAP_FAULTS_FLAGS

Fault trap is no longer active.

OPT_TRIM_ITEM_SPACE

Option not needed. If required, use a * wildcard instead.

OPT_USE_ANSICALL

Not supported by Open Agent.

OPT_USE_SILKBEAN

SilkBean is not supported on the Open Agent.

OPT_VERIFY_APPREADY

Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_CLOSED

Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_COORD

Option not needed. The Open Agent does not typically check
for native input in order to allow clicking outside of an object.

OPT_VERIFY_CTRLTYPE

Option not needed.

OPT_VERIFY_EXPOSED

Option not needed. The Open Agent performs this action
when it sets a window to active.
OPT_ENSURE_ACTIVE_OBJECT_DEF should yield the

same result.

OPT_VERIFY_RESPONDING

Option not needed.

OPT_WINDOW_MOVE_TOLERANCE Option not needed.

Differences in Object Recognition Between the Classic
Agent and the Open Agent

When recording and executing test cases, the Classic Agent uses the keywords tag or multitag in a window
declaration to uniquely identify an object in the test application. The tag is the actual name, as opposed to
the identifier, which is the logical name.

When using the Open Agent, you typically use dynamic object recognition with a Find or FindAll
function and an XPath query to locate objects in your test application. To make calls that use window
declarations using the Open Agent, you must use the keyword locator in your window declarations. Similar
to the tag or multitag keyword, the locator is the actual name, as opposed to the identifier, which is the
logical name. This similarity facilitates a smooth transition of legacy window declarations, which use the
Classic Agent, to dynamic object recognition, which leverages the Open Agent.

The following sections explain how to migrate the different tag types to valid locator strings.

Caption
Classic Agent tag “<caption string>"
Open Agent locator “//<class nhame>[@caption="<caption string>"]"

Note: For convenience, you can use shortened forms for the XPath locator strings. Silk Test Classic
automatically expands the syntax to use full XPath strings when you run a script.

54 | Migrating from the Classic Agent to the Open Agent

You can omit:

* The hierarchy separator, “.//". Silk Test Classic defaults to “//".

e The class name. Silk Test Classic defaults to the class nhame of the window that contains the locator.
e The surrounding square brackets of the attributes, “[]".

* The "@caption="if the XPath string refers to the caption.

Note: Classic Agent removes ellipses (...) and ampersands (&) from captions. Open Agent removes
ampersands, but not ellipses.

Example

Classic Agent:

CheckBox CaseSensitive
tag “Case sensitive”

Open Agent:

CheckBox CaseSensitive
locator “//CheckBox[@caption="Case sensitive"]”

Or, if using the shortened form:

CheckBox CaseSensitive
locator “Case sensitive”

Prior text
Classic Agent tag “*Find What:”
Open Agent locator “//<class name>[@priorlabel="Find What:]"

Note: Only available for Windows API-based and Java Swing applications. For other technology
domains, use the Locator Spy to find an alternative locator.

Index

Classic tag “#1”
Agent

Open Agent Record window locators for the test application. The Classic Agent creates index values
based on the position of controls, while the Open Agent uses the controls in the order
provided by the operating system. As a result, you must record window locators to identify
the current index value for controls in the test application.

Window ID

Classic Agent tag “$1041”

Open Agent locator “//<class name>[@windowid="1041"]"
Location

Classic Agent tag “@(57,75)"
Open Agent not supported

Note: If you have location tags in your window declarations, use the Locator Spy to find an
alternative locator.

Migrating from the Classic Agent to the Open Agent | 55

Multitag

Classic Agent multitag “Case sensitive” “$1011”

Open Agent locator “//CheckBox[@caption="Case sensitive’ or @windowid="1011"]" ‘parent’ statement

No changes needed. Multitag works the same way for the Open Agent.

Differences in the Classes Supported by the Open Agent
and the Classic Agent

The Classic Agent and the Open Agent differ slightly in the types of classes that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

Windows-based applications

Both Agents support testing Windows API-based client/server applications. The Open Agent classes,
functions, and properties differ slightly from those supported on the Classic Agent for Windows API-based
client/server applications.

Classic Agent

Open Agent

AnyWin

AnyWin

AgentClass (Agent)

AgentClass (Agent)

CheckBox

CheckBox

ChildWin

<no corresponding class>

ClipboardClass (Clipboard)

ClipboardClass (Clipboard)

ComboBox

ComboBox

Control

Control

CursorClass (Cursor)

CursorClass (Cursor)

CustomWin

CustomWin

DefinedWin

<no corresponding class>

DesktopWin (Desktop)

DesktopWin (Desktop)

DialogBox

DialogBox

DynamicText

<no corresponding class>

Header HeaderEx
ListBox ListBox
ListView ListViewEx
MainWin MainWin
Menu Menu
Menultem Menultem

MessageBoxClass

<no corresponding class>

56 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent
MoveableWin MoveableWin
PagelList PagelList
PopuplList ComboBox
PopupMenu <no corresponding class>
PopupStart <no corresponding class>
PopupSelect <no corresponding class>
PushButton PushButton
RadioButton Note: Items in Radiolists are recognized as RadioButtons on the CA. OA only
identifies all of those buttons as RadioList.
RadioList RadioList
Scale Scale
ScrollBar ScrollBar, VerticalScrollBar, HorizontalScrollBar
StaticText StaticText
StatusBar StatusBar
SysMenu <no corresponding class>
Table TableEx
TaskbarWin (Taskbar) <no corresponding class>
TextField TextField
ToolBar ToolBar
Additionally: PushToolltem, CheckBoxToolltem
TreeView, TreeViewEx TreeView
UpDown UpDownEx

The following core classes are supported on the Open Agent only:

e CheckBoxToolltem
« DropDownToolltem

e Group
e [tem
¢ Link

* MonthCalendar

« Pager
e PushToolltem

* RadioListToolltem

« ToggleButton
« Toolltem

Web-based Applications

Both Agents support testing Web-based applications. The Open Agent classes, functions, and properties
differ slightly from those supported on the Classic Agent for Windows API-based client/server applications.

Migrating from the Classic Agent to the Open Agent | 57

Classic Agent

Open Agent

Browser

BrowserApplication

BrowserChild

BrowserWindow

HtmICheckBox

DomCheckBox

HtmlIColumn

<no corresponding class>

HtmIComboBox

<no corresponding class>

HtmlForm DomForm

HtmIHeading <no corresponding class>
HtmlIHidden <no corresponding class>
Htmlimage <no corresponding class>
HtmiLink DomLink

HtmlList <no corresponding class>
HtmiListBox DomListBox

HtmIMarquee

<no corresponding class>

HtmIMeta <no corresponding class>
HtmlPopuplList DomListBox
HtmIPushButton DomButton

HtmIRadioButton

DomRadioButton

HtmlIRadioList

<no corresponding class>

HtmlITable DomTable

HtmlText <no corresponding class>
HtmlTextField DomTextField

XmINode <no corresponding class>

Xul* Controls

<no corresponding class>

Note: The DomElement class of the Open Agent enables you to access any element on an HTML
page. If the Open Agent has no class associated with a specific class supported on the Classic Agent,
you can use the DomElement class to access the controls in the class.

Java AWT/Swing Applications

Both Agents support testing Java AWT/Swing applications. The Open Agent classes, functions, and
properties differ slightly from those supported on the Classic Agent for Windows API-based client/server

applications.
Classic Agent Open Agent
JavaApplet AppletContainer
JavaDialogBox AWTDialog, JDialog
JavaMainWin AWTFrame, JFrame
JavaAwtCheckBox AWTCheckBox

58 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent
JavaAwtListBox AWTList
JavaAwtPopuplList AWTChoice
JavaAwtPopupMenu <no corresponding class>
JavaAwtPushButton AWTPushButton
JavaAwtRadioButton AWTRadioButton
JavaAwtRadioList <no corresponding class>

JavaAwtScrollBar

AWTScrollBar

JavaAwtStaticText AWT Label
JavaAwtTextField AWTTextField, AWT TextArea
JavaJFCCheckBox JCheckBox

JavaJFCCheckBoxMenultem

JCheckBoxMenultem

JavaJFCChildWin

<no corresponding class>

JavaJFCComboBox

JComboBox

JavaJFClmage

<no corresponding class>

JavaJFCListBox JList
JavaJFCMenu JMenu
JavaJFCMenultem JMenultem
JavaJFCPagelList JTabbedPane
JavaJFCPopuplList JList
JavaJFCPopupMenu JPopupMenu
JavaJFCProgressBar JProgressBar
JavaJFCPushButton JButton
JavaJFCRadioButton JRadioButton

JavaJFCRadioButtonMenultem

JRadioButtonMenultem

JavaJFCRadioList

<no corresponding class>

JavaJFCScale

JSlider

JavaJFCScrollBar

JScrollBar, JHorizontalScrollBar, JVerticalScrollBar

JavaJFCSeparator JComponent
JavaJFCStaticText JLabel

JavaJFCTable JTable
JavaJFCTextField JTextField, JTextArea
JavaJFCToggleButton JToggleButton
JavaJFCToolBar JToolBar
JavaJFCTreeView JTree

Migrating from the Classic Agent to the Open Agent | 59

Classic Agent

Open Agent

JavaJFCUpDown

JSpinner

Java SWT/RCP Applications

Only the Open Agent supports testing Java SWT/RCP-based applications. For a list of the classes, see

Supported SWT Widgets for the Open Agent.

Differences in the Parameters Supported by the Open

Agent and the Classic Agent

The Classic Agent and the Open Agent differ slightly in the function parameters that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

For some parameters, the Open Agent uses a hard-coded default value internally. If one of these
parameters is set in a 4Test script, the Open Agent ignores the value and uses the value listed here.

Function

Parameter

Classic Agent Value

Open Agent Value

AnyWin::PressKeys/
ReleaseKeys

AnyWin::PressKeys/
ReleaseKeys

AnyWin::TypeKeys

AnyWin::GetChildren
AnyWin::GetChildren
TextField::GetFontName

AnyWin::GetCaption

AnyWin::GetCaption,
Control::GetPriorStatic

PagelList::GetContents/

GetPageName

nDelay

sKeys

sEvents

binvisible
bNoTopLevel

iLine

bNoStaticText
bRawMode

bRawMode

60 | Migrating from the Classic Agent to the Open Agent

Any number.

More than one key is
supported.

Keystrokes to type or
mouse buttons to press.

TRUE or FALSE.
TRUE or FALSE.
The Classic Agent

recognizes this parameter.

TRUE or FALSE.
TRUE or FALSE.

TRUE or FALSE.

0

Only one key is supported.
The first key is used and
the remaining keys are
ignored. For example
MainWin.PressKeys(
"<Shift><Left>"") will
only press the Shift key. To
press both keys, specify
MainWin.PressKeys(
"<Shift>")
MainWin.PressKeys(
<Left >").

The Open Agent supports
keystrokes only.

FALSE.
FALSE.

The Open Agent ignores
this parameter.

FALSE.

FALSE. However, the
returned strings include
trailing and leading spaces,
but ellipses, accelerators,
and hot keys are removed.

FALSE. However, the
returned strings include
trailing and leading spaces,
ellipses, and hot keys but
accelerators are removed.

Function Parameter Classic Agent Value Open Agent Value

AnyWin::Click/ bRawEvent The Classic Agent The Open Agent ignores

) recognizes this parameter. this value.
DoubleClick/

MoveMouse/ MultiClick/
PressMouse/
ReleaseMouse,

PushButton::Click

Overview of the Methods Supported by the Silk Test
Classic Agents

The winclass. inc file includes information about which methods are supported for each Silk Test
Classic Agent. The following 4Test keywords indicate Agent support:

supported_ca Supported on the Classic Agent only.

supported_oa Supported on the Open Agent only.

Standard 4Test methods, such as AnyWin::GetCaption(), can be marked with one of the preceding
keywords. A method that is marked with the supported_ca or supported_oa keyword can only be executed
successfully on the corresponding Agent. Methods that do not have a keyword applied will run on both
Agents.

To find out which methods are supported on each Agent, open the .inc file, for instance winclass. inc,
and verify whether the supported_ca or supported_oa keyword is applied to it.

Classic Agent

Certain functions and methods run on the Classic Agent only. When these are recorded and replayed, they
default to the Classic Agent automatically. You can use these in an environment that uses the Open Agent.
Silk Test Classic automatically uses the appropriate Agent. The functions and methods include:

» C data types for use in calling functions in DLLs.
» ClipboardClass methods.

e CursorClass methods.

« Certain SYS functions.

SYS Functions Supported by the Open Agent and the
Classic Agent

The Classic Agent supports all SYS functions. The Open Agent supports all SYS functions with the
exception of SYS_GetMemorylnfo. SYS_GetMemory Info defaults to the Classic Agent when a script is
executed.

You can use the following SYS functions with the Open Agent or the Classic Agent.

SYS Function Description

SYS_GetRegistryValue With the Classic Agent, SYS_GetRegistryValue returns an incorrect value
when a binary value is used. Use the Open Agent with
SYS_GetRegistryValue to avoid this issue.

Migrating from the Classic Agent to the Open Agent | 61

SYS Function Description

SYS_FileSetPointer When setting the pointer after the end of the file, the Open Agent does not
throw an exception, while the Classic Agent does throw an exception.

SYS IniFileGetValue The Open Agent does not allow the ‘]’ character to be part of a section name,
while the Classic Agent does allow it. Also, with the Open Agent, ‘=" must not be
part of a key hame. The Classic Agent allows ‘=’ to be part of a key name, but
produces incorrect results.

i Note: Error messages and exceptions may differ between the Open Agent and the Classic Agent.

62 | Migrating from the Classic Agent to the Open Agent

Silk Test Classic Projects

Silk Test Classic projects organize all the resources associated with a test set and present them visually in
the Project Explorer, making it easy for you to see your test environment, and to manage it and work
within it.

Silk Test Classic projects store relevant information about your project, including the following:

« References to all the resources associated with a test set, such as plans, scripts, data, options sets, .ini
files, results, frame files, and include files.

« Configuration information.

« Editor settings.

» Data files for attributes and queries.

All of this information is stored at the project level, meaning that once you add the appropriate files to your

project and configure it once, you may never need to do it again. Switching among projects is easy - since
you need to configure the project only once, you can simply open the project and run your tests.

When you create a new project, Silk Test Classic automatically uses the agent that is selected in the
toolbar.
Each project is a unique testing environment

By default, new projects do not contain any settings, such as enabled extensions, class mappings, or agent
options. If you want to retain the settings from your current test set, save them as a options set by opening
Silk Test Classic and clicking Options > Save New Options Set. You can include the options set when you
create your project. You can create a project manually or you can let Silk Test Classic automatically
generate a project for you, based on existing files that you specify.

Note: To optimally use the functionality that Silk Test Classic provides, create an individual project for
each application that you want to test, except when testing multiple applications in the same test.

Storing Project Information

Silk Test Classic stores project-related information in the following project files:

pr oj ect name. vt p The project file has a Verify Test Project (.vtp) extension and is organized as
an .ini file. It stores the names and locations of files used by the project.

proj ect nane. i ni The project initialization file, similar to the partner . ini file, stores
information about options sets, queries, and other resources included in your
project.

Si | kTest C assi c.ini A user-specific initialization file that stores user-specific information about the
location of the last projects, the size of the project history, and the location of
the current project.

These files are created in the projectname folder. When you create your project, Silk Test Classic
prompts you to store your project in the default location C:\Users\<Current user>\Documents\Silk
Test Classic Projects. Silk Test Classic creates a <Project name> folder within this directory,
saves the projectname.vtp and projectname. ini to this location and copies the extension .ini files,
which are appexpex. ini, axext. ini, domex. ini, and Javaex. ini, to the extend subdirectory. If
you do not want to save your project in the default location, click Browse and specify the folder in which
you want to save your project.

When you export a project, the default location is the project directory.

Silk Test Classic Projects | 63

Note: The extension .ini files, which are appexpex. ini, axext. ini, domex. ini, and

Javaex. ini, located in your <Sillk Test Classic installation directory>\extend
folder are copied to the extend directory of your project, regardless of what extension you have
enabled. Do not rename the extend directory; this directory must exist in order for Silk Test Classic
to open your project.

You can have Silk Test Classic automatically enable the appropriate extension using the basic workflow
bar, or you can manually enable extensions. The current project uses the extension options in the
extension .ini file copied to the extend directory of your project. Any modifications you make to the options
for this enabled extension will be saved to the copy stored within the current project in the extend
directory.

The extend directory is used only for local testing on the host machine. If you want to test on remote
agent machines, you must copy the .ini files from the extend directory of your project to the extend
directory on the target machines.

File references

Whether you are emailing, packaging, or adding files to a project, it is important to understand how Silk
Test Classic stores the path of the file. The .vtp files of Silk Test Classic use relative paths for files on the
same root drive and absolute paths for files with different root drives. The use of relative and absolute file
paths is not configurable and cannot be overridden. If you modify the .vtp file to change file references from
relative paths to absolute paths, the next time you open and close the project it will have relative paths and
your changes will be lost.

Accessing Files Within Your Project

Working with Silk Test Classic projects makes it easy to access your files - once you have added a file to
your project, you can open it by double-clicking it in the Project Explorer. The Project Explorer contains
the following two tabs:

Tab Description

Files Lists all of the files included in the project. From the Files tab, you can view, edit, add, and
remove files from the project, as well as right-click to access menu options for each of the file
types. From the Files tab, you can also add, rename, remove and work with folders within each
category.

Global Displays all the resources that are defined at a global level within the project's files. For example
test cases, functions, classes, window declarations, and others. When you double-click an object
on the Global tab, the file in which the object is defined opens and your cursor displays at the
beginning of the line in which the object is defined. You can run and debug test cases and
application states from the Global tab. You can also sort the elements that display within the
folders on the Global tab.

Existing test sets do not display in the Project Explorer by default; you must convert them into projects.

Sharing a Project Among a Group

Apply the following guidelines to share a Silk Test Classic project among a group:

« Create the project in the location from which it will be shared. For example, you can create the project
on a network drive.
« Ensure that testers create the same directory structure on their machines.

64 | Silk Test Classic Projects

Project Explorer

Use the Project Explorer to view and work with all the resources within a Silk Test Classic project. You can
access the Project Explorer by clicking:

* File > Open Project and specifying the project you want to open.
* File > New Project and creating a new project.

* Project > View Explorer, if you currently have a project open and do not have the Project Explorer
view on.

* Project > New Project or Open Project on the Basic Workflow bar.

The resources associated with the project are grouped into categories. You can easily navigate among and
access all of these resources using the Files and Global tabs. When you double-click a file on the Files
tab, or an object on the Global tab, the file opens in the right pane. You can drag the divider to adjust the
size of the Project Explorer windows and click Project > Align to change the orientation of the tabs from
left to right.

Files tab

The Files tab lists all of the files that have been added to the project. The file name displays first, followed
by the path. If files exist on a network drive, they are referenced using Universal Naming Conventions
(UNC). Files are grouped into the following categories:

Category Description

Profile Contains project-specific initialization files, such as the projectname. ini and option
sets files, which means .opt files, that are associated with the project.

Script Contains test scripts, which means .t and .g.t files, that are associated with the project.

Include/Frame Contains include files, which means .inc files, and frame/object files that are associated
with the project.

Plan Contains test plans and suite files, which means .pIn and .s files, that are associated with
the project.

Results Contains results, which means .res and .rex files, that are associated with the project.

Data Contains data associated with the project, such as Microsoft Word documents, text files,

bitmaps, and others. Double-click the file to open it in the appropriate application. You
must open files that are not associated with application types in the Windows Registry
using the File/Open dialog box.

From the Files tab, you can view, edit, add, remove and work with files within the project. For example, to
add a file to the project, right-click the category name, for example Script, and then click Add File. After
you have added the file, you can right-click the file name to view options for working with the file, such as
record test case and run test case. Silk Test Classic functionality has not changed - it is now accessible
through a project.

You can work with the folders within the categories on the Files tab, by adding, renaming, moving, and
deleting folders within each category.
Global tab

The Global tab lists resources that are defined at a global level within the entire project. The resource
name displays first, followed by the file in which it is defined. Resources contained within the project's files
are grouped into the following categories:

* Records

Silk Test Classic Projects | 65

66

e Classes

e Enums

* Window Declarations
* Testcases

e Appstates

e Functions

« Constants

From the Global tab, you can go directly to the location in which a global object or resource is defined.
Double-click any object within the folders to go to the location in which the object is defined. Silk Test
Classic opens the file and positions your cursor at the beginning of the line in which the object is defined.

You can also run and debug test cases and application states by right-clicking a test case or application
state, and then selecting the appropriate option. For example, right-click a test case within the Testcase
folder and then click Run. Silk Test Classic opens the file containing the test case you selected, and
displays the Run Testcase dialog box with the selected test case highlighted. You can input argument
values and run or debug the test case.

On the Global tab, you can sort the resources within each node by resource name, file name, or file date.

Note: Methods and properties are not listed on the Global tab since they are specific to classes or
window declarations. You can access methods and properties by double-clicking the class or window
declaration in which they are defined.

You cannot move files within the Project Explorer. For example, you cannot drag a script file under the
Frame file node. However, you can drag the file to another folder within the same category node.

Note: If you change the location or name of a file included in your project, outside of Silk Test Classic,
you must make sure the projectname.vtp contains the correct reference.

Creating a New Project

You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar.

2. On the Create Project dialog box, type the Project Name and Description.

3. Click OK to save your project in the default location, C:\Users\<Current user>\Documents\Silk
Test Classic Projects.

To save your project in a different location, click Browse and specify the folder in which you want to
save your project.

Silk Test Classic creates a <Project name> folder within this directory, saves the projectname.vtp
and projectname. ini to this location and copies the extension .ini files, which are appexpex. ini,
axext.ini, domex. ini, and javaex. ini, to the extend subdirectory. If you do not want to save
your project in the default location, click Browse and specify the folder in which you want to save your
project. Silk Test Classic then creates your project and displays nodes on the Files and Global tabs for
the files and resources associated with this project.

4. Perform one of the following steps:

Silk Test Classic Projects

« If your test uses the Open Agent, configure the application to set up the test environment.
« If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Opening an Existing Project

You can open a Silk Test Classic project as well as open an archived Silk Test Classic project. You can also
open a Silk Test Classic project or archived project through the command line.

To open an existing project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

If you already have a project open, a dialog box opens informing you that the open project will be
closed. If you associated Silk Test Classic file types with Silk Test Classic during installation, then you
can open a Silk Test Classic project or package by double-clicking the .vtp or .stp file.

2. If you are opening a packaged Silk Test Classic project, which means an .stp file, you must perform the
following steps:

a) Indicate into what directory you want to unpack the project in the Base path text box. The files are
unpacked to the directory you indicate in the Base path text box.

b) Enter a password into the Password text box if the archived Silk Test Classic project was saved with
a password.

If you open a package by double-clicking the .stp file, the base path is the directory that contains
the .stp file.

When you select a location for unpacking the archive on the Open Project dialog box, Silk Test
Classic uses that directory path, the base path, to substitute for the drive and root directory in the
Use Path and Use Files paths.
The Base path and Password text boxes are enabled only if you are opening an .stp file.

3. On the Open Project dialog box, specify the project that you want to open, and then click Open.

If you open a project file (.vtp) by clicking File > Open command, the projectname . vitp file will open
in the 4Test Editor, but the project and its associated settings will not be loaded. Projects do not display
in the recently opened files list. To close all open files within a project, click Window > Close Alll.

Converting Existing Tests to a Project

Since each project is a unigue testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by clicking Options > Save New Options Set. You can include the
options set when you create your project.

To convert existing test sets to a project:

1. Create a new project.
2. Manually add the files to the project.

Using Option Sets in Your Project

To use an options set within your project, you must make sure that the options set is loaded into memory.
You can tell if an options set is loaded by looking at the Silk Test Classic title bar. If fi lename .opt
displays in the title bar, then the options set fi lename.opt is loaded. If an options set is loaded, it
overrides the settings contained in the projectname. ini file.

Silk Test Classic Projects | 67

68

Note: When an options set is loaded, the context menu options are available only for the loaded
options set; these menu options are grayed out for .ini and .opt files that are not loaded.

You can load an options set into your project using any of the following methods:

« |If the options set is included in your project, within the Profile node on the Files tab, right-click the
options set that you want to load and then click Open Options Set.

* Right-click Save New Options Set to load the options set and add it under the Profile node on the
Files tab.

* Use the Options menu; click Options > Open Options Set, browse to the options set (.opt) that you
want to load, and then click Open.

» Load the options set at runtime using the optionset keyword. This loads the options set at the point in
the plan file in which the options set is called. All test cases that follow use this options set.

If an options set was loaded when you closed Silk Test Classic, Silk Test Classic automatically re-loads this
options set when you re-start Silk Test Classic.

To include an options set in your project, you can add the options set by right-clicking Profile on the Files
tab, clicking Add File, selecting the options set you want to add to the project, and then clicking OK. You
can also click Save New Options Set; this loads the options set and adds it under the Profile node on the
Files tab.

Editing an Options Set

To edit an options set in your project:

1. On the Files tab, expand the Profile node.

2. Right-click the options set that you want to edit and click Open Options Set. The options set is loaded
into memory.

3. Right-click the options set that you want to edit again and select the type of option you want to edit.
For example Runtime, Agent, Extensions, and others.
4. Modify your options and then click OK. Your current settings are changed and saved to the .opt file.

If you want to change settings for future use, double-click the options set that you want to edit on the Files
tab. This opens the options file in the Editor without loading the options file into memory. Changes you
make to the options set in the Editor will be saved, but will not take effect until you load the options set by
selecting Open Options Set from the Options menu or the right-click shortcut.

Silk Test Classic File Types

Silk Test Classic uses the following types of files in the automated testing process, each with a specific
function. The files marked with an * are required by Silk Test Classic to create and run test cases.

File Type Exte Description
nsio
n

Project Mp silk Test Classic projects organize all the resources associated with a test set and present them
visually in the Project Explorer, making it easy to see, manage, and work within your test
environment.

The project file has a Verify Test Project (- Vtp) extension and is organized as an . ini file; it
stores the names and locations of files used by the project. Each project file also has an
associated project initialization file: projectname. ini.

Exported .Sstp A Silk Test Project (- Stp) file is a compressed file that includes all the data that Silk Test Classic

project exports for a project. A file of this type is created when you click File > Export Project.

Silk Test Classic Projects

File Type Exte Description
nsio
n

The . stp file includes the configuration files that are necessary for Silk Test Classic to set up
the proper testing environment.

Testplan .pln An automated test plan is an outline that organizes and enhances the testing process,
references test cases, and allows execution of test cases according to the test plan detail. It can
be of type masterplan or of subplan that is referenced by a masterplan.

Test .inc A specific kind of include file that upon creation automatically captures a declaration of the AUT's

Frame* main window including the URL of the Web application or path and executable name for client/
server applications; acts as a central repository of information about the AUT; can also include
declarations for other windows, as well as application states, variables, and constants.

4Test .t Contains recorded and hand-written automated test cases, written in the 4Test language, that
Script* verify the behavior of the AUT.

Data driven .g.t Contains data-driven test cases that pull their data from databases.

Script

4Test .nc A file that contains window declarations, constants, variables, classes, and user defined
Include File functions.

Suite .S Allows sequential execution of several test scripts.

Text File xt An ASCII file that can be used for the following:

e Store data that will be used to drive a data driven test case.

¢ Print a file in another document (Word) or presentation (PowerPoint).
¢ Accompany your automation as a readme file.

« Transform a tab-delimited plan into a Silk Test Classic plan.

Results .-res Is automatically created to store a history of results for a test plan or script execution.

File

Results .rex A single compressed results file that you can relocate to a different machine. Click Results >
Export File Export to create a - rex file out of the existing results files of a project.

TrueLog Xlg Afile that contains the captured bitmaps and the logging information that is captured when
File TrueLog is enabled during a test case run.

Organizing Projects

This section includes the topics that are available for organizing projects.

Adding Existing Files to a Project

You can add existing files to a project or create new files to add to the project. We recommend adding all
referenced files to your project so that you can easily see and access the files, and the objects contained
within them. Referenced files do not have to be included in the project. Plans and scripts will continue to
run, provided the paths that are referenced are accurate.

When you add a file to a project, project files (.vtp files) use relative paths for files on the same root drive
and absolute paths for files with different root drives. The use of relative and absolute files is not
configurable and cannot be overridden.

To add an existing file to a project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project to which you want to add a file, and then click Open.

2. On the Project Explorer, select the Files tab, right-click the node associated with the type of file you
want to add, and then click Add File.

Silk Test Classic Projects | 69

For example, to add a script file to the project, right-click Script, and then click Add File.

3. Onthe Add File to Project dialog box, specify the file you want to add to the open project, and then
click Open.
The file name, followed by the path, displays under the appropriate category on the Files tab sorted
alphabetically by name and is associated with the project through the projectname . vtp file. If files
exist on a network drive, they are referenced using Universal Naming Conventions (UNC).

You can also add existing files to the project by clicking Project > Add File. Silk Test Classic automatically
places the file in the appropriate node, based on the file type; for example if you add a file with a .pIn
extension, it will display under the Plan node on the Files tab. We do not recommend adding

application .ini files or Silk Test Classic .ini files, which are gaplans. ini, propset. ini, and the
extension. ini files, to your project. If you add object files, which are .to and .ino files, to your project,
the files will display under the Data node on the Files tab. Objects defined in object files will not display in
the Global tab. You cannot modify object files within the Silk Test Classic editor because object files are
binary. To modify an object file, open the source file, which is a .t or .inc file, edit it, and then recompile.

Renaming Your Project

The projectname. ini and the projectname.vtp refer to each other; make sure the references are
correct in both files when you rename your project.

To rename your project:

1. Make sure the project you want to rename is closed.

2. In Windows Explorer, locate the projectname.vtp and projectname. ini associated with the
project name you want to change.

3. Change the names of projectname.vtp and projectname. ini. Make sure that you use the same
projectname for both files.

4. In a text editor outside of Silk Test Classic, open projectname.vtp, change the reference to the
projectname. ini file to the new name, and then save and close the file. Do not open the project in
Silk Test Classic yet.

5. In a text editor outside of Silk Test Classic, open projectname. ini, change the reference to the
projectname.vtp file to the new name, and then save and close the file.

6. In Silk Test Classic, open the project by clicking File > Open Project or Open ProjectOpen Project on
the basic workflow bar. The new project name displays.

Working with Folders in a Project

In addition to working with files, you can also add your own folders to all nodes listed on the File tab of the
Project Explorer. For example, the Files tab of the Project Explorer can include notes.

You can also right-click a folder and click the following:

» Expand All to display all contents of a folder.

* Collapse All to collapse the contents of the folder.

« Display Full Path to show the full path for the contents.

* Display Date/Time to show creation information for the content file.

Adding a Folder to the Files Tab of the Project Explorer

You may add a folder to any of the categories (nodes) on the Files tab of the Project Explorer. You may
not add a folder to the root project folder, nor change the titles of the root nodes.

To add a folder to a project:

70 | Silk Test Classic Projects

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Add Folder.
3. Onthe Add Folder dialog box, enter the name of the new folder, then click OK.

When you are naming a folder, you may use alphanumeric characters, underscore character, character
space, or hyphens. Folder names may be a maximum of 256 characters long. Creating folders with
more than 256 characters is possible, but Silk Test Classic will truncate the name when you save the
project. The concatenated length of the names of all folders within a project may not exceed 256
characters. You may not use periods or parentheses in folder names. Within a node, folder names must
be unique.

Moving Files and Folders

You may move an individual file or files between folders within the same category on the Files tab of the
Project Explorer. You cannot move the predefined Silk Test Classic folders (nodes) such as Profile Script,
Plan, Frame, and Data.

You may also move sub-folders within the same category on the Files tab. You cannot move sub-folders
across categories.

To move a folder or file:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab. Click a file, a folder, or shift-click to select several files or
folders, then drag the items to the new location.

3. Release the mouse to move the items.
There is no undo.

Removing a Folder from the Files tab of the Project Explorer

You may delete folders on the Files tab of the Project Explorer, however, you may not delete any of the
predefined Silk Test Classic categories (nodes) such as Profile Script, Plan, Frame, and Data.

f Note: There is no undo.

To remove a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Remove Folder to delete it
from the Project Explorer. If you select a folder with child folders or a folder that contains items, Silk
Test Classic displays a warning before deleting the folder.

Renaming a Folder on the Files Tab of the Project Explorer

You may rename any folder that you have added to a project. You may not rename any of the predefined
Silk Test Classic folders (nodes) such as Profile, Script, Include/Frame, Plan, Results, or Data.

To rename a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, then navigate to the folder you want to rename.
3. Right-click the folder and select Rename Folder.
4. On the Rename Folder dialog box, enter the new name of the folder then click OK.

Silk Test Classic Projects | 71

72

When naming a folder, you may use alphanumeric characters, underscore character, character space,
or hyphens. Folder names may be a maximum of 64 characters long. You may not use periods or
parentheses in folder names. Within a node, folder names must be unique.

Sorting Resources within the Global Tab of the Project Explorer

On the Global tab of the Project Explorer, you can sort the resources within each category (node) by
resource name, file name, or file date.

To sort resources:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project whose elements you want to sort, and then click Open.

2. On the Project Explorer, click the Global tab, right-click the node associated with the type of element
you want to sort, and then click Sort by FileName or Sort by FileDate.

The default is sort by element name.
3. Click Ascending or Descending to indicate how you want to organize the sort.

For example, to sort the elements of a script file by file date in reverse chronological order, right-click the
Script node and select Sort by FileDate, then click Descending.

When you release the mouse, the elements are sorted by the parameters you selected.

Moving Files Between Projects

We recommend that you use Export Project to move projects, but if you want to move only a few files
rather than an entire project, you can open the project in Silk Test Classic and remove the files that you
want to move from the project. Move the files to their new location in Windows Explorer, and then add the
files back to the currently open project.

You can also move your project by opening the projectname.vtp and projectname. ini files in a text
editor outside of Silk Test Classic and updating references to the location of source files. However, we
recommend that you have strong knowledge of your files and how the partner and projectname .ini files
work before attempting this. We advise you to use great caution if you decide to edit the projectname .vtp
and projectname .ini files.

Removing Files from a Project

You cannot remove the projectname. ini file.

To remove a file from a project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

2. Click the plus sign [+] to expand the node associated with the type of file you want to remove, and then
choose one of the following:

* Right-click the file you want to remove, and then click Remove File.
» Select the file in the Project Explorer and press the Delete key.
» Select the file you want to remove on the Files tab, and then click Project > Remove File.

The file is removed from the project and references to the file are deleted from the projectname.vtp.
The file itself is not deleted; it is just removed from the project.

Turning the Project Explorer View On and Off

The Project Explorer view is the default. If you do not want to view the Project Explorer, uncheck Project
> View Explorer. You can continue to work with your files within the project, you just will not see the
Project Explorer.

Silk Test Classic Projects

To turn Project Explorer view on, check Project > View Explorer.

If you do not want to use projects in Silk Test Classic, close the open project, if any, by clicking File > Close
Project, and then use Silk Test Classic as you would have in the past.

Viewing Resources Within a Project

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar and select
the project that you want to open.

2. Click one of the following:

* The Files tab to view all the files associated with the open project.
* The Global tab to view global objects defined in the files associated with the project.

3. To close all open files within a project, click Window > Close All.

Packaging a Silk Test Classic Project

You can package your Silk Test Classic project into a single compressed file that you can relocate to a
different computer. When you unpack your project you will have a fully functional set of test files. This is
useful if you need to relocate a project, email a project to a co-worker, or send a project to technical
support.

Source files included in the packaged project

When you package a project, Silk Test Classic includes all of the source files, meaning the related files
used by a project, such as:

Description Extension
plan files .pln

script files 1t

include files .inc

suite files .S

results files (optional) .res and .rex
data files -

Silk Test Classic takes these files and bundles them up into a new file with an .stp extension. The .stp file
includes the configuration files necessary for Silk Test Classic to set up the proper testing environment
such as project. ini, testplan.ini, optionset .opt files, and any .ini files found in the .\Silk Test
Classic projects\<Project name>\extend directory.

You have the option of including .res and .rex files when you package a Silk Test Classic project because
these files are sometimes quite large and not necessary to run the project.

Relative paths in comparison to absolute paths

When you work with Silk Test Classic projects, the files that make up the project are identified by
pathnames that are either absolute or relative. A relative pathname begins at a current folder or some
number of folders up the hierarchy and specifies the file’s location from there. An absolute pathname
begins at the root of the file system (the topmost folder) and fully specifies the file’s location from there. For
example:

Absolute path C:\Users\<Current user>\Documents\Silk Test Classic Projects
\<Project name>\options.ini

Silk Test Classic Projects | 73

74

Relative path . .\tesla\Silk Test\options\options.ini or SUSDir\options.inc

When you package a project, Silk Test Classic checks to make sure that the paths used within the project
are properly maintained. If you try to compress a project containing ambiguous paths, Silk Test Classic
displays a warning message. Silk Test Classic tracks the paths in a project in a log file.

Including all files needed to run tests

Files associated with a project, but not necessary to run tests, for example bitmap or document files, which
you have manually added to the project are included when Silk Test Classic packages a project.

If Silk Test Classic finds any include:, script:, or use: statements in the project files that refer to files with
absolute paths, c:\program Files\Silk\Silk Test\, Silk Test Classic verifies if you have checked
the Use links for absolute files? check box on the Export Project or on the Email Project dialog boxes.

* If you check the Use links for absolute files? check box, Silk Test Classic treats any file referenced by
an absolute path in an include, script, or use statement as a placeholder and does not include those
files in the package. For example, if there are use files within the Runtime Options dialog box referred
to as "g:\gaplans\SilkTest\frame.inc" or "c", these files are not included in the package. The assumption
is that these files will also be available from wherever you unpack the project.

« If you uncheck the Use links for absolute files? check box, Silk Test Classic includes the files
referenced by absolute paths in the packaged project. For example, if the original file is stored on c:
\temp\my¥File.t, when unpacked at the new location, the file is placed on c:\temp\myfile.t.

The following table compares the results of packaging projects based on whether there are any absolute
file references in your source files, and how you respond to the Use links for absolute files? check box on
the Export Project or on the Email Project dialog boxes.

Any absolute references in source Use links for absolute files? Results

files?

No Checked or unchecked Package unpacks to any location.

Yes Checked Files referenced by absolute paths
are not included in the packaged
project.

Yes Unchecked Files referenced by absolute paths
are put into a ZIP file within the
packaged project.

y Note:

« If there are any source files located on a different drive than the .vtp project file, and if there are
files referenced by absolute paths in the source files, Silk Test Classic treats the source files as
referenced by absolute paths. The assumption is that the absolute paths will be available from the
new location. Silk Test Classic therefore puts the files into a zip file within the packaged project for
you to unpack after you unpack the project.

» Files not included in the package - The assumption is that since these files are referenced by
absolute paths, these same files and paths will be available when the files are unpacked. On
unpacking, Silk Test Classic warns you about these files and lists them in a log file (manifest.XXX).

» ip files — Because you elected not to use links for files referenced by absolute paths, these files are
put into a zip file within the packaged project. The zip file is named with the root of the absolute
path. For example, if the files are located on c:/, the zip file is named c.zip.

Tips for successful packaging and unpacking
For best results when packaging and unpacking Silk Test Classic projects:

e Put your .vtp project file and source files on the same drive.

Silk Test Classic Projects

» Use relative paths to reference the following:
e+ include statements
e options sets
* use paths set within the Runtime Options dialog box
e use statements in 4Test scripts
e script statements

« Uncheck the default Use links for absolute files? check box if your source files are on a different drive
as the .vtp project file and if there are files referenced by absolute paths in your source files.

Packaging with Silk Test Classic Runtime and the Agent
If you are running Silk Test Classic Runtime, you may not package or email a project.

If you are running the Agent, you may package or email a project.

Emailing a Packaged Project

Emailing a project automatically packages a Silk Test Classic project and then emails it to an email
address. In order for this to work, you must have an email client installed on the computer that is running
Silk Test Classic.

You cannot email a project if you are running Silk Test Classic Runtime.

One of the options you can select before emailing is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the email.

Silk Test Classic supports any MAPI-compliant e-mail clients such as Outlook Express.

The maximum size for the emailed project is determined by your e-mail client. Silk Test Classic does not
place any limits on the size of the project.

To email your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Email Project.
You can only email a project if you have that project open.

3. On the Email Project dialog box, type the email address where you want to send the Silk Test Classic
project.
For example, enter support@acme .com to send a package to Acme Technical Support. You do not
have to specify an email address here; your email program will prompt you for one before sending the
email.

4. Select the options for the package you want to email.

For an explanation of these options, see the description of the Email Project dialog box. The Email
Address text box is required, though you can edit it later.

5. Click OK. If you opted to compile the project before packaging it, Silk Test Classic displays a warning
message if any file failed to compile. Silk Test Classic opens a hew email message and attaches the
packaged project to a message. You can edit the recipient, add a subject line, and text, just as you can
for any outgoing message.

6. Click Send to add the project to your outgoing queue. If your email client is already open, your message
is sent automatically. If your email client was not open, the message is placed in your outgoing queue.

Note: If you have a crash during the email process, we recommend deleting the partially packaged
project or draft email message, if any, and starting the process again.

Silk Test Classic Projects | 75

76

Exporting a Project

Exporting a Silk Test Classic project lets you copy all the files associated with a project to a directory or a
single compressed file in a directory.

You cannot export a project if you are running Silk Test Classic Runtime.
Silk Test Classic will not change the file creation dates when copying the project’s files.

One of the options you can select before exporting is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the compile.

To export your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Export Project.
You can only export a project if you have the project open.
3. On the Export Project dialog box, enter the directory to which you want to export the project or click

_l to locate the export folder.

The default location is the parent directory of the project folder, which means the folder containing the
project file, not the project's current location.

4. Check the Export to single Silk Test Classic package check box if you want to package the Silk Test
Classic project into a single compressed file.

5. In the Options area, select the appropriate options for your project.
For an explanation of these options, see the description of the Export Project dialog box.
Note: Using references for absolute paths produces a smaller package that can be opened more
quickly.
6. Click OK. Silk Test Classic determines all the files necessary for the project and copies them to the

selected directory or compresses them into a package. Silk Test Classic displays a warning message if
any of the files could not be successfully packaged and gives you the option of continuing.

If you have a crash during the export process, we recommend deleting the partially packaged project, if
any, and starting the process over again.

Troubleshooting Projects

This section provides solutions to common problems that you might encounter when you are working with
projects in Silk Test Classic.

Files Not Found When Opening Project

If, when opening your project, Silk Test Classic cannot find a file in the location referenced in the project
file, which is a . vtp file, an error message displays noting the file that cannot be found.

Silk Test Classic may not be able to find files that have been moved or renamed outside of Silk Test
Classic, for example in Windows Explorer, or files that are located on a shared network folder that is no
longer accessible.

« If Silk Test Classic cannot find a file in your project, we suggest that you note the name of missing file,
and click OK. Silk Test Classic will open the project and remove the file that it cannot find from the
project list. You can then add the missing file to your project.

Silk Test Classic Projects

« If Silk Test Classic cannot open multiple files in your project, we suggest you click Cancel and
determine why the files cannot be found. For example a directory might have been moved. Depending
upon the problem, you can determine how to make the files accessible to the project. You may need to
add the files from their new location.

Silk Test Classic Cannot Load My Project File

If Silk Test Classic cannot load your project file, the contents of your .vtp file might have changed or
your .ini file might have been moved.

If you remove or incorrectly edit the ProjectlIni=line in the ProjectProfi le section of your
<projectname>.vtp file, or if you have moved your <projectname>. ini file and the Projectini=
line no longer points to the correct location of the . ini file, Silk Test Classic is not able to load your
project.

To avoid this, make sure that the ProjectProfile section exists in your . vtp file and that the section
refers to the correct name and location of your . ini file. Additionally, the <projectname>. ini file and
the <projectname>._vtp file refer to each other, so ensure that these references are correct in both files.
Perform these changes in a text editor outside of Silk Test Classic.

Example

The following code sample shows a sample ProjectProfi le section in a
<projectname>.vtp file:
[ProjectProfile]

ProjectIni=C:\Program Files\<Silk Test install directory>
\Si lkTest\Projects\<projectname>. ini

Silk Test Classic Cannot Save Files to My Project

You cannot add or remove files from a read-only project. If you attempt to make any changes to a read-only
project, a message box displays indicating that your changes will not be saved to the project.

For example, Unable to save changes to the current project. The project file has
read-only attributes.

When you click OK on the error message box, Silk Test Classic adds or removes the file from the project
temporarily for that session, but when you close the project, the message box displays again. When you re-
open the project, you will see your files have not been added or removed.

Additionally, if you are using Microsoft Windows 7 or later, you might need to run Silk Test Classic as an
administrator. To run Silk Test Classic as an administrator, right-click the Silk Test Classic icon in the Start
Menu and click Run as administrator.

Silk Test Classic Does Not Run

The following table describes what you can do if Silk Test Classic does not start.

If Silk Test Classic does not run because it is looking You can do the following:
for the following:

Project files that are moved or corrupted. Open the SilkTestClassic. ini file in a text editor
and remove the CurrentProject= line from the
ProjectState section. Silk Test Classic should then
start, however your project will not open. You can
examine your <projectname>._ini and

Silk Test Classic Projects | 77

78

If Silk Test Classic does not run because it is looking You can do the following:
for the following:

<projectname>._vtp files to determine and correct
the problem.

The following code example shows the ProjectState
section in a sample partner . ini file:

[ProjectState]
CurrentProject=C:\Program Files
\<SilkTest install directory>

\Si lkTest\Examples\ProjectName.vtp

A testplan. ini file that is corrupted. Delete or rename the corrupted testplan. ini file,
and then restart Silk Test Classic.

My Files No Longer Display In the Recent Files List

After you open or create a project, files that you had recently opened outside of the project do no longer
display in the Recent Files list.

Cannot Find Items In Classic 4Test

If you are working with Classic 4Test, objects display in the correct nodes on the Global tab, however when
you double-click an object, the file opens and the cursor displays at the top of the file, instead of in the line
in which the object is defined.

Editing the Project Files

You require good knowledge of your files and how the partner and <projectname>. ini files work before
attempting to edit these files. Be cautious when editing the <projectname>_vtp and
<projectname>. ini files.

To edit the <projectname>.vtp and <projectname>. ini files:

1. Update the references to the source location of your files. If the location of your projectname.vtp
and projectname. ini files has changed, make sure you update that as well. Each file refers to the
other.

The ProjectProfile section in the projectname . vitp file is required. Silk Test Classic will not be able to
load your project if this section does not exist.

1. Ensure that your project is closed and that all the files referenced by the project exist.
2. Open the <projectname>._vtp and <projectname>. ini files in a text editor outside of Silk Test
Classic.

f Note: Do not edit the projectname.vtp and projectname. ini files in the 4Test Editor.

3. Update the references to the source location of your files.

4. The <projectname>.vtp and <projectname>. ini files refer to each other. If the relative location
of these files has changed, update the location in the files.

The ProjectProfile section in the <projectname>.vtp file is required. Silk Test Classic is not able to
load your project if this section does not exist.

Silk Test Classic Projects

Enabling Extensions for Applications
Under Test

This functionality is supported only if you are using the Classic Agent.

This section describes how you can use extensions to extend the capabilities of a program or the data that
is available to the program.

An extension is a file that serves to extend the capabilities of, or the data available to, a basic program. Silk
Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Related Files

If you are using a project, the extension configuration information is stored in the partner . ini file. If you
are not using a project, the extension configuration information is stored in the extend. ini file.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box. Extensions that use
technologies on the Classic Agent are located in the <Silk Test Classic project directory>
\extend\ directory.

Extensions that Silk Test Classic can Automatically
Configure

This functionality is supported only if you are using the Classic Agent.

Using the Basic Workflow, Silk Test Classic can automatically configure extensions for many development
environments, including:

» Browser applications and applets running in one of the supported browsers.
e .NET standalone Windows Forms applications.

« Standalone Java and Java AWT applications.

» Java Web Start applications and InstallAnywhere applications and applets.
» Java SWT applications.

* Visual Basic applications.

» Client/Server applications.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

You cannot enable extensions for Silk Test Classic (partner .exe), Classic Agent (agent.exe), or Open
Agent (openAgent.exe).

You can also click Tools > Enable Extensions to have Silk Test Classic automatically set your extension.
If the Basic workflow does not support your configuration, you can enable the extension manually.

If you use the Classic Agent, the Basic Workflow does not automatically configure browser applications
containing ActiveX objects. To configure a browser application with ActiveX objects, check the ActiveX
check box in the row for the extension that you are enabling in the Extensions dialog box. Or use the Open
Agent.

Enabling Extensions for Applications Under Test | 79

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Extensions that Must be Set Manually

This functionality is supported only if you are using the Classic Agent.

Using the Basic Workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If the Basic Workflow does not support your configuration or you prefer to
enable extensions manually, enable the extension on your host machine and enable the extension on your
target machine, regardless of whether the application you plan to test will run locally or on remote
machines. Enable extensions manually if you:

« Want to change your currently enabled extension.

< Want to enable additional options for the extension you are using, such as Accessibility, Active X, or
Java.

« Are testing embedded browser applications using the Classic Agent, for example, if DOM controls are
embedded within a Windows Forms application.

» Are testing an application that does not have a standard name.

If you are testing Web applications using the Classic Agent, Silk Test Classic enables the extension
associated with the default browser you specified on the Select Default Browser dialog box during the Silk
Test Classic installation. If you want to use the extension you specified during the Silk Test Classic
installation, you do not need to complete this procedure unless you need additional options, such as
Accessibility, Java, or ActiveX.

If you are not testing Java but do have Java installed, we recommend that you disable the classpath before
using Silk Test Classic.

Silk Test Classic automatically enables Java support in the browser if your web page contains an applet.
The Enable Applet Support check box on the Extension Settings dialog for browser is automatically
selected when the Enable Extensions workflow detects an applet. You can uncheck the check box to
prevent Silk Test Classic from loading the extension. If no applet is detected, the check box is not available.

Extensions on Host and Target Machines

This functionality is supported only if you are using the Classic Agent.

You must define which extensions Silk Test Classic should load for each application under test, regardless
of whether the application will run locally or on remote machines. You do this by enabling extensions on
your host machine and on each target machine before you record or run tests.

Extensions on the host machine

On the host machine, we recommend that you enable only those extensions required for testing the current
application. Extensions for all other applications should be disabled on the host to conserve memory and
other system resources. By default, the installation program:

< Enables the extension for your default Web browser environment on the host machine.
» Disables extensions on the host machine for all other browser environments.
« Disables extensions for all other development environments.

When you enable an extension on the host machine, Silk Test Classic does the following:

* Adds the include file of the extension to the Use Files text box in the Runtime Options dialog box, so
that the classes of the extension are available to you.

* Makes sure that the classes defined in the extension display in the Library Browser. Silk Test Classic
does this by adding the name of the extension’s help file, which is browser . ht, to the Help Files For

80 | Enabling Extensions for Applications Under Test

Library Browser text box in General Options dialog box and recompiling the help file used by the
Library Browser.

* Merges the property sets defined for the extension with the default property sets. The web-based
property sets are in the browser . ps file in the Extend directory. The file defines the following property
sets: Color, Font, Values, and Location.

Extensions on the target machine

The Extension Enabler dialog box is the utility that allows you to enable or disable extensions on your
target machines. All information that you enter in the Extension Enabler is stored in the extend. ini file
and allows the Agent to recognize the non-standard controls you want to test on target machines.

Enabling Extensions Automatically Using the Basic
Workflow

An extension is a file that serves to extend the capabilities of, or data available to, a more basic program.
Silk Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

If you are testing a generic project that uses the Classic Agent, perform the following procedure to enable
extensions:

1. Start the application or applet for which you want to enable extensions.

2. Start Silk Test Classic and make sure the basic workflow bar is visible. If it is not, click Workflows >
Basic to enable it.

If you do not see Enable Extensions on the workflow bar, ensure that the default agent is set to the
Classic Agent.

3. If you are using Silk Test Classic projects, click Project and open your project or create a new project.
4. Click Enable Extensions.

You cannot enable extensions for Silk Test Classic (partner .exe), the Classic Agent (agent.exe), or
the Open Agent (openAgent.exe).

5. Select your test application from the list on the Enable Extensions dialog box, and then click Select.

6. If your test application does not display in the list, click Refresh. Or, you may need to add your
application to this list in order to enable its extension.

7. Click OK on the Extension Settings dialog box, and then close and restart your application.
8. If you are testing an applet, the Enable Applet Support check box is checked by default.

9. When the Test Extension Settings dialog box opens, restart your application in the same way in which
you opened it; for example, if you started your application by double-clicking the .exe, then restart it by
double-clicking the .exe.

10.Make sure the application has finished loading, and then click Test. When the test is finished, a dialog
box displays indicating that the extension has been successfully enabled and tested. You are now ready
to begin testing your application or applet. If the test fails, review the troubleshooting topics.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box.

Enabling Extensions on a Host Machine Manually

This functionality is supported only if you are using the Classic Agent.

Enabling Extensions for Applications Under Test | 81

Using the Basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A host machine is the system that runs the Silk Test Classic software process, in which you develop, edit,
compile, run, and debug 4Test scripts and test plans.

There is overhead to having more than one browser extension enabled, so you should enable only one
browser extension unless you are actually testing more than one browser in an automated session.

1. Start Silk Test Classic and click Options > Extensions.

2. If you are testing a client/server project, rich internet application project, or a generic project that uses
the Classic Agent, perform the following steps:

a) On the Extensions dialog box, click the extension you want to enable. You may need to add your
application to this list in order to enable its extension.

b) Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

c) Disable other extensions that you will not be using by selecting Disabled in the Primary Extension
field. To disable a Visual Basic extension, uncheck the ActiveX check box for the Visual Basic
application.

d) Click OK.

Manually Enabling Extensions on a Target Machine

This functionality is supported only if you are using the Classic Agent.

Using the basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A target machine is a system (or systems) that runs the 4Test Agent, which is the software process that
translates the commands in your scripts into GUI-specific commands, in essence, driving and monitoring
your applications under test. One Agent process can run locally on the host machine, but in a networked
environment, any number of Agents can run on remote machines.

If you are running local tests, that is, your target and host are the same machine, complete this procedure
and enable extensions on a host machine manually.

1. Make sure that your browser is closed.

2. From the Silk Test Classic program group, choose Extension Enabler. To invoke the Extension
Enabler on a remote non-Windows target machine, run extinst.exe, located in the directory on the
target machine in which you installed the Classic Agent.

3. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate. To get
information about the files used by an extension, select an extension and click Details. You may need to
add your application to this list in order to enable its extension.

4. Click OK to close the Extension Enabler dialog box.

If you enable support for ActiveX in this dialog box, make sure that it is enabled in the Extensions
dialog box as well.

5. Restart your browser, if you enabled extensions for web testing.

Once you have set your extension(s) on your target and host machines, verify the extension settings to
check your work. Be sure to consider how you want to work with borderless tables. If you are testing
non-Web applications, you must disable browser extensions on your host machine. This is because the
recovery system works differently when testing Web applications than when testing non-Web
applications. For more information about the recovery system for testing Web applications, see Web
applications and the recovery system. When you select one or both of the Internet Explorer extensions
on the host machine’s Extension dialog box, Silk Test Classic automatically picks the correct version of
the host machine’s Internet Explorer application in the Runtime Options dialog box. If the target

82 | Enabling Extensions for Applications Under Test

machine’s version of Internet Explorer is not the same as the host machine’s, you must remember to
change the target machine’s version.

Enabling Extensions for Embedded Browser Applications
that Use the Classic Agent

This functionality is supported only if you are using the Classic Agent.

To test an embedded browser application, enable the Web browser as the primary extension for the
application in both the Extension Enabler and in the Silk Test Classic Extensions dialog boxes. For
instance, if you are testing an application with DOM controls that are embedded within a .NET application,
follow the following instructions to enable extensions.

Click Start > Programs > Silk > Silk Test > Tools > Extension Enabler.

Browse to the location of the application executable.

Select the executable file and then click Open.

Click OK.

From the Primary Extension list box, select the DOM extension for the application that you added.
Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

L N

For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

7. Click OK.

8. Start Silk Test Classic and then choose Options > Extensions. The Extensions dialog box opens.
9. Click New.

10.Browse to the location of the application executable.

11.Select the executable file and then click Open.

12.Click OK.

13.From the Primary Extension list box, select the DOM extension for the application that you added.
14.Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

15.Click OK.
16.Restart Silk Test Classic.

Note: The IE DOM extension may not detect changes to a web page that occur when JavaScript
replaces a set of elements with another set of elements without changing the total number of
elements. To force the DOM extension to detect changes in this situation, call the FlushCache()
method on the top-level browserchild for the embedded browser. This problem might occur more often
for embedded browsers than for browser pages, because Silk Test Classic is not notified of as many
browser events for embedded browsers. Also call FlushCache() if you get a Coordinate out of
bounds exception when calling a method, for example Click(), on an object that previously had
been scrolled into view. The BrowserPage window identifier is not valid when using embedded
browsers because the default browser type is " (none)* (NULL).

Enabling Extensions for HTML Applications (HTAS)

This functionality is supported only if you are using the Classic Agent.

You must enable extensions on the host and target machines manually in order to use HTML applications
(HTAS).

Enabling Extensions for Applications Under Test | 83

Before you begin, create a project that uses the Classic Agent.

1. Click Options > Extensions to open the Extensions dialog box.
2. Click New to open the Extension Application dialog box.

Click _| to navigate to the location of the . hta file that you want to enable. If the file name contains
spaces, be sure to enclose the name in quotation marks.

4. Select the . hta file and then click Open.

5. Click OK.

6. In the Primary Extension column next to the . hta application that you just enabled, select Internet
Explorer.

7. Click OK.

8. Click Start > Programs > Silk > Silk Test > Tools > Extension Enabler. (Or use the command line to
launch ""C:\Progam Files\Silk\SilkTest\Tools\extinst.exe".)

9. On the Extension Enabler dialog box, click New to open the Extension Application dialog box.

10.
Click _I to navigate to the location of the _hta file that you want to enable. If the file name contains

spaces, be sure to enclose the name in quotation marks.

11.Select the . hta file and then click Open.

12.Click OK.

13.In the Primary Extension column next to the .hta application that you just enabled, select Internet
Explorer.

14.Click OK.

Adding a Test Application to the Extension Dialog Boxes

This functionality is available only for projects or scripts that use the Classic Agent.

You must manually add the following applications to the Extensions dialog box and the Extension
Enabler dialog box:

« Applications that are embedded in Web pages and use the Classic Agent.
« All test applications that do not have standard names and use the Classic Agent.

* When you add a test application to the Extensions dialog box on the host machine, you should
immediately add it to the Extension Enabler dialog box on each target machine on which you intend to
test the application.

You may also add new applications by duplicating existing applications and then changing the application
name.
To add a test application to the Extension dialog boxes:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test program group.

2. If you are testing a client/server project, Rich Internet Application project, or a generic project that uses

the Classic Agent, perform the following steps:

a) Click New to open the Extension Application dialog box.

b) Click ... to browse to the application’s executable or DLL file.
Separate multiple application names with commas. If the executable name contains spaces, be sure
to enclose the name in quotation marks.

c) Select the executable file and then click Open.

d) Click OK.

84 | Enabling Extensions for Applications Under Test

3. Click OK to close the dialog box.

Verifying Extension Settings

This functionality is available only for projects or scripts that use the Classic Agent.
If the extension settings for the host and target machines do not match, neither extension will load properly.

* To see the target machine setting, choose Options > Extensions. Verify that the Primary Extension is
enabled and other extensions are enabled, if appropriate. If you enabled a browser extension, you can
also verify the extension settings on the target machine by starting the browser and Silk Test Classic,
and then right-clicking the task bar Agent icon and selecting Extensions > Detail.

« To verify that the setting on the host machine is correct, choose Options > Runtime. Make sure that
the default browser in the Default Browser field on the Runtime Options dialog box is correct.

Why Applications do not have Standard Names

This functionality is supported only if you are using the Classic Agent.

In the following situations applications might not have standard names, in which case you must add them to
the Extension Enabler dialog box and the Extensions dialog box:

» Visual Basic applications can have any name, and therefore the Silk Test Classic installation program

cannot add them to the dialog box automatically.

* You are running an application developed in Java as a stand-alone application, outside of its normal
runtime environment.

* You have explicitly changed the name of a Java application.

Duplicating the Settings of a Test Application in Another
Test Application

This functionality is supported only if you are using the Classic Agent.

You can add new applications to the Extension Enabler dialog box or the Extensions dialog box by
duplicating existing applications and renaming the new application. All the settings of the original
application, that is, primary extension, other extensions, or options set on the Extensions dialog box, are
copied.

You can only duplicate applications that you entered manually and that use the Classic Agent.

To copy a test application’s settings into another application:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

2. Select the application that you want to copy.

3. Click Duplicate. The Extension Application dialog box opens.

4. Type the name of the new application you want to copy.
Separate multiple application names with commas.

5. Click OK to close the Extension Application dialog box. The new applications display in the dialog box
you opened.

6. Click OK to close the dialog box.

Enabling Extensions for Applications Under Test | 85

Deleting an Application from the Extension Enabler or
Extensions Dialog Box

This functionality is supported only if you are using the Classic Agent.

After completing your testing of an application or if you make a mistake, you might want to delete the
application from the Extension Enabler dialog box or the Extensions dialog box. You can delete only
applications that you have entered manually. Visual Basic applications fall into this category.

To remove an application from the Extension Enabler or Extensions dialog box:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

2. Select the application that you want to delete from the dialog box.
3. Click Remove. The application name is removed from the dialog box.

4. Click OK.

Disabling Browser Extensions

This functionality is supported only if you are using the Classic Agent.

1. In Silk Test Classic, choose Options > Extensions.
2. From the Primary Extension list, select Disabled for the extension you want to disable.
3. In the Other extensions field, uncheck any checked check boxes.

4. Click OK.

If you are testing non-Web applications, you must disable browser extensions on your host machine. This is
because the recovery system works differently when testing Web applications than when testing non-Web

applications.

Comparison of the Extensions Dialog Box and the
Extension Enabler Dialog Box

This functionality is supported only if you are using the Classic Agent.

The Extensions dialog box and the Extension Enabler dialog box look similar; they are both based on a
grid and have identical column headings and have some of the same buttons. However, they configure

different aspects of the product:

Extensions Dialog Box

Extension Enabler Dialog Box

Enables AUTs and extensions
Provides information for
Available from

Information stored in

When to enable/disable AUTs and
extensions

86 | Enabling Extensions for Applications Under Test

On host machine
Silk Test Classic
Options menu
partner.ini

Enable the AUTs and extensions you
want to test now; disable others.

On target machines

Agent

Silk Test Classic program group
extend. ini

Enable all AUTs and extensions you
ever intend to test. No harm in leaving
them enabled, even if you are not
testing them now.

Extensions Dialog Box

Extension Enabler Dialog Box

What you specify on each:

¢ Primary environment
e Java or ActiveX, if required
¢ Accessibility

What installation does:

¢ Default browser (If any)

¢ Other browsers (if any)

¢ Java runtime environment
¢ Oracle Forms runtime

« Yes, according to the type
« Enable and set options
« Enable and set options

« Displayed and enabled
» Displayed but disabled
» Displayed but disabled
« Displayed but disabled
* Not displayed or enabled

* Yes, according to the type
« Enable only
* Enable only

« Displayed and enabled
» Displayed and enabled
» Displayed and enabled
« Displayed but disabled
* Not displayed or enabled

environment
¢ Visual Basic5 &6

Configuring the Browser

This functionality is supported only if you are using the Classic Agent.
In order for Silk Test Classic to work properly, make sure that your browser is configured correctly.

If your tests use the recovery system of Silk Test Classic, that is, your tests are based on DefaultBaseState
or on an application state that is ultimately based on DefaultBaseState, Silk Test Classic makes sure that
your browser is configured correctly.

If your tests do not use the recovery system, you must manually configure your browser to make sure that
your browser displays the following items:

* The standard toolbar buttons, for example Home, Back, and Stop, with the button text showing. If you
customize your toolbars, then you must display at least the Stop button.

* The text box where you specify URLs. Address in Internet Explorer.
» Links as underlined text.

e The browser window’s menu bar in your Web application. It is possible through some development tools
to hide the browser window’s menu bar in a Web application. Silk Test Classic will not work properly
unless the menu bar is displayed. The recovery system cannot restore the menu bar, so you must make
sure the menu bar is displayed.

* The status bar at the bottom of the window shows the full URL when your mouse pointer is over a link.

We recommend that you configure your browser to update cached pages on a frequent basis.

Internet Explorer

1. Click Tools > Internet Options, then click the General tab.

2. In the Temporary Internet Files area, click Settings.

3. On the Settings dialog box, select Every visit to the page for the Check for newer versions of
stored pages setting.

Mozilla Firefox

1. Choose Edit > Preferences > Advanced > Cache.

2. Indicate when you want to compare files and update the cache. Select Every time | view the page at
the Compare the page in the cache to the page on the network field.

AOL

Even though AOL's Proxy cache is updated every 24 hours, you can clear the AOL Browser Cache and
force a page to reload. To do this, perform one of the following steps:

Enabling Extensions for Applications Under Test | 87

» Delete the files in the temporary internet files folder located in the Windows directory.
¢ Press the CTRL key on your keyboard and click the AOL browser reload icon (Windows PC only).

Friendly URLs

Some browsers allow you to display "friendly URLs," which are relative to the current page. To make sure
you are not displaying these relative URLS, in your browser, display a page of a web site and move your
mouse pointer over a link in the page.

« If the status bar displays the full URL (one that begins with the http:// protocol name and contains the
site location and path), the settings are fine. For example: http://www._mycompany .com/
products.htm

« If the status bar displays only part of the URL (for example, products.htm), turn off "friendly URLSs."
(In Internet Explorer, this setting is on the Advanced tab of the Internet Options dialog box.)

Setting Agent Options for Web Testing

This functionality is supported only if you are using the Classic Agent.

When you first install Silk Test Classic, all the options for Web testing are set appropriately. If, for some
reason, for example if you were testing non-Web applications and changed them, you have problems with
testing Web applications, perform the following steps:

1. Click Options > Agent. The Agent Options dialog box opens.
2. Ensure the following settings are correct.

Tab Option Specifies Setting
Timing OPT_APPREADY_TIMEOU The number of seconds that the agent Site-specific; default is 180
T waits for an application to become seconds.
ready. Browser extensions support this
option.

Timing OPT_APPREADY_RETRY The number of seconds that the agent Site-specific; default is 0.1
waits between attempts to verify that seconds.
the application is ready.

Other OPT_SCROLL_INTO_VIE That the agent scrolls a control into TRUE (checked); default is
] view before recording events againstit. TRUE.

Other OPT_SHOW_OUT_OF_VIE Enables Silk Test Classic to see objects TRUE (checked); default is
W not currently scrolled into view. TRUE.

Verification OPT_VERIFY_APPREADY Whether to verify that an applicationis TRUE (checked); default is
ready. Browser extensions support this TRUE.
option.

3. Click OK. The Agent Options dialog box closes.

Specifying a Browser for Silk Test Classic to Use in
Testing a Web Application

This functionality is supported only if you are using the Classic Agent.

You can specify a browser for Silk Test Classic to use when testing a Web application at runtime or you can
use the browser specified through the Runtime Options dialog box.

To completely automate your testing, consider specifying the browser at runtime. You can do this in one of
the following ways:

« Use the SetBrowserType function in a script. This function takes an argument of type BROWSERTYPE.

88 | Enabling Extensions for Applications Under Test

* Pass an argument of type BROWSERTYPE to a test case as the first argument.

For an example of passing browser specifiers to a test case, see the second example in BROWSERTYPE. It
shows you how to automate the process of running a test case against multiple browsers.

Specifying a browser through the Runtime Options dialog box

When you run a test and do not explicitly specify a browser, Silk Test Classic uses the browser specified in
Runtime Options dialog box. To change the browser type, you can:

1. Run a series of tests with a specific browser.
2. Specify a different browser in the Runtime Options dialog box.
3. Run the tests again with the new browser.

Most tests will run unchanged between browsers.

Specifying your Default Browser

Whenever you record and run test cases, you must specify the default browser that Silk Test Classic should
use. If you did not choose a default browser during the installation of Silk Test Classic or if want to change
the default browser, perform the following steps:

1. Click Options > Runtime. The Runtime Options dialog box opens.

2. Select the browser that you want to use from the Default Browser list box.
The list box displays the browsers whose extensions you have enabled.

3. Click OK.

Enabling Extensions for Applications Under Test

89

90

Understanding the Recovery System for
the Open Agent

The built-in recovery system is one of the most powerful features of Silk Test Classic because it allows you

to run tests unattended. When your application fails, the recovery system restores the application to a
stable state, known as the BaseState, so that the rest of your tests can continue to run unattended.

The recovery system can restore your application to its BaseState at any point during test case execution:

« Before the first line of your test case begins running, the recovery system restores the application to the
BaseState even if an unexpected event corrupted the application between test cases.

« During a test case, if an application error occurs, the recovery system terminates the execution of the
test case, writes a message in the error log, and restores the application to the BaseState before
running the next test case.

« After the test case completes, if the test case was not able to clean up after itself, for example it could
not close a dialog box it opened, the recovery system restores the application to the BaseState.

* The recovery system cannot recover from an application crash that produces a modal dialog box, such
as a General Protection Fault (GPF).

Silk Test Classic uses the recovery system for all test cases that are based on DefaultBaseState or based
on a chain of application states that ultimately are based on DefaultBaseState.

« If your test case is based on an application state of none or a chain of application states ultimately
based on none, all functions within the recovery system are not called. For example, SetAppState and
SetBaseState are not called, while DefaultTestCaseEnter, DefaultTestCaseExit, and error handling are
called.

Such a test case will be defined in the script file as:
testcase Name () appstate none

Silk Test Classic records test cases based on DefaultBaseState as:
testcase Name ()

How the default recovery system is implemented

The default recovery system is implemented through several functions.

Function Purpose

DefaultBaseState Restores the default BaseState, then call the application’s BaseState function, if defined.

DefaultScriptEnte gxecuted when a script file is first accessed.

r .
Default action: none.

Defaul tScriptEXit Executed when a script file is exited.

Default action: Call the ExceptLog function if the script had errors.

DefaultTestCaseEn gxecuted when a test case is about to start.

ter . _—
Default action: Set the application state.

DefaultTestCaseEX gxecuted when a test case has ended.

it
Default action: Call the ExceptLog function if the script had errors, then set the
BaseState.

Understanding the Recovery System for the Open Agent

Function Purpose

DefaultTestPlanEn gxecuted when a test plan is entered.

ter .
Default action: none.

DefaultTestPlanEX Executed when a test plan is exited.
it .
Default action: none.

You can write functions that override some of the default behavior of the recovery system.

Setting the Recovery System for the Open Agent

The recovery system ensures that each test case begins and ends with the application in its intended state.
Silk Test Classic refers to this intended application state as the BaseState. The recovery system allows you
to run tests unattended. When your application fails, the recovery system restores the application to the
BaseState, so that the rest of your tests can continue to run unattended.

For applications that use the Open Agent and dynamic object recognition, the recovery system is
configured automatically whenever the New frame file dialog box opens and you save a file. This dialog
box opens when:

* You click Configure Applications on the Basic Workflow bar and follow the steps in the wizard.
¢ You click File > New and click Test frame.
¢ You click the Create a new file icon in the toolbar and then click Test frame.

* You click Record > Testcase, Record > Application State, or Record > Window Locators before you
configure an application, the New Test Frame dialog box opens before recording starts.

If you are testing an application that uses both the Classic Agent and the Open Agent, set the Agent that
will start the application as the default Agent and then set the recovery system. If you use the Classic
Agent to start the application, set the recovery system for the Classic Agent.

Base State

An application’s base state is the known, stable state that you expect the application to be in before each
test case begins execution, and the state the application can be returned to after each test case has ended
execution. This state may be the state of an application when it is first started.

Base states are important because they ensure the integrity of your tests. By guaranteeing that each test
case can start from a stable base state, you can be assured that an error in one test case does not cause
subsequent test cases to fail.

Silk Test Classic automatically ensures that your application is at its base state during the following stages:

« Before a test case runs.
» During the execution of a test case.
« After a test case completes successfully.

When an error occurs, Silk Test Classic does the following:

« Stops execution of the test case.

« Transfers control to the recovery system, which restores the application to its base state and logs the
error in a results file.

* Resumes script execution by running the next test case after the failed test case.

The recovery system makes sure that the test case was able to "clean up" after itself, so that the next test
case runs under valid conditions.

Understanding the Recovery System for the Open Agent | 91

92

DefaultBaseState Function

Silk Test Classic provides a Defaul tBaseState for applications, which ensures the following conditions
are met before recording and executing a test case:

« The application is running.

e The application is not minimized.

» The application is the active application.

« No windows other than the application’s main window are open. If the Ul of the application is localized,
you need to replace the strings, which are used to close a window, with the localized strings. The
preferred way to replace these buttons is with the IsCloseWindowButtons variable in the object’s
declaration. You can also replace the strings in the Close tab of the Agent Options dialog box.

For Web applications that use the Open Agent, the Defaul tBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

* The browser is running.

« Only one browser tab is open, if the browser supports tabs and the frame file does not specify
otherwise.

* The active tab is navigated to the URL that is specified in the frame file.

For web applications that use the Classic Agent, the DefaultBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

e The browser is ready.

* Constants are set.

* The browser has toolbars, location and status bar are displayed.
* Only one tab is opened, if the browser supports tabs.

DefaultBaseState Types

Silk Test Classic includes two slightly different base state types depending on whether you use the Open
Agent and dynamic object recognition or traditional hierarchical object recognition. When you use dynamic
object recognition, Silk Test Classic creates a window object named wDynamicMainWindow in the base
state. When you set the recovery system for a test that uses hierarchical object recognition, Silk Test
Classic creates a window object called wMainWindow in the base state. Silk Test Classic uses the window
object to determine which type of Defaul tBaseState to execute.

Adding Tests that Use the Open Agent to the
DefaultBaseState

If you want the recovery system to perform additional steps after it restores the default base state, record a
new test case based on no application state and paste it into the declaration of the main window of your
application.

1. Open your test application and the frame file of the test application.

2. Click Record > Testcase. Silk Test Classic displays the Record Testcase dialog box.
3. From the Application state list box, select (None).
4

. Click Start Recording. Silk Test Classic opens the Recording window, which indicates that you can
begin recording.
5. When you have finished recording the actions that you want to perform whenever the base state is
restored, click Stop Recording on the Recording window. Silk Test Classic displays the Record
Testcase dialog box.

Understanding the Recovery System for the Open Agent

Click Paste to Editor.

In the Update Files dialog box, select Paste testcase and update window declarations(s).
Click OK. Silk Test Classic creates a new script file with the new test case.

Add a new method named BaseState to the declaration of the main window in the test frame file.
10.Paste the recorded actions from the script file into the new BaseState method.

© © N

11.Choose File > Save to save the test frame file.

Example

For example, if you want the Insurance company Web application to preselect Auto
Quote each time the base state is restored, the new declaration for the main window in
the frame file should look similar to the following:

window BrowserApplication WebBrowser
locator "//BrowserApplication”

// Go to Options -> Application Configurations... to switch
the browser

// Alternatively set sDir and sCmdLine if you want to start a
custom browser

// The working directory of the application when it is invoked
// const sDir = "_"

// The command line used to invoke the application
// const sCmdLine = ™"

// The start URL
const sUrl = "http://demo.borland.com/InsuranceWebExtJS/
index. jsf"

const bCloseOtherTabs = TRUE

// The list of windows the recovery system is to leave open
// const lwLeaveOpenWindows = {?}
// const lIsLeaveOpenLocators = {?}
BrowserWindow BrowserWindow

locator "//BrowserWindow"

DomListBox QuickLinkJumpMenu

locator "SELECT[@id="quick-link:jump-menu®]"

// ...

// Recorded actions, which should be performed whenever the
base state of the application is restored
Basestate()
WebBrowser .BrowserWindow.QuickLinkJumpMenu.Select(""'Auto
Quote™)

DefaultBaseState and the wDynamicMainWindow Object

Silk Test Classic executes the DefaultBaseState for dynamic object recognition when the default agent
is the Open Agent and the global constant wDynamicMainWindow is defined. Defaul tBaseState works
with the wDynamicMainWindow object in the following ways:

1. If the wDynamicMainWindow object does not exist, invoke it, either using the Invoke method defined
for the MainWin class or a user-defined Invoke method built into the object.

2. If the wDynamicMainWindow object is minimized, restore it.

Understanding the Recovery System for the Open Agent | 93

94

3. If there are child objects of the wDynamicMainWindow open, close them.
4. If the wDynamicMainWindow object is not active, make it active.
5. If there is a BaseState method defined for the wDynamicMainWindow object, execute it.

Flow of Control

This section describes the flow of control during the execution of each of your test cases.

The Non-Web Recovery Systems Flow of Control

Before you modify the recovery system, you need to understand the flow of control during the execution of
each of your test cases. The recovery system executes the Defaul tTestcaseEnter function. This
function, in turn, calls the SetAppState function, which does the following:

1. Executes the test case.

2. Executes the DefaultTestcaseExit function, which calls the SetBaseState function, which calls
the lowest level application state, which is either the Defaul tBaseState or any user defined
application state.

i Note: If the test case uses AppState none, the SetBaseState function is not called.

DefaultTestCaseEnter() is considered part of the test case, but DefaultTestCaseExit() is not.
Instead, Defaul tTestCaseExit() is considered part of the function that runs the test case, which
implicitly is main() if the test case is run standalone. Therefore an unhandled exception that occurs during
DefaultTestCaseEnter() will abort the current test case, but the next test case will run. However, if the
exception occurs during Defaul tTestCaseExit(), then it is occurring in the function that is calling the
test case, and the function itself will abort. Since an application state may be called from both
TestCaseEnter() and TestCaseExit(), an unhandled exception within the application state may cause
different behavior depending on whether the exception occurs upon entering or exiting the test case.

How the Non-Web Recovery System Closes Windows

The built-in recovery system restores the base state by making sure that the non-Web application is
running, is not minimized, is active, and has no open windows except for the main window. To ensure that
only the main window is open, the recovery system attempts to close all other open windows, using an
internal procedure that you can customize as you see fit.

To make sure that there are no application windows open except the main window, the recovery system
calls the built-in CloseWindows method. This method starts with the currently active window and attempts
to close it using the sequence of steps below, stopping when the window closes.

1. If a Close method is defined for the window, call it.

2. Click the Close menu item on the system menu, on platforms and windows that have system menus.

3. Click the window’s close box, if one exists.

4. If the window is a dialog box, type each of the keys specified by the OPT_ CLOSE_DIALOG_KEYS
option and wait one second for the dialog box to close. By default, this option specifies the Esc key.

5. If there is a single button in the window, click that button.

6. Click each of the buttons specified by the OPT_CLOSE_WINDOW_ BUTTONS option. By default, this
option specifies the Cancel, Close, Exit, and Done keys.

7. Select each of the menu items specified by the OPT_CLOSE_WINDOW__ MENUS option. By default, this
option specifies the File > Exit and the File > Quit menu items.

Understanding the Recovery System for the Open Agent

8. If the closing of a window causes a confirmation dialog box to open, CloseWindows attempts to close
the dialog box by clicking each of the buttons specified with the OPT_CLOSE_CONFIRM_BUTTONS
option. By default, this option specifies the No button.

When the window, and any resulting confirmation dialog box, closes, CloseWindows repeats the
preceding sequence of steps with the next window, until all windows are closed.

If any of the steps fails, none of the following steps is executed and the recovery system raises an
exception. You may specify hew window closing procedures.

In a Web application, you are usually loading new pages into the same browser, not closing a page before
opening a new one.

How the Non-Web Recovery System Starts the
Application

To start a non-Web application, the recovery system executes the 1nvoke method for the main window of
the application. The Invoke method relies on the sCmdL ine constant as recorded for the main window
when you create a test frame.

For example, here is how a declaration for the sCmdL ine constant might look for a sample Text Editor
application running under Windows:

const sCmdLine = "c:\ProgramFiles\<SilkTest install directory>\SilkTest
\TextEdit.exe"

After it starts the application, the recovery system checks whether the main window is minimized, and, if it
is, uses the Restore method to open the icon and restore the application to its proper size.

The limit on the sCmdLine constant is 8191 characters.

Modifying the Default Recovery System

The default recovery system is implemented in defaults. inc, which is located in the directory in which
you installed Silk Test Classic. If you want to modify the default recovery system, instead of overriding
some of its features, as described in Overriding the default recovery system, you can modify
defaults.inc.

We cannot provide support for modifying defaults. inc or the results. We recommend that you do not
modify defaults. inc. This file might change from version to version. As a result, if you manually modify
defaults. inc, you will encounter issues when upgrading to a new version of Silk Test Classic.

If you decide to modify defaults. inc, be sure that you:

« Make a backup copy of the shipped defaults. inc file.
« Tell Technical Support when reporting problems that you have modified the default recovery system.

Overriding the Default Recovery System

The default recovery system specifies what Silk Test Classic does to restore the base state of your
application. It also specifies what Silk Test Classic does whenever:

» A script file is first accessed.
* A script file is exited.

« Atest case is about to begin.
» Atest case is about to exit.

You can write functions that override some of the default behavior of the recovery system.

Understanding the Recovery System for the Open Agent | 95

96

To override Define the following

DefaultScriptEnter ScriptEnter
DefaultScriptExit ScriptExit
DefaultTestCaseEnter TestCaseEnter
DefaultTestCaseExit TestCaseExit
DefaultTestPlanEnter TestPlanEnter
DefaultTestPlanExit TestPlanExit

If ScriptEnter, ScriptExit, TestcaseEnter, TestcaseExit, TestPlanEnter, or
TestPlanExit are defined, Silk Test Classic uses them instead of the corresponding default function. For
example, you might want to specify that certain test files are copied from a server in preparation for running
a script. You might specify such processing in a function called ScriptEnter in your test frame.

If you want to modify the default recovery system, instead of overriding some of its features, you can modify
defaults. inc. We do not recommend modifying defaults. inc and cannot provide support for
modifying defaults. inc or the results.

Example

If you are planning on overriding the recovery system, you need to write your own
TestCaseExit(Boolean bException). In the following example, Defaul tTestcaseExit() is
called inside TestCaseExit() to perform standard recovery systems steps and the bException
argument is passed into Defaul tTestCaseExit().
it (bException)

Defaul tTestcaseExit(bException)

If you are not planning to call DefaultTestcaseExit() and plan to handle the error logging in your own
way, then you can use the TestcaseExit() signature without any arguments.

Use the following function signature if you plan on calling Defaul tTestCaseExit(Boolean
bException) or if your logic depends on whether an exception occurred. Otherwise, you can simply use
the function signature of TestcaseExit() without any arguments. For example, the following is from the
description of the ExceptLog() function.

TestCaseExit (BOOLEAN bException)
it (bException)
ExceptLog()

Here, DefaultTestcaseExit() is not called, but the value of bException is used to determine if an
error occurred during the test case execution.

Handling Login Windows

Silk Test Classic handles login windows differently, depending on whether you are testing Web or client/
server applications. These topics provide information on how to handle login windows in your application
under test.

Handling Login Windows in Non-Web Applications that Use the Open
Agent

Although a non-Web application’s main window is usually displayed first, it is also common for a login or
security window to be displayed before the main window.

Use the wStartup constant and the Invoke method

To handle login windows, record a declaration for the login window, set the value of the wStartup
constant, and write a new Invoke method for the main window that enters the appropriate information into

Understanding the Recovery System for the Open Agent

the login window and dismisses it. This enables the Defaul tBaseState routine to perform the actions
necessary to get past the login window.

You do not need to use this procedure for splash screens, which disappear on their own.

Open the login window that precedes the application’s main window.
Open the test frame.
Click Record > Window Locators to record a locator for the window.

Point to the title bar of the window and then press Ctrl+Alt. The locator is captured in the Record
Window Locators dialog box.

Click Paste to Editor to paste the locator into the test frame.
In the Record Window Locators dialog box, click Close.
Close your application.

In your test frame file, find the stub of the declaration for the wStartup constant, located at the top of
the declaration for the main window:

// First window to appear when application is invoked
// const wStartup = ?

9. Complete the declaration for the wStartup constant by:

P owbDd PR

© N oo

* Removing the comment characters, the two forward slash characters, at the beginning of the
declaration.
* Replacing the question mark with the identifier of the login window, as recorded in the window
declaration for the login window.
10.Define an Invoke method in the main window declaration that calls the built-in Invoke method and
additionally performs any actions required by the login window, such as entering a name and password.

After following this procedure, your test frame might look like this:
window MainWin MyApp

locator "/MainWin[@caption="MyApp~]"

const wStartup = Login

// the declarations for the MainWin should go here
Invoke O
derived::Invoke O
Login.Name.SetText ('Your name')
Login.Password.SetText (“'password™)
Login.OK.Click O

window DialogBox Login
locator "/DialogBox[@caption="Login"]"

// the declarations for the Login window go here
PushButton OK
locator "OK"

Note: Regarding the derived keyword and scope resolution operator. The statement
derived::Invoke () uses the derived keyword followed by the scope resolution operator
(::)to call the built-in Invoke method, before performing the operations needed to fill in and
dismiss the login window.

Specifying Windows to be Left Open for Tests that Use
the Open Agent

By default, the non-Web recovery system closes all windows in your test application except the main
window. To specify which windows, if any, need to be left open — such as a child window that is always
open — use the IwLeaveOpenWindows or IsLeaveOpenLocators constant.

Understanding the Recovery System for the Open Agent | 97

98

IwLeaveOpenWindows and IsLeaveOpenLocators constants

When you record and paste the declarations for your application’s main window, the stub of a declaration
for the IwLeaveOpenWindows constant is automatically included. Additionally, it is possible to specify
windows to leave open by using XPath locator strings. These can be specified with the variable
IsLeaveOpenLocators, which must be a list of strings. The following example shows the
lwLeaveOpenWindows and IsLeaveOpenLocators constants before they have been edited:

// The list of windows the recovery system is to leave open

// const lwLeaveOpenWindows = {?}
// const IsLeaveOpenLocators = {?}

To complete the declaration for these constants:

1. For IwLeaveOpenWindows, replace the question mark in the comment with the 4Test identifiers of the
windows you want to be left open. Separate each identifier with a comma.

2. For IsLeaveOpenLocators, click Record > Window Locators and record the locators that you want
to include.

3. Replace the question mark in the comment with the locator strings for the windows that you want to be
left open. Separate each identifier with a comma.

4. Remove the comment characters (the two forward slash characters) at the beginning of the
lwLeaveOpenWindows declaration.

For example, the following code shows how to set the lwLeaveOpenWindows constant so that the
recovery system leaves open the window with the identifier DocumentWindow when it restores the
BaseState.
const lIwLeaveOpenWindows = {DocumentWindow}

5. Remove the comment characters (the two forward slash characters) at the beginning of the
IsLeaveOpenLocators declaration.

For example, the following code shows how to set the IsLeaveOpenLocators constant so that the
recovery system leaves open the About dialog box when it restores the BaseState.

IsLeaveOpenLocators = {“/MainWin[@caption="*Information*”]”, “//
Dialog[@caption="About’]”}

Specifying New Window Closing Procedures

When the recovery system cannot close a window using its normal procedure, you can reconfigure it in one
of two ways:

« If the window can be closed by a button press, key press, or menu selection, specify the appropriate
option either statically in the Close tab of the Agent Options dialog box or dynamically at runtime.
» Otherwise, record a Close method for the window.

This is only for classes derived from the MoveableWin class: DialogBox, Chi ldWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChi ld objects/classes.

Specifying Buttons, Keys, and Menus that Close
Windows

Specify statically

To specify statically the keys, menu items, and buttons that the non-Web recovery system should use to
close all windows, choose Options > Agent and then click the Close tab.

The Close tab of the Agent Options dialog box contains a number of options, each of which takes a
comma-delimited list of character string values.

Understanding the Recovery System for the Open Agent

Specify dynamically

As you set close options in the Agent Options dialog box, the informational text at the bottom of the dialog
box shows the 4Test command you can use to specify the same option from within a script; add this 4Test
command to a script if you need to change the option dynamically as a script is running.

Specify for individual objects

If you want to specify the keys, menu items, and buttons that the non-web recovery system should use to
close an individual dialog box, define the appropriate variable in the window declaration for the dialog box:

o [IsCloseWindowButtons

« [IsCloseConfirmButtons
« [IsCloseDialogKeys

« IsCloseWindowMenus

This is only for classes derived from the MoveableWin class: DialogBox, Chi ldWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChi ld objects/classes.

Recording a Close Method for Tests that Use the Open
Agent

To specify the keys, menu items, and buttons that the non-web recovery system uses to close an individual
dialog box, record a Close method to define the appropriate variable in the window declaration for the
dialog box.

Open your application.

Open the application’s test frame file.

Choose Record > Testcase. Silk Test Classic displays the Record Testcase dialog box.
From the Application state list box, click (None).

Click Start Recording. Silk Test Classic opens the Recording window, which indicates that you can
begin recording the Close method.

ok~ wbd R

6. When you have finished recording the Close method, click Stop Recording on the Recording window.
Silk Test Classic redisplays the Record Testcase dialog box.

7. Click Paste to Editor and then copy and paste the script in the declaration for the dialog box in the test
frame file.

8. Choose File > Save to save the test frame file.

You can also specify buttons, keys, and menus that close windows. This is only for classes derived from the
MoveableWin class: DialogBox, ChildWin, and MessageBox. Specifying window closing procedures
is not necessary for Web pages, so this does not apply to BrowserChi Id objects/classes.

Understanding the Recovery System for the Open Agent | 99

100

Test Plans

A test plan usually is a hierarchically-structured document that describes the test requirements and
contains the statements, 4Test scripts, and test cases that implement the test requirements. A test plan is
displayed in an easy-to-read outline format, which lists the test requirements in high-level prose
descriptions. The structure can be flat or many levels deep.

Indentation and color indicate the level of detail and various test plan elements. Large test plans can be
divided into a master plan and one or more sub-plans. A test plan file has a .pIn extension, such as
find.pln.

Structuring your test plan as an hierarchical outline provides the following advantages:

» Assists the test plan author in developing thoughts about the test problem by promoting and supporting
a top-down approach to test planning.

« Yields a comprehensive inventory of test requirements, from the most general, through finer and finer
levels of detalil, to the most specific.

« Allows the statements that actually implement the tests to be shared by group descriptions or used by
just a single test description.

* Provides reviewers with a framework for evaluating the thoroughness of the plan and for following the
logic of the test plan author.

« If you are using the test plan editor, the first step in creating automated tests is to create a test plan. If
you are not using the test plan editor, the first step is creating a test frame.

Structure of a Test Plan

Test Plans

A test plan is made up of the following elements, each of which is identified by color and indentation on the
test plan.

Element Description Color

Comment Provide documentation throughout the test plan; Green
preceded by //.

Group Description High level line in the test requirements outline that Black
describes a group of tests.

Test Description Lowest level line describing a single test case; is a Blue
statement of the functionality to be tested by the
associated test case.

Test Plan Statement Used to provide script name, test case name, test data, Red when a sub plan is not
or include statement. expanded.

Magenta statement when sub-plan is

expanded

A statement placed at the group description level applies to all the test descriptions contained by the group.
Conversely, a statement placed at the test description level applies only to that test description. Levels in
the test plan are represented by indentation.

Because there are many ways to organize information, you can structure a test plan using as few or as
many levels of detail as you feel are necessary. For example, you can use a list structure, which is a list of
test descriptions with no group description, or a hierarchical structure, which is a group description and test
description. The goal when writing test plans is to create a top-down outline that describes all of the test
requirements, from the most general to the most specific.

Overview of Test Plan Templates

Because a test plan is initially empty, you may want to insert a template, which is a hierarchical outline you
can use as a guide when you create a new test plan.

The template contains placeholders for each GUI object in your application. Although you may not want to
structure the test plan in a way which mirrors the hierarchy of your application’s GUI, this can be a good
starting point if you are new to creating test plans.

In order to be able to insert a template, you must first record a test frame, which contains declarations for
each of the GUI objects in your application.

Example Outline for Word Search Feature

Because a test plan is made up of a large amount of information, a structured, hierarchical outline provides
an ideal model for organizing and developing the details of the plan. You can structure an outline using as
few or as many levels of detail as you feel necessary.

The following is a series of sample outlines, ranging from a simple list structure to a more specific
hierarchical structure. For completeness, each of the plans also shows the script and test case statements
that link the descriptions to the 4Test scripts and test cases that implement the test requirements.

For example, consider the Find dialog box from the Text Editor application, which allows a user to search in
a document. A user enters the characters to search for in the Find What text box, checks the Case
sensitive check box to consider case, and clicks either the Up or Down radio button to indicate the
direction of the search.

List Structure

At its simplest, an outline is a hierarchy with just a single level of detail. In other words, it is a list of test
descriptions, with no group descriptions.

Using the list structure, each test is fully described by a single line, which is followed by the script and test
case that implement the test. You may find this style of plan useful in the beginning stages of test plan
design, when you are brainstorming the list of test requirements, without regard for the way in which the
test requirements are related. It is also useful if you are creating an ad hoc test plan that runs a set of
unrelated 4Test scripts and test cases.

Example for List Structure

For example:

Test Plans | 101

102

Test Plans

ET Testplan - C:\Program Files'Borland',SilkTest'Exercis =10l x|
B Find dialog, Caze sensitive, forward, character zearch
* zeoript find.t
* testcaze: Caze_For_Char
B Find dialog, Caze sensitive, forward, word zearch
* zoript find.t
tegteaze: Caze_For Word
B Find dialog, Caze sensitive, backward, character search
* zoript find.t
* testeaze: Caze_Back_Char
B Find dialog, Case sensitive, backward, word search
* zoript find.t
* tegteaze: Caze_Back Word
B Find dialog, Case insensitive, forward, character zearch
* zoript find.t
* tegteaze: MoCaze_For_Char
B Find dialog, Caze insensitive, foreard, word zearch
* zoript find.t
tegteaze: MoCaze_For_Word
B Find dialog, Caze insensitive, baclkward, character zearch
* zoript find.t
* tegteaze: MoCaze_Back_Char
B Find dialog, Gaze insensitive, baclward, word search
* zoript find.t
tegteaze: MoCaze_Back Word

e 5| v

L I»

Hierarchical Structure

The following test plan has a single level of group description, preceding the level that contains each of the
test descriptions. The group description indicates that all the tests are for the Find dialog box.

As the figure shows, the test plan editor indicates levels in the outline with indentation. Each successive
level is indented one level to the right. The minus icons indicate that each of the levels is fully expanded. By
clicking on the minus icon at any level, you collapse the branch below that level. When working with large
test plans, collapsing and expanding test plan detail makes it easy to see as much or as little of the test
plan as you need. You could continue this test plan by adding a second level of group description,
indicating whether or not the tests in the group are case sensitive, and even more detail by adding a third
level of group descriptions which indicate whether the tests in the group search in the forward or backward
direction.

EX Testplan - C:4Pro File 10l =]
& Find dialog -
B Caze sensitive, forward, character search _|
* zoript find.t
testeaze: Caze_For_Char
B Caze sensitive, foreeard, word search
* zoript find.t
tegteaze: Caze_For Word
B Caze sensitive, baclawvard, character zearch
* zoript find.t
* testeaze: Caze_Back_Char
B Caze sensitive, baclward, word search
* zoript find.t
* tegteaze: Caze_Back Word
B Caze inzenzitive, foreeard, character search
* zoript find.t
* tegteaze: MoCaze_For_Char
B Caze insenzitive, foreeard, word zearch
* zoript find.t
tegteaze: MoCaze_For_Word
B Caze insenzitive, baclavard, character zearch
* zoript find.t
* tegteaze: MoCaze_Back_Char
B Caze inzenzitive, baclavard, word zearch
* zoript find.t
tegteaze: MoCaze_Back Word

4 | v

Converting a Results File to a Test Plan

Using Silk Test Classic, you can convert a results file into a test plan. This is useful when converting suite-
based tests into test plans.

1. Open a results file that was generated by Silk Test Classic, not one generated by the test plan editor
from a test plan.

2. Click Results > Convert to Plan.

3. Select the results file you want to convert, which is typically the most recent, and click OK. The test plan
editor converts the results file to a test plan.

When creating a test plan from a results file generated for a script, the test plan editor uses the #
symbol so that when this test plan is run, the testdata statement doubles as description. Since the
results file was for a script, not a test plan, it does not contain any group or test case descriptions. The #
symbol can be used with any test plan editor statement so that the statement will double as description.

Working with Test Plans

This section describes how you can work with test plans.

Creating a New Test Plan

1. Click File > New.
2. Click Test plan and click OK. An empty test plan window opens.

Test Plans

103

104

Test Plans

3. Create your test plan and then click File > Save.
4. Specify the name and location in which to save the file, and then click OK.

5. If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes
if you want to add the file to the open project, or No if you do not want to add this file to the project.

Before you can begin testing, you must enable extensions for applications you plan to test on both the
target machine and the host machine.

Indent and Change Levels in an Outline

You can use menu, keyboard, or toolbar commands to enter or change group and test descriptions as you
are typing them. The following table summarizes the commands:

Action Menu Item Key

Indent one level Outline/Move Right ALT + forward arrow
Outdent one level Outline/Move Left ALT + back arrow
Swap with line above Outline/Transpose Up ALT + up arrow
Swap with line below Outline/Transpose Down ALT + down arrow

Each command acts on the current line or currently selected lines.

Silk Test Classic ignores comments when compiling, with the exception of functions and test cases.
Comments within functions and test cases must be within the scope of the function/test case. If a comment
is outdented beyond the scope of the function/test case, the compiler assumes that the function/test case
has ended. As long as comments do not violate the function/test case scope, they can be placed anywhere
on a line.

Note: Comments beyond the scope can also impact expand/collapse functionality and may prevent a
function/test case from being fully expanded/collapsed. We recommend that you keep comments
within scope.

Adding Comments to Test Plan Results

You can add comments to your test plans which will display in the results when you run your tests. You can
annotate your tests with such comments to ease the interpretation of the test results.

To add a comment to a test plan, include the following statement in the test plan:
comment: Your comment text

For example, running the following piece of a test plan:

Find dialog
Get the default button
comment: This test should return Find.FindNext
script: find.t
testcase: GetButton

produces the following in the results file:

Find dialog
Get the default button
Find.FindNext
comment: This test should return Find.FindNext

Note: You can also preface lines in all 4Test files with // to indicate a single-line comment. Such
comments do not display in test plan results.

Documenting Manual Tests in the Test Plan

Your QA department might do some of its testing manually. You can document the manual testing in the
test plan. In this way, the planning, organization, and reporting of all your testing can be centralized in one
place. You can describe the state of each of your manual tests. This information is used in reports.

To indicate that a test description in the test plan is implemented with a manual test, use the value manual
in the testcase statement, as in:

testcase: manual

By default, whenever you generate a report, it includes information on the tests run for that results file, plus
the current results of any manual tests specified in the test plan. If the manual test results are subsequently
updated, the next time you generate the report, it incorporates the latest manual results. However, this
might not be what you want. If you want the report to use a snapshot of manual results, not the most recent
manual results, merge the results of manual tests into the results file.

Describing the State of a Manual Test

1. Open atest plan containing manual tests.
2. Click Testplan > Run Manual Tests.

3. Select a manual test from the Update Manual Tests dialog box and document it. The Update Manual
Tests dialog box lists all manual tests in the current test plan.

Mark the test Click the Complete option button.
complete)
Complete means that a test has been defined. A manual test marked here as

Complete will be tabulated as complete in Completion reports.

Indicate whether
the test passed or
failed

1. Click the Has been run option button.
2. Select Passed or Failed.
3. Specify when the test was run and optionally, specify the machine.

To specify when the test was run, use the following syntax:
YYYY-MM-DD HH:MM:SS

Hours, minutes, and seconds are optional. For example, enter 2006-01-10 to
indicate that the test was run Jan 10, 2006.

Manual tests marked as Passed or Fai led will be tabulated as such in Pass/
Fail reports, as long as you have also specified the time at which they were run.

A test marked Has been run is also considered complete in Completion
reports.

Add any Fill in the Comments text box.
comments you

want about the

test

Inserting a Template

1. Click Testplan > Insert Template. The Insert Testplan Template dialog box, which lists all the GUI
objects declared in your test frame, opens.

2. Select each of the GUI objects that are related to the application features you want to test.
Because this is a multi-select list box, the objects do not have to be contiguous.
For each selected object, Silk Test Classic inserts two lines of descriptive text into the test plan.

Test Plans

105

106

Test Plans

For example, the test plan editor would create the following template for the Find dialog box of the Text
Editor application:

Tests for DialogBox Find
Tests for StaticText FindWhatText
(Insert tests here)
Tests for TextField FindWhat
(Insert tests here)
Tests for CheckBox CaseSensitive
(Insert tests here)
Tests for StaticText DirectionText
(Insert tests here)
Tests for PushButton FindNext
(Insert tests here)

Tests for PushButton Cancel

(Insert tests here)
Tests for RadioList Direction
(Insert tests here)

Changing Colors in a Test Plan

You can customize your test plan so that different test plan components display in unique colors.

To change the default colors:

1. Click Options > Editor Colors.

2. On the Editor Colors dialog box, select the outline editor item you want to change in the Editor Item
list box at the left of the dialog box.

3. Apply a color to the item by selecting a pushbutton from the list of predefined colors or create a new
color to apply by selecting the red, green, and blue values that compose the color.

Default Component Description
color
Blue Test description Lowest level of the hierarchical test plan outline that describes a single
testcase.
Red Test plan statement Link scripts, test cases, test data, closed sub-plans, or an include file (such
as a test frame) to the test plan.
Magenta Include statement Sub-plans to be included in a master plan.
when sub-plan is open
Green Comment Additional user information that is incidental to the outline; preceded by
double slashes (//); provides documentation throughout the test plan.
Black Other line (group Higher level lines of the hierarchical test plan outline that describe a group of
description) tests; may be several levels in depth.

Linking the Test Plan to Scripts and Test Cases

After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:

« Linking a description to a script or test case using the Testplan Detail dialog box if you want to
automate the process of linking scripts and test cases to the test plan.

e Linking to a test plan manually.

« Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and
testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually

good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

Working with Large Test Plans

For large or complicated applications, the test plan can become quite large. This raises the following
issues:

Issue Solution

How to keep track of where you are in the test plan and Use the Testplan Detail dialog box.
what is in scope at that level.

How to determine which portions of the test plan have Produce a Completion report.
been implemented.

How to allow several staff members to work on the test Structure your test plan as a master plan with one or
plan at the same time. more sub-plans.

This section describes how you can divide your test plan into a master plan with one or more sub-plans to
allow several staff members to work on the test plan at the same time.

Determining Where Values are Defined in a Large Test
Plan

1. Place the insertion point at the relevant point in the test plan and click Testplan > Detail. The Testplan
Detail dialog box opens.

2. Click the level in the list box at the top of the Testplan Detail dialog box, to see just the set of symbols,
attributes, and statements that are defined on a particular level.

3. Once you find the level at which a symbol, attribute, or statement was defined, you can change the
value at that level, causing the inherited value at the lower levels to change also.

Dividing a Test Plan into a Master Plan and Sub-Plans

If several engineers in your QA department will be working on a test plan, it makes sense to break up the
plan into a master plan and sub-plans. This approach allows multi-user access, while at the same time
maintaining a single point of control for the entire project.

The master plan contains only the top few levels of group descriptions, and the sub-plans contain the
remaining levels of group descriptions and test descriptions. Statements, attributes, symbols, and test data
defined in the master plan are accessible within each of the sub-plans.

Sub-plans are specified with an include statement. To expand the sub-plan files so that they are visible
within the master plan, double-click in the left margin next to the include statement. Once a sub-plan is
expanded inline, the sub-plan statement changes from red (the default color for statements) to magenta,
indicating that the line is now read-only and that the sub-plan is expanded inline. At the end of the
expanded sub-plan is the <eof> marker, which indicates the end of the sub-plan file.

Test Plans | 107

108

Test Plans

Creating a Sub-Plan

You create a sub-plan in the same way you create any test plan: by opening a new test plan file and
entering the group descriptions, test descriptions, and the test plan editor statements that comprise the
sub-plan, either manually or using the Testplan Detail dialog.

Copying a Sub-Plan

When you copy and paste the include statement and the contents of an open include file, note that only the
include statement will be pasted.

To view the contents of the sub-plan, open the pasted include file by clicking Include > Open or double-
click the margin to the left of the include statement.

Opening a Sub-Plan
Open the sub-plan from within the master plan. To do this, you can either:

« double-click the margin to the left of the include statement or
» highlight the include statement and choose Include > Open. (Compiling a script also automatically
opens all sub-plans.)

If a sub-plan does not inherit anything (that is, statements, attributes, symbols, or data) from the master
plan, you can open the sub-plan directly from the File > Open dialog box.

Connecting a Sub-Plan with a Master Plan

To connect the master plan to a sub-plan file, you enter an include statement in the master plan at the
point where the sub-plan logically fits. The include statement cannot be entered through the Testplan
Detail dialog box; you must enter it manually.

The include statement uses this syntax:
include: myinclude.pln
where myinclude is the name of the test plan file that contains the sub-plan.

If you enter the include statement correctly, it displays in red, the default color used for the test plan
editor statements. Otherwise, the statement displays in blue or black, indicating a syntax error (the compiler
is interpreting the line as a description, not a statement).

Refreshing a Local Copy of a Sub-Plan

When another user modifies a sub-plan, those changes are not automatically reflected in your read-only
copy of the sub-plan. Once the other user has released the lock on the sub-plan, there are two ways to
refresh your copy:

1. Close and then reopen the sub-plan.
2. Acquire a lock for the sub-plan.

Sharing a Test Plan Initialization File

All QA engineers working on a test plan that is broken up into a master plan and sub-plans must use the
same test plan initialization file.

To share a test plan initialization file:

1. Click Options > General.

2. On the General Options dialog box, specify the same file name in the Data File for Attributes and
Queries text box.

Saving Changes

When you finish editing, choose Include > Save to save the changes to the sub-plan.

Include > Save saves changes to the current sub-plan while File > Save saves all open master plans and
sub-plans.

Overview of Locks

When first opened, a master plan and its related sub-plans are read-only. This allows many users to open,
read, run, and generate reports on the plan. When you need to edit the master plan or a sub-plan, you
must first acquire a lock, which prevents others from making changes that conflict with your changes.

Acquiring and Releasing a Lock

Acquire alock pjace the cursor in or highlight one or more sub-plans and then choose Include >
Acquire Lock.

The bar in the left margin of the test plan changes from gray to yellow.

Release a lock ggject Include > Release Lock.

The margin bar changes from yellow to gray.

Generating a Test Plan Completion Report

To measure your QA department’s progress in implementing a large test plan, you can generate a
completion report. The completion report considers a test complete if the test description is linked to a test
case with two exceptions:

« If the test case statement invokes a data-driven test case and a symbol being passed to the data-driven
test case is assigned the value ? (undefined), the test is considered incomplete.

« If the test case is manual and marked as Incomplete in the Update Manual Tests dialog box, the test is
considered incomplete. A manual test case is indicated with the testcase :manual syntax.

To generate a test plan completion report:

=

Open the test plan on which you want to report.
Click Testplan > Completion Report to display the Testplan Completion Report dialog box.

In the Report Scope group box, indicate whether the report is for the entire plan or only for those tests
that are marked.

. To subtotal the report by a given attribute, select an attribute from the Subtotal by Attribute text box.

w N

[

Click Generate.

The test plan editor generates the report and displays it in the lower half of the dialog box. If the test
plan is structured as a master plan with associated sub-plans, the test plan editor opens any closed
sub-plans before generating the report.

You can:

* Print the report.
< Export the report to a comma-delimited ASCII file. You can then bring the report into a spreadsheet
application that accepts comma-delimited data.

Test Plans

109

110

« Chart (graph) the report, just as you can chart a Pass/Fail report.

Adding Data to a Test Plan

Test Plans

This section describes how you can add data to a test plan.

Specifying Unique and Shared Data

If a data value is You should place it in the plan at the same level as the test description, using

unique to a single test the testdata statement. You can add the testdata statement using the

description Testplan Detail dialog box or type the testdata statement directly into the
test plan.

If data is common to You can factor out the data that is common to a group of tests and define it at a

several tests level in the test plan where it can be shared by the group. To do this, you define
symbols and assign them values. Using symbols results in less redundant data,
and therefore, less maintenance.

Adding Comments in the Test Plan Editor

Use two forward slash characters to indicate that a line in a test plan is a comment. For example:
// This is a comment

Comments preceded by 7/ do not display in the results file. You can also specify comments using the
comment statement; these comments will display in the results files.

Testplan Editor Statements

You use the test plan editor keywords to construct statements, using this syntax:
keyword : value

keyword: One of the test plan editor keywords.

value: A comment, script, test case, include file, attribute name, or data value.
For example, this statement associates the script myscript. t with the plan:
script : myscript.t

Spaces before and after the colon are optional.

The # Operator in the Testplan Editor

When a # character precedes a statement, the statement will double as a test description in the test plan.
This helps eliminate possible redundancies in the test plan. For example, the following test description and
script statement:

Script is test.t

script:test.t
can be reduced to one line in the test plan:
#script: test.t

The test plan editor considers this line an executable statement as well as a description. Any statements
that follow this "description" in the test plan and that trigger test execution must be indented.

Using the Testplan Detail Dialog Box to Enter the
testdata Statement

1. Place the insertion point at the end of the test description. If a testdata statement is not associated
with a test description, the compiler generates an error.

2. Click Testplan > Detail. To provide context, the multi-line list box at the top of the Testplan Detail
dialog box displays the line in the test plan that the cursor was on when the dialog box was invoked,
indicated by the black arrow icon. If the test case and script associated with the current test description
are inherited from a higher level in the test plan, they are shown in blue; otherwise, they are shown in
black.

3. Enter the data in the Test Data text box, separating each data element with a comma.

Remember, if the test case expects a record, you need to enclose the list of data with the list
constructor operator (the curly braces); otherwise, Silk Test Classic interprets the data as individual
variables, not a record, and will generate a data type mismatch compiler error.

4. Click OK. Silk Test Classic closes the Testplan Detail dialog box and enters the testdata statement and
data values in the plan.

Entering the testdata Statement Manually

1. Open up a new line after the test description and indent the line one level.
2. Enter the testdata statement as follows.

« If the test case expects one or more variables, use this syntax: testdata: data [,data], where
data is any valid 4Test expression.

e Arecord, use the same syntax as above, but open and close the list of record fields with curly
braces: testdata: {data [,data]}, where data is any valid 4Test expression.

Be sure to follow the testdata keyword with a colon. If you enter the keyword correctly, the statement
displays in dark red, the default color. Otherwise, the statement displays in either blue or black,
indicating the compiler is interpreting the line as a description.

Linking Test Plans

This section describes how Silk Test Classic handles linking from a test plan to a script or test case.

Linking a Description to a Script or Test Case using the
Testplan Detail Dialog Box

1. Place the insertion cursor on either a test description or a group description.

2. Click Testplan > Detail. The test plan editor invokes the Testplan Detail dialog box, with the Test
Execution tab showing. The multi-line list box at the top of the dialog box displays the line in the test
plan that the cursor was on when the dialog box was invoked, as well as its ancestor lines. The black
arrow icon indicates the current line. The current line appeatrs in black and white, and the preceding
lines display in blue.

3. If you:
« know the names of the script and test case, enter them in the Script and Testcase fields,
respectively.

« are unsure of the script name, click the Scripts button to the right of the Script field to browse for
the script file.

Test Plans

111

112

Test Plans

4. On the Testplan Detail - Script dialog box, navigate to the appropriate directory and select a script
name by double-clicking or by selecting and then clicking OK. Silk Test Classic closes the Testplan
Detail - Script dialog box and enters the script name in the Script field.

5. Click the Testcases button to the right of the Testcase field, to browse for the test case name.

The Testplan Detail — Testcase dialog box shows the names of the test cases that are contained in the
selected script. Test cases are listed alphabetically, not in the order in which they occur in the script.

6. Select a test case from the list and click OK.
7. Click OK. The script and test case statements are entered in the plan.

If you feel comfortable with the syntax of the test plan editor statements and know the locations of the
appropriate script and test case, you can enter the script and test case statements manually.

Linking a Test Plan to a Data-Driven Test Case

To link a group of test descriptions in the plan with a data-driven test case, add the test case declaration to
the group description level. There are three ways to do this:
« Linking a test case or script to a test plan using the Testplan Detail dialog box to automate the process.

e Link to a test plan manually.
¢ Record the test case from within the test plan.

Linking to a Test Plan Manually

If you feel comfortable with the syntax of the test plan editor statements and know the locations of the
appropriate script and test case, you can enter the script and testcase statements manually.

1. Place the insertion cursor at the end of a test or group description and press Enter to create a new line.
2. Indent the new line one level.
3. Enter the script and/or test case statements using the following syntax:

script:
scriptfilename.t testcase:
testcasename

Where script and testcase are keywords followed by a colon, scriptfilename.t is the name of the
script file, and testcasename is the name of the test case.

If you enter a statement correctly, it displays in dark red, the default color used for statements. If not, it
will either display in blue, indicating the line is being interpreted as a test description, or black, indicating
it is being interpreted as a group description.

Linking a Test Case or Script to a Test Plan using the
Testplan Detail Dialog Box

The Testplan Detail dialog box automates the process of linking to scripts and test cases. It lets you
browse directories and select script and test case names, and it enters the correct the test plan editor
syntax into the plan for you.

Linking the Test Plan to Scripts and Test Cases

After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:

» Linking a description to a script or test case using the Testplan Detail dialog box if you want to
automate the process of linking scripts and test cases to the test plan.

e Linking to a test plan manually.

« Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and
testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually
good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

Example of Linking a Test Plan to a Test Case

For example, consider the data driven test case FindTest, which takes a record of type SEARCHINFO as a

parameter:

type SEARCHINFO is record
STRING sText // Text to type in document window
STRING sPos // Starting position of search
STRING sPattern // String to look for
BOOLEAN bCase // Case-sensitive or not

STRING sDirection // Direction of search
STRING sExpected // The expected match

testcase FindTest (SEARCHINFO Data)
TextEditor.File.New.Pick)
DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
TextEditor.Search.Find.Pick O
Find.FindWhat.SetText (Data.sPattern)
Find.CaseSensitive.SetState (Data.bCase)
Find.Direction.Select (Data.sDirection)
Find.FindNext.Click
Find.Cancel.Click O
DocumentWindow.Document.VerifySelText ({Data.sExpected})
TextEditor.File.Close.Pick ()
MessageBox.-No.Click ()

The following test plan is associated with the FindTest testcase (the testcase statement is
highlighted for emphasis). The statement occurs at the Find dialog group description level, so that each of
the test descriptions in the group can call the test case, passing it a unique set of data:

Testplan FindTest.pln

Find dialog
script: findtest.t
testcase: FindTest

Categorizing and Marking Test Plans

This section describes how you can work with selected tests in a test plan.

Test Plans | 113

114

Test Plans

Marking a Test Plan

Marks are temporary denotations that allow you to work with selected tests in a test plan. For example, you
might want to run only those tests that exercise a particular area of the application or to report on only the
tests that were assigned to a particular QA engineer. To work with selected tests rather than the entire test
plan, you denote or mark those tests in the test plan.

Marks can be removed at any time, and last only as long as the current work session. You can recognize a
marked test case by the black stripe in the margin.

You can mark test cases by:

Choice Select the individual test description, group description, or entire plan that you want to mark,
and then choosing the appropriate marking command on the Testplan menu.

Query You can also mark a test plan according to a certain set of characteristics it possesses. This is
called marking by query. You build a query based on one or more specific test characteristics;
its script file, data, symbols, or attributes, and then mark those tests that match the criteria set
up in the query. For example, you might want to mark all tests that live in the find. t script
and that were created by the developer named Peter. If you name and save the query, you can
reapply it in subsequent work sessions without having to rebuild the query or manually remark
the tests that you're interested in working with.

Test After running a test plan, the generated results file might indicate test failures. You can mark
failure these failures in the plan by selecting Results > Mark Failures in Plan. You then might fix the
errors and re-run the failed tests.

How the Marking Commands Interact

When you apply a mark using the Mark command, the new mark is added to existing marks.

When you mark tests through the query marking commands, the test plan editor by default clears all
existing marks before running the query. Mark by Named Query supports sophisticated query
combinations, and it would not make sense to retain previous marks. However, Mark by Query, which
allows one-time-only queries, lets you override the default behavior and retain existing marks.

To retain existing marks, uncheck the Unmark All Before Query check box in the Mark by Query dialog
box.

Marking One or More Tests

To mark:
A single test Place the cursor on the test description and click Testplan > Mark.

A group of related tests Place the cursor on the group description and click Testplan > Mark. The
test plan editor marks the group description, its associated statements, and
all test descriptions and statements subordinate to the group description.

Two or more adjacent Select the test description of the adjacent tests and click Testplan > Mark.
tests and their The test plan editor marks the test descriptions and statements of each
subordinate tests selected test and any subordinate tests.

Printing Marked Tests

1. Click File > Print.
2. In the Print dialog box, make sure the Print Marked Only check box is checked, as well as any other
options you want.

3. Click OK.

Using Symbols

This section describes symbols, which represent pieces of data in a data driven test case.

Overview of Symbols

A symbol represents a piece of data in a data driven test case. It is like a 4Test identifier, except that its
name begins with the $ character. The value of a symbol can be assigned locally or inherited. Locally

assigned symbols display in black and symbols that inherit their value display in blue in the Testplan Detail

dialog box.

For example, consider the following test plan:

EX Testplan - C:\Program Files'Borland’,SilkTest'examples'.cas = |EI|E|

B Find dialog
* zeript find.t
tezteaze: Find (3 Text $Pasition, $Pattern, $Casze, $Direction, $Expected)
$Text="0A Parner"
B Casze senzitive
$Caze=TRLUE
B Forward
BDirection = "Down"
PPozition ="=HOME="
B Character search
fPattern="0"
JExpected="0Q"
= vward search
BPatern = "Partner”
JExpected ="Parner"
B Baclowvard
PDirection="Up"
BPozition ="=EMD="
B Character search
fPattern="0"
JExpected="0Q"
= vward search
BPatern = "Partner”
JExpected ="Parner"
B Casze inzensitive
BCaze=FALSE
B Forward
BDirection = "Down"
PPozition ="=HOME="
B Character search
fPattern="g"
+ $Ezpected ="l

X

The test plan in the figure uses six symbols:

* $Text is the text to enter in the document window.
* $Position is the position of the insertion point in the document window.

Test Plans

115

116

Test Plans

« $Pattern is the pattern to search for in the document window.
* $Case is the state of the Case Sensitive check box.

« $Direction is the direction of the search.

» $Expected is the expected match.

The symbols are named in the parameter list to the FindTest testcase, within the parentheses after
the test case name.

testcase: FindTest ({ $Text, $Position, $Pattern, $Case, $Direction,
$Expected })

« The symbols are only named in the parameter list; they are not assigned values. The values are
assigned at either the group or test description level, depending on whether the values are shared by
several tests or are unigue to a single test. If a symbol is defined at a level in the plan where it can be
shared by a group of tests, each test can assign its own local value to the symbol, overriding whatever
value it had at the higher level. You can tell whether a symbol is locally assigned by using the Testplan
Detail dialog box: Locally assigned symbols display in black. Symbols that inherit their values display in
blue.

For example, in the preceding figure, each test description assigns its own unique values to the $Pattern
and the $Expected symbols. The remaining four symbols are assigned values at a group description level:

+ The $Text symbol is assigned its value at the Find dialog group description level, because all eight
tests of the Find dialog enter the text Silk Test Classic into the document window of the Text Editor
application.

« The $Case symbol is assigned the value TRUE at the Case sensitive group description level and the
value FALSE at the Case insensitive group description level.

e The $Direction symbol is assigned the value Down at the Forward group description level, and the
value Up at the Backward group description level.

e The $Position symbol is assigned the value <HOME> at the Forward group description level, and the
value <END> at the Backward group description level.

Because the data that is common is factored out and defined at a higher level, it is easy to see exactly what
is unigue to each test.

Symbol Definition Statements in the Test Plan Editor

Use symbols to define data that is shared by a group of tests in the plan. Symbol definitions follow these
syntax conventions:

e The symbol name can be any valid 4Test identifier name, but must begin with the $ character.

« The symbol value can be any text. When the test plan editor encounters the symbol, it expands it (in the
same sense that another language expands macros). For example, the following test plan editor
statement defines a symbol named Color and assigns it the STRING value "Red":

$Color = "Red"

« Touse a $in a symbol value, precede it with another $. Otherwise, the compiler will interpret everything
after the $ as another symbol. For example, this statement defines a symbol with the value Some
$String: $MySymbol = ""Some$$String "

e To assign a null value to a symbol, do not specify a value after the equals sign. For example:
$MyNul ISymbol =

« To indicate that a test is incomplete when generating a test plan completion report, assign the symbol
the ? character. For example: $MySymbol = ?

If a symbol is listed in the argument list of a test case, but is not assigned a value before the test case is
actually called, the test plan editor generates a runtime error that indicates that the symbol is undefined. To
avoid this error, assign the symbol a value or a ? if the data is not yet finalized.

Defining Symbols in the Testplan Detail Dialog box

Place the insertion cursor in the plan where you need to assign a value to a symbol.

1. Click Testplan > Detail.

2. Select the Symbols tab on the Testplan Detail dialog box, and enter the symbol definition in the text
box to the left of the Add button.

You do not need to enter the $ character; the test plan editor takes care of this for you when it inserts
the definitions into the test plan.

3. Click Add. Silk Test Classic adds the symbol to the list box above the Add text text box.

4. Define additional symbols in the same manner, and then click OK when finished.
Silk Test Classic closes the Testplan Detail dialog box and enters the symbol definitions, including the
$ character, into the plan. If a symbol is defined at a level in the plan where it can be shared by a group
of tests, each test can assign its own local value to the symbol, overriding whatever value it had at the

higher level. You can tell whether a symbol is locally assigned by using the Testplan Detail dialog box:
Locally assigned symbols display in black. Symbols that inherit their values display in blue.

Assigning a Value to a Symbol

You can define symbols and assign values to them by typing them into the test plan, using this syntax:
$symbolname = symbolvalue

where symbolname is any valid 4Test identifier name, prefixed with the $ character and symbolvalue is
any string, list, array, or the ? character (which indicates an undefined value).

For example, the following statement defines a symbol named Color and assigns it the STRING value
"Red™
$Color = "Red”

If a symbol is defined at a level in the plan where it can be shared by a group of tests, each test can assign
its own local value to the symbol, overriding whatever value it had at the higher level.

Specifying Symbols as Arguments when Entering a
testcase Statement

1. Place the insertion cursor in the test plan at the location where the testcase statement is to be
inserted. Placing a symbol name in the argument list of a testcase statement only specifies the name
of the symbol; you also need to define the symbol and assign it a value at either the group or test case
description level, as appropriate.

If you do not know the value when you are initially writing the test plan, assign a question mark (?) to
avoid getting a compiler error when you compile the test plan; doing so will also cause the tests to be
counted as incomplete when a Completion report is generated.

2. Click Testplan > Detail.

3. Enter the name of a data driven test case on the Testplan Detail dialog box, followed by the argument
list enclosed in parenthesis. If the test case expects a record, and not individual values, you must use
the list constructor operator (curly braces).

4. Click OK. Silk Test Classic dismisses the Testplan Detail dialog box and inserts the testcase
statement into the test plan.

Test Plans

117

118

Attributes and Values

Test Plans

This section describes site-specific characteristics that you can define for your test plan and assign to test
descriptions and group descriptions.

Overview of Attributes and Values

Attributes are site-specific characteristics that you can define for your test plan and assign to test
descriptions and group descriptions. Attributes are used to categorize tests, so that you can reference them
as a group. Attributes can also be incorporated into queries, which allow you to mark tests that match the
query’s criteria. Marked tests can be run as a group.

By assigning attributes to parts of the test plan, you can:

» Group tests in the plan to distinguish them from the whole test plan.
* Report on the test plan based on a given attribute value.
* Run parts of the test plan that have a given attribute value.

For example, you might define an attribute called Engineer that represents the set of QA engineers that are
testing an application through a given test plan. You might then define values for Engineer like David,
Jesse, Craig, and Zoe, the individual engineers who are testing this plan. You can then assign the values of
Engineer to the tests in the test plan. Certain tests are assigned the value of David, others the value of
Craig, and so on. You can then run a query to mark the tests that have a given value for the Engineer
attribute. Finally, you can run just these marked tests.

Attributes are also used to generate reports. For example, to generate a report on the number of passed
and failed tests for Engineer Craig, simply select this value from the Pass/Fail Report dialog box. You do
not need to mark the tests or build a query in this case.

Attributes and values, as well as queries, are stored by default in testplan. ini which is located in the
Silk Test Classic installation directory. The initialization file is specified in the Data File for Attributes and
Queries field in the General Options dialog box.

Silk Test Classic ships with predefined attributes. You can also create up to 254 user-defined attributes.

Make sure that all the QA engineers in your group use the same initialization body file. You can modify the
definition of an attribute.

Modifying attributes and values through the Define Attributes dialog box has no effect on existing
attributes and values already assigned to the test plan. You must make the changes in the test plan
yourself.

Predefined Attributes

The test plan editor has three predefined attributes:

Developer Specifies the group of QA engineers who developed the test cases called by the test plan.
Component Specifies the application modules to be tested in this test plan.

Category Specifies the kinds of tests used in your QA Department, for example, Smoke Test.

User Defined Attributes

You can define up to 254 attributes. You can also rename the predefined attributes.

The rules for naming attributes include:

Attribute names can be up to 11 characters long.
Attribute and value names are not case sensitive.

Adding or Removing Members of a Set Attribute

Tests can be assigned more than one value at a time for attributes whose type is Set.

For example, you might have a Set variable called RunWhen with three values: Ul, regression,
andsmoke. You can assign any combination of these three values to a test or group of tests. Separate

each value with a semicolon.

You can use the + or — operator to add or subtract elements to what were previously assigned.

Consider the following examples:

Using + to add numbers

RunWhen: Ul; regression Test 1 testcase: tl RunWhen: + smoke
Test 2 testcase: t2

In this example, Test 1 has the values Ul and regression . The statement
RunWhen: + smoke

adds the value smoke to the previously assigned values, so Test 2 has the values U,
regression, and smoke.

Using - to remove numbers

RunWhen: Ul; regression Test 1 testcase: tl1 RunWhen: -
regression Test 2

testcase: t2
In this example, Test 1 has the values Ul and regression. The statement
RunWhen: - regression

removes the value regression from the previously assigned values, so Test2 has the
value UL.

Rules for Using + and -

You must follow the + or — with a space.
You can add or remove any number of elements with one statement. Separate each element with a
semicolon.
You can specify + elements even if no assignments had previously been made. The result is that the
elements are now assigned.
You can specify — elements even if no assignments had previously been made. The result is that the
set’'s complement is assigned. Using the previous example, specifying:
RunWhen: - regression

when no RunWhen assignment had previously been made results in the values Ul and smoke being
assigned.

Defining an Attribute and its Values

1. Click Testplan > Define Attributes, and then click New.

Test Plans

119

120

Test Plans

2. Name the attribute.
3. Select one of the following types, and then click OK.

Normal You specify values when you define the attribute. Users of the attribute in a test plan pick one
value from the list.

Edit You don't specify values when you define the attribute. Users type their own values when they
use the attribute in a test plan.

Set Like normal, except that users can pick more than one value.
4. On the Define Attributes dialog box, if you:
* have defined an Edit type attribute, you are done. Click OK to close the dialog box.
« are defining a Normal or Set type attribute, type a value in the text box and click Add.

Once attributes have been defined, you can modify them.

Assigning Attributes and Values to a Test Plan

Attributes and values have no connection to a test plan until you assign them to one or more tests using an
assignment statement. To add an assignment statement, you can do one of the following:

« Type the assignment statement yourself directly in the test plan.
* Use the Testplan Detail dialog box.

Format

An assignment statement consists of the attribute name, a colon, and a valid attribute value, in this format:
attribute-name: attribute value

For example, the assignment statement that associates the Searching value of the Module attribute to a
given test would look like:

Module: Searching

Attributes of type Set are represented in this format:
attribute-name: attribute value; attribute

value; attribute value;
Placement

Whether you type an assignment statement yourself or have the Testplan Detail dialog box enter it for you,
the position of the statement in the plan is important.

To have an assignment statement apply to Place it directly after the
An individual test test description
A group of tests group description

Assigning an Attribute from the Testplan Detail Dialog
Box

1. Place the cursor in the test plan where you would like the assignment statement to display, either after
the test description or the group description.

2. Click Testplan > Detail, and then click the Test Attributes tab on the Testplan Detail dialog box. The
arrow in the list box at the top of the dialog box identifies the test description at the cursor position in the
test plan. The attribute will be added to this test description. The Test Attributes tab lists all your
current attributes at this level of the test plan.

3. Do one of the following:

» If the attribute is of type Normal, select a value from the list.
< If the attribute is of type Set, select on or more values from the list.
« If the attribute is of type Edit, type a value.

4. Click OK. Silk Test Classic closes the dialog box and places the assignment statements in the test plan.

Modifying the Definition of an Attribute

Be aware that modifying attributes and values through the Define Attributes dialog box has no effect on
existing attributes and values already assigned to the test plan. You must make the changes in the test plan
yourself.

1. Click Testplan > Define Attributes.
2. On the Define Attributes dialog box, select the attribute you want to modify, then:
Rename an attribute Edit the name in the Name text box.

Assign a new value Type the value in the text box at the bottom right of the dialog box, and click
to the attribute Add. The value is added to the list of values.

Modify a value Select the value from the Values list box, and click Edit. The value displays in
the text box at the bottom right of the dialog box and the Add button is
renamed to Replace. Modify the value and click Replace.

Delete a value Select the value from the Values list box and click Remove. The text box is
cleared and the value is removed from the Values list box.

Delete an attribute Click Delete.

3. Click OK. The attributes and values are saved in the initialization file specified in the General Options
dialog box.

Queries

This section describes how you can use a test plan query to mark all tests that match a user-selected set
of criteria, or test characteristics.

Overview of Test Plan Queries

You can use a test plan query to mark all tests that match a user-selected set of criteria, or test
characteristics. A query comprises one or more of the following criteria:

« Test plan execution: script file, test case name, or test data
e Test attributes and values
e Symbols and values

Test attributes and symbols must have been previously defined to be used in a query.

Named queries are stored by default in testplan. ini. The initialization file is specified in the Data File
for Attributes and Queries text box in the General Options dialog box. The testplan. ini file is in the
Silk Test Classic installation directory. Make sure that all the QA engineers in your group use the same
initialization file.

Test Plans | 121

Overview of Combining Queries to Create a New Query

You can combine two or more existing queries into a new query using the Mark by Named Query dialog
box. The new query can represent the union of the constituent queries (logical OR) or the intersection of
the constituent queries (logical AND).

Combining by union

Combining two or more queries by union creates a new named query that marks all tests that would have
been marked by running each query one after the other while retaining existing marks. Since Mark by
Named Query clears existing marks before running a query, the only way to achieve this result is to create
a new query that combines the constituent queries by union.

Example
Suppose you have two queries, Queryl and Query2, that you want to combine by union.
Queryl Query2

Developer: David Developer: Jesse

Component: Searching TestLevel: 2

The new query created from the union of Queryl and Query?2 will first mark those tests
that match all the criteria in Queryl (Developer is David and Component is Searching)
and then mark those tests that match all the criteria in Query2 (Developer is Jesse and
TestLevel is 2).

Combining by intersection

Combining two or more queries by intersection creates a new named query that marks every test that has
the criteria specified in all constituent queries.

Example

For example, combining Queryl and Query?2 by intersection would create a new query
that comprised these criteria: Developer is David and Jesse, Component is Searching,
and TestLevel is 2. In this case, the new query would not mark any tests, since it is
impossible for a test to have two different values for the attribute Developer (unless
Developer were defined as type Set under Windows). Use care when combining queries
by intersection.

Guidelines for Including Symbols in a Query

« Use ? (question mark) to indicate an unset value. For example, Mysymbol = ? in a query would mark
those tests where Mysymbol is unset. Space around the equals sign (=) is insignificant.

« If you need to modify the symbol in the query, select it from the list box and click Edit. The test plan
editor places it in the text box and changes the Add button to Replace. Edit the symbol or value and
click Replace.

* To exclude the symbol from the query, select it from the list box and click Remove. The test plan editor
deletes it from the list box.

122 | Test Plans

The Differences between Query and Named Query
Commands

Testplan > Mark by Query or Testplan > Mark by Named Query both create queries, however, Mark by
Named Query provides extra features, like the ability to combine queries or to create a query without
running it immediately. If the query-creation function and the query-running function are distinct in your
company, then use Mark by Named Query. If you intend to run a query only once, or run a query while
keeping existing marks, then use Mark by Query.

The following table highlights the differences between the two commands.

Mary by Query Mark by Named Query
Builds a query based on criteria you select and runs Builds a new query based on criteria you select. Can run
query immediately. query at any time.

Name is optional, but note that only named queries are Name is required. Query is saved.
saved and can be rerun at any time in the Mark by
Named Query dialog box.

Cannot edit or delete a query. Can edit or delete a query.
Cannot combine queries. Can combine queries into a new query.
Lets you decide whether or not to clear existing marks Clears existing marks before running new query.

before running new query. Unmarks by default.

Unnamed queries can be run only once. If you name the query, you can have the test plan editor run it in
the same or subsequent work sessions without having to rebuild the query or manually remark the tests
that you're interested in rerunning or reporting on.

Create a New Query

You can create a new query through either Testplan > Mark by Query or Testplan > Mark by Named
Query. You can also create a new query by combining existing queries.

1. Open the test plan and any associated sub-plans.
2. Click Testplan > Mark by Query or Testplan > Mark by Named Query.
3. ldentify the criteria you want to include in the query. To include:

* A script, test case, or test data, use the Test Execution tab. Use the Script and Testcase buttons to
select a script and test case, or type the full specification yourself. To build a query that marks only
manual tests, enter the keyword manual in the Testcase text box.

« Existing attributes and values in the query, use the Test Attributes tab.

* One or more existing symbols and values, use the Symbols panel. Type the information and click
Add. The symbol and value are added to the list box.

Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters * (asterisk) and ?
(question mark) are supported for partial matches: * is a placeholder for 0 or more characters, and ? is
a placeholder for 1 character.

Example 1

If you type Find_5 (* in the Testcase field, the query searches all the testcase statements in the
plan and marks those test descriptions that match, as well as all subordinate descriptions to which the
matching testcase statement applies (those where the find_5 testcase passed in data).

Example 2

If you type Find. t in the Script field, the query searches all script statements in the plan and marks
those test descriptions that match exactly, as well as all subordinate descriptions to which the matching

Test Plans

123

script statement applies (those in which you had specified find.t exactly). It would not match any
script statements in which you had specified a full path.

4. Take one of the following actions, depending on the command you chose to create the query:

Mark by Click Mark to run the query against the test plan. The test plan editor closes the dialog
Query box and marks the test plan, retaining the existing marks if requested.

Mark by Click OK to create the query. The New Testplan Query dialog box closes, and the
Named Mark by Named Query dialog box is once again visible. The new query displays in the
Query Testplan Queries list box.

If you want to:

* Run the query, select it from the list box and click Mark.
* Close the dialog box without running the query, click Close.

Edit a Query

Click Testplan > Mark by Named Query to display the Mark by Named Query dialog box.
Select a query from the Testplan Queries list box and click Edit.
On the Edit Testplan Query dialog box, edit the information as appropriate, and then click OK .

To run the query you just edited, select the query and click Mark . To close the dialog box without
running the edited query, click Close .

Hwbh e

Delete a Query

1. Click Testplan > Mark by Named Query to open the Mark by Named Query dialog box.
2. Select a query from the Testplan Queries box and click Remove.
3. Click Yes to delete the query, and then click Close to close the dialog box.

Combining Queries

1. Click Testplan > Mark by Named Query to display the Mark by Named Query dialog box.

2. Click Combine. The Combine Testplan Queries dialog box lists all existing named queries in the
Queries to Combine list box.

3. Specify a name for the new query in the Query Name text box.
4. Select two or more queries to combine from the Queries to Combine list box.

5. Click the option button that represents the combination method to use: either Union of Queries or
Intersection of Queries.

6. Click OK to save the new query. The Mark by Named Query dialog box displays with the new query in
the Testplan Queries list box.

7. To run the query, select the query and click Mark or click Close to close the dialog box without running
the query.

124 | Test Plans

Designing and Recording Test Cases with
the Open Agent

This section describes how you can design and record test cases with the Open Agent.

Dynamic Object Recognition

Dynamic object recognition enables you to create test cases that use XPath queries to find and identify
objects. Dynamic object recognition uses a Find or FindAll method to identify an object in a test case.
For example, the following query finds the first top-level Shell with the caption SWT Test Application:

Desktop.find(*"/Shell[@caption="SWT Test Application™]")

To create tests that use dynamic object recognition, you must use the Open Agent.
Examples of the types of test environments where dynamic object recognition works well include:

< In any application environment where the graphical user interface is undergoing changes. For example,
to test the Check Me check box in a dialog box that belongs to a menu where the menu and the dialog
box name are changing, using dynamic object recognition enables you to test the check box without
concern for what the menu and dialog box are called. You can then verify the check box name, dialog
box name, and menu name to ensure that you have tested the correct component.

* In a Web application that includes dynamic tables or text. For example, to test a table that displays only
when the user points to a certain item on the web page, use dynamic object recognition to have the test
case locate the table without regard for which part of the page needs to be clicked in order for the table
to display.

« In an Eclipse environment that uses views. For example, to test an Eclipse environment that includes a
view component, use dynamic object recognition to identify the view without regard to the hierarchy of
objects that need to open prior to the view.

Using dynamic object recognition compared to using hierarchical object recognition
The benefits of using dynamic object recognition rather than hierarchical object recognition include:

« Dynamic object recognition uses a subset of the XPath query language, which is a common XML-based
language defined by the World Wide Web Consortium, W3C. Hierarchical object recognition is based on
the concept of a complete description of the application's object hierarchy and as a result is less flexible
than dynamic object recognition.

< Dynamic object recognition requires a single object rather than an include file that contains window
declarations for the objects in the application that you are testing. Using XPath queries, a test case can
locate an object using a Find command followed by a supported XPath construct. Hierarchical object
recognition uses the include file to identify the objects within the application.

You can create tests for both dynamic and hierarchical object recognition in your test environment. You can
use both recognition methods within a single test case if necessary. Use the method best suited to meet
your test requirements.

Using dynamic object recognition and window declarations

Silk Test Classic provides an alternative to using Find or FindAl 1 functions in scripts that use dynamic
object recognition. By default, when you record a test case with the Open Agent, Silk Test Classic uses
locator keywords in an include (.inc) file to create scripts that use dynamic object recognition and window
declarations. Using locator keywords with dynamic object recognition enables users to combine the
advantages of INC files with the advantages of dynamic object recognition. For example, scripts can use

Designing and Recording Test Cases with the Open Agent | 125

window names in the same manner as traditional, Silk Test Classic tag-based scripts and leverage the
power of XPath queries.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file. You must manually record test cases that use dynamic
object recognition without locator keywords. You can record the XPath query strings to include in test cases
by using the Locator Spy dialog box.

XPath Basic Concepts

Silk Test Classic supports a subset of the XPath query language. For additional information about XPath,
see http:/lwww.w3.org/TR/xpath20/.

XPath expressions rely on the current context, the position of the object in the hierarchy on which the Find
method was invoked. All XPath expressions depend on this position, much like a file system. For example:

« "/IShell" finds all shells in any hierarchy starting from the current context.
« "Shell" finds all shells that are direct children of the current context.

Additionally, some XPath expressions are context sensitive. For example, myWindow.find(xPath) makes
myWindow the current context.

Silk Test Classic provides an alternative to using Find or FindAll functions in scripts that use XPath
queries. You can use locator keywords in an INC file to create scripts that use dynamic object recognition
and window declarations.

Object Type and Search Scope

A locator typically contains the type of object to identify and a search scope. The search scope is one of
the following:

o
o |/

Locators rely on the current object, which is the object for which the locator is specified. The current object
is located in the object hierarchy of the application's Ul. All locators depend on the position of the current
object in this hierarchy, much like a file system.

XPath expressions rely on the current context, which is the position of the object in the hierarchy on which
the Find method was invoked. All XPath expressions depend on this position, much like a file system.

y Note:

The object type in a locator for an HTML element is either the HTML tag name or the class name that
Silk Test Classic uses for this object. For example, the locators //a and //DomLink, where DomLink
is the name for hyperlinks in Silk Test Classic, are equivalent. For all non-HTML based technologies
only the Silk Test Classic class name can be used.

Example

« //aidentifies hyperlink objects in any hierarchy relative to the current object.
« /aidentifies hyperlink objects that are direct children of the current object.

i Note: <a> is the HTML tag for hyperlinks on a Web page.

Example

The following code sample identifies the first hyperlink in a browser. This example
assumes that a variable with the name browserWindow exists in the script that refers to

126 | Designing and Recording Test Cases with the Open Agent

http://www.w3.org/TR/xpath20

a running browser instance. Here the type is "a" and the current object is
browserWindow.

Using Attributes to Identify an Object

To identify an object based on its properties, you can use locator attributes. The locator attributes are
specified in square brackets after the type of the object.

Example

The following sample uses the textContents attribute to identify a hyperlink with the
text Home. If there are multiple hyperlinks with the same text, the locator identifies the
first one.

Supported XPath Subset

Silk Test Classic supports a subset of the XPath query language. Use a FindAll or a Find command
followed by a supported construct to create a test case.

To create tests that use dynamic object recognition, you must use the Open Agent.

The following table lists the constructs that Silk Test Classic supports.

Supported XPath Construct Sample Description

Attribute Menultem[@caption="abc"] Finds all menu items with the given
caption attribute in their object definition
that are children of the current context.
The following attributes are supported:

» caption (without caption index)
* priorlabel (without index)
* windowid

Index Menultem[1] Finds the first menu item that is a child
of the current context. Indices are 1-
based in XPath.

Logical Operators: and, or, not, =, != Menultem[not(@caption="a
or @windowid!="b") and
@priorlabel="p"]

TestApplication.Find(*“// Finds the context on which the Find

Dialog[@caption="Check command was executed. For instance,

Box"1/./.7.”) the sample could have been typed as
TestApplication.Find(*“//
Dialog[@caption="Check

Box"1").
Desktop.Find(*“// Finds the parent of an object. For
PushButton[@caption="Previ instance, the sample finds a
ous")/../ PushButton with the caption “Ok” that
PushButton[@caption="0k>]” has a sibling PushButton with the
) caption “Previous.”
/ /Shell Finds all shells that are direct children

of the current object.

Designing and Recording Test Cases with the Open Agent | 127

Supported XPath Construct Sample

Description

"./Shell" is equivalent to "/Shell" and
"Shell".

/ /Shell/Menultem

Finds all menu items that are a child of
the current object.

1 /IShell

Finds all shells in any hierarchy relative
to the current object.

1 /IShell//Menultem

Finds all menu items that are direct or
indirect children of a Shell that is a
direct child of the current object.

Il /IMenultem

Finds all menu items that are direct or
indirect children of the current context.

* *[@caption='c']

Finds all objects with the given caption
that are a direct child of the current
context.

* /IMenultem/*/Shell

Finds all shells that are a grandchild of
a menu item.

The following table lists the XPath constructs that Silk Test Classic does not support.

Unsupported XPath Construct

Example

Comparing two attributes with each other.

PushButton[@caption = @windowid]

An attribute name on the right side is not supported. An
attribute name must be on the left side.

PushButton[“abc® = @caption]

Combining multiple XPath expressions with ‘and' or 'or'.

PushButton [@caption = "abc®] or .//

Checkbox

More than one set of attribute brackets.

PushButton[@caption = "abc] [@windowid =
"1237]

Use PushButton [@caption = "abc and
@windowid = "123"] instead.

More than one set of index brackets.

PushButton[1][2]

Any construct that does not explicitly specify a class or the
class wildcard, such as including a wildcard as part of a
class name.

//[@caption = "abc"]
Use //*[@caption = "abc™] instead.

"/[*Button[@caption="abc'T"

XPath Samples

The following table lists sample XPath queries and explains the semantics for each query.

XPath String

Description

desktop.Find(*"'/Shell[@caption="SWT
Test Application™] ')

desktop.Find(*'//
Menultem[@caption="Control*]"")

128 | Designing and Recording Test Cases with the Open Agent

Finds the first top-level She I I with the given caption.

Finds the Menu I tem in any hierarchy with the given
caption.

XPath String Description

myShell .Find(*'//Menultem[@caption! Finds an Menul'tem in any child hierarchy of myShell

="Control™]"™) that does not have the given caption.

myShell _.Find(*'"Menu[@caption="Control "] Looks for a specified Menu I tem with the specified

/Menultem[@caption!="Control"]") Menu as parent that has myShell as parent.

myShell .Find(*'// Finds a Menultem in any child hierarchy of myWindow

Menultem[@caption="Control" and with the given caption and windowld.

@windowid="20"]1"")

myShell _.Find(*'// Finds a Menultem in any child hierarchy of myWindow

Menultem[@caption="Control" or with the given caption or windowl d.

@windowid="20"1"")

desktop.FindALL(*"/Shell[2]/*/ Finds all PushButtons that have an arbitrary parent that

PushButton'™) has the second top-level shell as parent.

desktop.FindAIL(*/Shell[2]// Finds all PushButtons that use the second shell as direct

PushButton'™) or indirect parent.

myBrowser .Find(*'//FlexApplication[1]// Looks up the first FlexButton within the first

FlexButton[@caption="ok"]'") FlexApplication within the given browser.

myBrowser .FindALL("'// Finds all link elements with attribute class Xyz that are

td[@class="abc*"]//a[@class="xyz"]"") direct or indirect children of td elements with attribute
class abc*.

Supported Locator Attributes

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. If necessary, you can change the attribute type in one of the following ways:

« Manually typing another attribute type and value.
» Specifying another preference for the default attribute type by changing the custom attributes list values.

To create tests that use locators, you must use the Open Agent.

Using Locators

Within Silk Test Classic, literal references to identified objects are referred to as locators. For convenience,
you can use shortened forms for the locator strings in scripts. Silk Test Classic automatically expands the
syntax to use full locator strings when you playback a script. When you manually code a script, you can
omit the following parts in the following order:

* The search scope, //.
* The object type name. Silk Test Classic defaults to the class name.
* The surrounding square brackets of the attributes, [].

When you manually code a script, we recommend that you use the shortest form available.

y Note: When you identify an object, the full locator string is captured by default.

The following locators are equivalent:
e The first example uses the full locator string.

To confirm the full locator string, use the dialog box.

Designing and Recording Test Cases with the Open Agent | 129

* The second example works when the browser window already exists. Alternatively, you can use the
shortened form.

To find an object that has no real attributes for identification, use the index. For instance, to select the
second hyperlink on a Web page, you can type:

Additionally, to find the first object of its kind, which might be useful if the object has no real attributes, you
can type:

Using Locators to Check if an Object Exists

You can use the Exists method to determine if an object exists in the application under test.

The following code checks if a hyperlink with the text Log out exists on a Web page:

ifT (browserWindow.Exists('"//a[@textContents="Log out™]")) {
// do something

}

Using the Find method

You can use the Find method and the FindOptions method to check if an object, which you want to use
later, exists.

The following code searches for a window and closes the window if the window is found:

Window mainWindow = desktop.Find("'//Window[@caption="My Window"]", new
FindOptions(false))
if (mainWindow = null){

mainWindow.CloseSynchron()

}

Identifying Multiple Objects with One Locator

You can use the FindAll method to identify all objects that match a locator rather that only identifying the
first object that matches the locator.

Example

The following code example uses the FindAl'l method to retrieve all hyperlinks of a
Web page:
LIST OF DOMLINK links = browserWindow.FindALl('//a™)

Locator Customization

This section describes how you can create stable locators that enable Silk Test Classic to reliably recognize
the controls in your application under test (AUT).

Silk Test Classic relies on the identifiers that the AUT exposes for its Ul controls and is very flexible and
powerful in regards to identifying Ul controls. Silk Test Classic can use any declared properties for any Ul
control class and can also create locators by using the hierarchy of Ul controls. From the hierarchy, Silk
Test Classic chooses the most appropriate items and properties to identify each Ul control.

Silk Test Classic can exclude dynamic numbers of controls along the Ul control hierarchy, which makes the
object recognition in Silk Test Classic very robust against changes in the AUT. Intermediate grouping
controls that change the hierarchy of the Ul control tree, like formatting elements in Web pages, can be
excluded from the object recognition.

Some Ul controls do not expose meaningful properties, based on which they can be identified uniquely.
Applications which include such controls are described as applications with bad testability. Hierarchies, and
especially dynamic hierarchies, provide a good means to create unique locators for such applications.

130 | Designing and Recording Test Cases with the Open Agent

Applications with good testability should always provide a simple mechanism to identify Ul controls
uniquely.

One of the simplest and most effective practices to make your AUT easier to test is to introduce stable
identifiers for controls and to expose these stable identifiers through the existing interfaces of the
application.

Stable Identifiers

A stable identifier for a Ul control is an identifier that does not change between invocations of the control
and between different versions of the application, in which the Ul control exists. A stable identifier needs to
be unique in the context of its usage, meaning that no other control with the same identifier is accessible at
the same time. This does not necessarily mean that you need to use GUID-style identifiers that are unique
in a global context. Identifiers for controls should be readable and provide meaningful names. Naming
conventions for these identifiers will make it much easier to associate the identifier to the actual control.

Example: Is the caption a good identifier for a control?

Very often test tools are using the caption as the default identifier for Ul controls. The
caption is the text in the Ul that is associated with the control. However, using the
caption to identify a Ul control has the following drawbacks:

« The caption is not stable. Captions can change frequently during the development
process. For example, the Ul of the AUT might be reviewed at the end of the
development process. This prevents introducing Ul testing early in the development
process because the Ul is not stable.

« The caption is not unique. For example, an application might include multiple buttons
with the caption OK.

* Many controls are not exposing a caption, so you need to use another property for
identification.

» Using captions for testing localized applications is cumbersome, as you need to
maintain a caption for a control in each language and you also have to maintain a
complex script logic where you dynamically can assign the appropriate caption for
each language.

Creating Stable Locators

One of the main advantages of Silk Test Classic is the flexible and powerful object-recognition mechanism.
By using XPath notation to locate Ul controls, Silk Test Classic can reliably identify Ul controls that do not
have any suitable attributes, as long as there are Ul elements near the element of interest that have
suitable attributes. The XPath locators in Silk Test Classic can use the entire Ul control hierarchy or parts of
it for identifying Ul controls. Especially modern AJAX toolkits, which dynamically generate very complex
Document Object Models (DOMSs), do not provide suitable control attributes that can be used for locating Ul
controls.

In such a case, test tools that do not provide intelligent object-recognition mechanisms often need to use
index-based recognition techniques to identity Ul controls. For example, identify the n-th control with icon
Expand. This often results in test scripts that are hard to maintain, as even minor changes in the
application can break the test script.

A good strategy to create stable locators for Ul controls that do not provide useful attributes is to look for an
anchor element with a stable locator somewhere in the hierarchy. From that anchor element you can then
work your way to the element for which you want to create the locator.

Silk Test Classic uses this strategy when creating locators, however there might be situations in which you
have to manually create a stable locator for a control.

Designing and Recording Test Cases with the Open Agent | 131

Example: Locating the Expand Icon in a Dynamic GWT Tree

The Google Widget Toolkit (GWT) is a very popular and powerful toolkit, which is hard to test. The dynamic
tree control is a very commonly used Ul control in GWT. To expand the tree, we need to identify the
Expand icon element.

You can find a sample dynamic GWT tree at http://gwt.google.com/samples/Showcase/Showcase.html#!
CwTree.

The default locator generated by Silk Test Classic is the following:

/BrowserApplication//BrowserWindow//DIV[@id="gwt-debug-cwTree-dynamicTree-
root-child0"]/DIV/DIV[1]//IMG[@border="0"]

For the following reasons, this default locator is no reliable locator for identifying the Expand icon for the
control Item 0.0:

* The locator is complex and built on multiple hierarchies. A small change in the DOM structure, which is
dynamic with AJAX, can break the locator.

e The locator contains an index for some of the controls along the hierarchy. Index based locators are
generally weak as they find controls by their occurrence, for example finding the sixth expand icon in a
tree does not define the control well. An exception to that rule would be if the index is used to express
different data sets that you want to identify, for example the sixth data row in a grid.

Often a good strategy for finding better locators is to search for siblings of elements that you need to locate.
If you find siblings with better locators, XPath allows you to construct the locator by identifying those
siblings. In this case, the tree item Item 0.0 provides a better locator than the Expand icon. The locator of
the tree item Item 0.0 is a stable and simple locator as it uses the @textContents property of the control.

By default, Silk Test Classic uses the property @id, but in GWT the @id is often not a stable property,
because it contains a value like =*gwt-uid-<nnn>", where <nnn> changes frequently, even for the same
element between different calls.

You can manually change the locator to use the @textContents property instead of the @id.

Original Locator:
/BrowserApplication//BrowserWindow//DIV[@id="gwt-uid-109"]

Alternate Locator:
/BrowserApplication//BrowserWindow//DIV[@textContents="1tem 0.0"]

Or you can instruct Silk Test Classic to avoid using @id="gwt-uid-<nnn>". In this case Silk Test Classic
will automatically record the stable locator. You can do this by adding the text pattern that is used in @id
properties to the locator attribute value blacklist. In this case, add gwt-uid* to the blacklist.

When inspecting the hierarchy of elements, you can see that the control Item 0.0 and the Expand icon
control have a joint root node, which is a DomTableRow control.

To build a stable locator for the Expand icon, you first need to locate Icon 0.0 with the following locator:
/BrowserApplication//BrowserWindow//DIV[@textContent="1tem 0.0"]

Then you need to go up two levels in the element hierarchy to the DomTableRow element. You express this
with XPath by adding /. . /. . to the locator. Finally you need to search from DomTableRow for the
Expand icon. This is easy as the Expand icon is the only IMG control in the sub-tree. You express this with
XPath by adding 7/ IMG to the locator. The final stable locator for the Expand icon looks like the following:

/BrowserApplication//BrowserWindow//DIV[@textContent="1tem 0.0"]/../..//1IMG
You can also use the sibling approach to identify text fields. Text fields often do not provide any meaningful
attributes that can be used in locators. By using the label of a text field, you could create a meaningful

locator for the text field, because the label is the best identifier for the text field from the perspective of a
tester. You can easily use the label as a part of the locator for a test field by using the sibling approach.

132 | Designing and Recording Test Cases with the Open Agent

http://gwt.google.com/samples/Showcase/Showcase.html#!CwTree
http://gwt.google.com/samples/Showcase/Showcase.html#!CwTree

Custom Attributes
This functionality is supported only if you are using the Open Agent.

Add custom attributes to a test application to make a test more stable. You can use custom attributes with
the following technologies:

e Java SWT

e Swing

« WPF

e XxBrowser

¢ Windows Forms
» SAP

For example, in Java SWT, the developer implementing the GUI can define an attribute (for example,
silkTestAutomationld) for a widget that uniquely identifies the widget in the application. A tester using
Silk Test Classic can then add that attribute to the list of custom attributes (in this case,
silkTestAutomationld), and can identify controls by that unique ID. Using a custom attribute is more
reliable than other attributes like caption or index, since a caption will change when you translate the
application into another language, and the index will change whenever another widget is added before the
one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different fields, both fields will return when you call the IoginName attribute.

First, enable custom attributes for your application and then create the test.

Recording tests that use dynamic object recognition

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition. For example, If you create a button in the application that you want to test using the
following code:

Button myButton = Button(parent, SWT_NONE);
myButton.setData("'SilkTestAutomationld', "myButtonld™);

To add the attribute to your XPath query string in your test case, you can use the following query:

Window button = Desktop.Find(".//
PushButton[@Si lkTestAutomationld="myButton"]")

Custom Attributes for Apache Flex Applications

Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding=""utf-8"7>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
xmIns:s="library://ns.adobe.com/flex/spark"
xmIns:mx="library://ns._adobe.com/flex/mx" width="400" height="300">
<fx:Script>

</fx:Script>
<s:Button x="247" y="81" label="Button"™ id="buttonl™ enabled=""true"
click="buttonl clickHandler(event)"
automationName="AlD_buttonRepeat'/>
<s:Label x="128" y="123" width="315" height="18" id="labell"
verticalAlign="middle"
text="awaiting your click™ textAlign="center"/>
</s:Group>

Designing and Recording Test Cases with the Open Agent | 133

Apache Flex application locators look like the following:
.//SparkApplication//SparkButton[@caption="AlID_buttonRepeat”

v, Attention: For Apache Flex applications, the automationName is always mapped to the locator
=" attribute caption in Silk Test Classic. If the automationName attribute is not specified, Silk Test

Classic maps the property 1D to the locator attribute caption.

Java SWT Custom Attributes

You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, "silkTestAutomationld®)
for a widget that uniquely identifies the widget in the application. A tester using Silk Test Classic can then
add that attribute to the list of custom attributes (in this case, "silkTestAutomationld®), and can
identify controls by that unique ID. Using a custom attribute is more reliable than other attributes like
caption or index, since a caption will change when you translate the application into another language, and
the index will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, " loginName*® to two
different text fields, both fields will return when you call the " loginName*® attribute.

Java SWT Example

If you create a button in the application that you want to test using the following code:
Button myButton = Button(parent, SWT._NONE);

myButton.setData("'SilkTestAutomationld', "myButtonld™);

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton(*'@Si lkTestAutomationld="myButton®')

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Custom Attributes for Web Applications

HTML defines a common attribute 1D that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify Ul controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose Ul control information to Silk Test Classic.

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk Test Classic allows you to configure the attribute that
you want to use as the default attribute for identification, even if the attribute is a custom attribute of the
control class. To set the custom attribute as the default identification attribute for a specific technology
domain, click Options > Recorder > Custom Attributes and select the technology domain.

The application developer just needs to add the additional HTML attribute to the Web
element.

134 | Designing and Recording Test Cases with the Open Agent

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322__."
AUTOMATION_ID = "AID_Login"™ <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk Test Classic uses the custom attribute to
construct a unigue locator whenever possible. Web locators look like the following:

..//DomLink[@AUTOMATION_ID="AID_Login"
Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = "gwt-uid-<nnn>"

In this case <nnn> changes frequently.

Custom Attributes for Windows Forms Applications

Windows Forms applications use the predefined automation property automationld to specify a stable
identifier for the Windows forms control.

Silk Test Classic automatically will use this property for identification in the locator. Windows Forms
application locators look like the following:

/FormsWindow//PushButton[@automationld="btnBasicControls™]

Custom Attributes for WPF Applications

WPF applications use the predefined automation property AutomationProperties.Automationld to
specify a stable identifier for the WPF control as follows:
<Window x:Class="Test.MainWindow"
xmIns=""http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmIns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width="525">
<Grid>
<Button AutomationProperties.Automationld="AID_ buttonA">The
Button</Button>
</Grid>
</Window>

Silk Test Classic automatically uses this property for identification in the locator. WPF application locators
look like the following:

/WPFWindow[@caption="MainWindow"]//WPFButton[@automationld="AlD_buttonA™]

Troubleshooting Performance Issues for XPath

When testing applications with a complex object structure, for example complex web applications, you may
encounter performance issues, or issues related to the reliability of your scripts. This topic describes how
you can improve the performance of your scripts by using different locators than the ones that Silk Test
Classic has automatically generated during recording.

Note: In general, we do not recommend using complex locators. Using complex locators might lead to
a loss of reliability for your tests. Small changes in the structure of the tested application can break

Designing and Recording Test Cases with the Open Agent | 135

such a complex locator. Nevertheless, when the performance of your scripts is not satisfying, using
more specific locators might result in tests with better performance.

The following is a sample element tree for the application MyApplication:
Root
Node i1d=1
Leaf 1d=2
Leaf i1d=3
Leaf id=4
Leaf id=5
Node 1d=6
Node 1d=7
Leaf 1d=8
Leaf 1d=9
Node 1d=9
Leaf id=10

You can use one or more of the following optimizations to improve the performance of your scripts:

< If you want to locate an element in a complex object structure , search for the element in a specific part
of the object structure, not in the entire object structure. For example, to find the element with the
identifier 4 in the sample tree, if you have a query like Root.Find(*"'//Leaf[@id="4"]""), replace it
with a query like Root.Find("'/Node[@id="1"]/Leaf[@id="4"]""). The first query searches the
entire element tree of the application for leafs with the identifier 4. The first leaf found is then returned.
The second query searches only the first level nodes, which are the node with the identifier 1 and the
node with the identifier 6, for the node with the identifier 1, and then searches in the subtree of the node
with the identifier 1 for all leafs with the identifier 4.

< When you want to locate multiple items in the same hierarchy, first locate the hierarchy, and then locate
the items in a loop. If you have a query like Root.FindAII (*"/Node[@id="1"]/Leaf""), replace it
with a loop like the following:
testcase Test() appstate none

WINDOW node
INTEGER i

node = Root.Find("'/Node[@id="1"]"")
for i =1 to 4 step 1
node_Find("'/Leaf[@id="{i}"]1"")

Highlighting Objects During Recording

During recording, the active object in the AUT is highlighted by a green rectangle. As soon as a nhew object
becomes active this new object is highlighted. If the same object remains active for more than 0.5 seconds
a tool-tip will be displayed that displays the class hame of the active object and also the current position of
the mouse relative to the active object. This tool-tip will no longer be displayed when a new object becomes
active, the user presses the mouse, or automatically after 2 seconds.

Overview of the Locator Keyword

Traditional Silk Test Classic scripts that use the Classic Agent use hierarchical object recognition. When
you record a script that uses hierarchical object recognition, Silk Test Classic creates an include (.inc) file
that contains window declarations and tags for the GUI objects that you are testing. Essentially, the INC file
serves as a central global, repository of information about the application under test. It contains all the data
structures that support your test cases and test scripts.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. The locator is the actual
name of the object, as opposed to the identifier, which is the logical name. Silk Test Classic uses the

136 | Designing and Recording Test Cases with the Open Agent

locator to identify objects in the application when executing test cases. Test cases never use the locator to
refer to an object; they always use the identifier.

You can also manually create test cases that use dynamic object recognition without locator keywords.
Dynamic object recognition uses a Find or FindAl 1 function and an XPath query to locate the objects
that you want to test. No include file, window declaration, or tags are required.

The advantages of using locators with an INC file include:

* You combine the advantages of INC files with the advantages of dynamic object recognition. For
example, scripts can use window names in the same manner as traditional, Silk Test Classic tag-based
scripts and leverage the power of XPath queries.

« Enhancing legacy INC files with locators facilitates a smooth transition from using hierarchical object
recognition to new scripts that use dynamic object recognition. You use dynamic object recognition but
your scripts look and feel like traditional, Silk Test Classic tag-based scripts that use hierarchical object
recognition.

e You can use AutoComplete to assist in script creation. AutoComplete requires an INC file.

Syntax

The syntax for the locator keyword is:
[gui-specifier] locator locator-string

where locator-string is an XPath string. The XPath string is the same locator string that is used for the
Find or FindAll functions.

Example

The following example shows a window declaration that uses locators:

window MainWin TestApplication
locator "//MainWin[@caption="Test Application®]"

// The working directory of the application when it is invoked
const sDir = "{SYS_GetEnv(''SEGUE_HOME')}"

// The command line used to invoke the application
const sCmdLine = """'{SYS_GetEnv("'SEGUE_HOME'™)}testapp.exe" "

Menu Control

locator "//Menu[@caption="Control"]"
Menultem CheckBox

locator "//Menultem[@caption="Check box"]"
Menultem ComboBox

locator "//Menultem[@caption="Combo box"]"
Menultem ListBox

locator "//Menultem[@caption="List box"]"
Menultem PopupList

locator "//Menultem[@caption="Popup list"]"
Menultem PushButton

locator "//Menultem[@caption="Push button®]"
Menultem RadioButton

locator "//Menultem[@caption="Radio button®]"
Menultem ListView

locator "//Menultem[@caption="List view"]"
Menultem PagelList

locator "//Menultem[@caption="Page list"]"
Menultem UpDown

locator "//Menultem[@caption="Up-Down"]"
Menultem TreeView

locator "//Menultem[@caption="Tree view"]"
Menultem Textfield

locator "//Menultem[@caption="Textfield"]"

Designing and Recording Test Cases with the Open Agent | 137

Menultem StaticText

locator "//Menultem[@caption="Static text"]"
Menultem TracKBar

locator "//Menultem[@caption="Track bar"]"
Menultem ToolBar

locator "//Menultem[@caption="Tool bar®]"
Menultem Scrollbar

locator "'//Menultem[@caption="Scrollbar-]"

DialogBox CheckBox
locator "//DialogBox[@caption="Check Box"]"
CheckBox TheCheckBox
locator "//CheckBox[@caption="The check box"]"
PushButton Exit
locator "//PushButton[@caption="Exit"]"

For example, if the script uses a menu item like this:
TestApplication.Control.TreeView.Pick()

Then the menu item is resolved by using dynamic object recognition Find calls using
XPath locator strings.

The above statement is equivalent to:

Desktop.Find(*“//MainWin[@caption="Test Application®]
//Menu[@caption="Control"]//Menultem[@caption="Tree
view"]”).Pick()

Locator String Syntax

For convenience, you can use shortened forms for the XPath locator strings. Silk Test Classic automatically
expands the syntax to use full XPath strings when you run a script. You can omit:

« The hierarchy separator, “.//". Silk Test Classic defaults to using “//".

* The class name. Silk Test Classic defaults to the class name of the window that contains the locator.
« The surrounding square brackets of the attributes,"[]".

* The “@caption=""if the xPath string refers to the caption.

The following locators are equivalent:

Menu Control
//1ocator "//Menu[@caption="Control*]"
//1ocator "Menu[@caption="Control=]"
//1ocator "[@caption="Control™]"
//locator "@caption="Control""
locator "Control"

You can use shortened forms for the XPath locator strings only when you use an INC file. For scripts that
use dynamic object recognition without an INC file, you must use full XPath strings.

Window Hierarchies

You can create window hierarchies without locator strings. In the following example, the “Menu Control”
acts only as a logical hierarchy, used to provide the INC file with more structure. “Menu Control” does not
contribute to finding the elements further down the hierarchy.
window MainWin TestApplication

locator "//MainWin[@caption="Test Application®]"

Menu Control

Menultem TreeView
locator "//Menultem[@caption="Tree view"]"

138 | Designing and Recording Test Cases with the Open Agent

In this case, the statement:
TestApplication.Control .TreeView.Pick()

is equivalent to:
Desktop.Find(*“.//MainWin[@caption="Test Application”]

//Menultem[@caption="Tree view"]”).Pick(Q
Window Declarations

A window declaration in Silk Test Classic cannot be executed for both agent types, Classic Agent and Open
Agent, during the execution of a test. The window declaration will only be executed for one of the agent

types.

Expressions

You can use expressions in locators. For example, you can specify:
STRING getSWTVersion()

return SYS_GETENV('SWT_VERSION™)
window Shell SwtTestApplication

locator "SWT {getSWTVersion()} Test Application”
Comparing the Locator Keyword to the Tag Keyword
The syntax of locators is identical to the syntax of the tag keyword.

The overall rules for locators are the same as for tags. There can be only one locator per window, except
for different gui-specifiers, in this case there can be only one locator per gui-specifier.

You can use expressions in locators and tags.

The locator keyword requires a script that uses the Open Agent while the tag keyword requires a script that
uses the Classic Agent.

Setting Recording and Replay Options

This section describes how you can set options to optimize recording and replay.

Setting Recording Preferences for the Open Agent

Set the shortcut key combination to pause recording and specify whether absolute values and mouse move
actions are recorded.

All the following settings are optional. Change these settings if they will improve the quality of your test
methods.

1. Click Options > Recorder. The Recording Options dialog box opens.

2. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the
OPT_ALTERNATE_RECORD_BREAK check box.
By default, Ctrl+Alt is the shortcut key combination.

f Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination.

3. To record absolute values for scroll events, check the OPT_RECORD_SCROLLBAR_ABSOLUT check
box.

4. To record mouse move actions for Web applications, Win32 applications, and Windows Forms
applications, check the OPT_RECORD_MOUSEMOVES check box. You cannot record mouse move
actions for child technology domains of the xBrowser technology domain, for example Apache Flex and
Swing.

Designing and Recording Test Cases with the Open Agent | 139

6.

If you record mouse move actions, in the OPT_RECORD_MOUSEMOVE_DELAY text box, specify how
many milliseconds the mouse has to be motionless before a MouseMove is recorded.

By default this value is set to 200.
Click OK.

Setting Recording Options for xBrowser

This functionality is supported only if you are using the Open Agent.

There are several options that can be used to optimize the recording of Web applications.

1.

Click Options > Recorder.

2. Check the Record mouse move actions box if you are testing a Web page that uses mouse move

events. You cannot record mouse move events for child technology domains of the xBrowser technology
domain, for example Apache Flex and Swing.

Silk Test Classic will only record mouse move events that cause changes to the hovered element or its
parent in order to keep scripts short.

3. You can change the mouse move delay if required.
Mouse move actions will only be recorded if the mouse stands still for this time. A shorter delay will
result in more unexpected mouse move actions.

4. Click the Browser tab.

5. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you do not want to record attributes named height, add the height attribute name to the
grid. Separate attribute names with a comma.

6. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.
For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to the grid.
Separate attribute values with a comma.

7. To record native user input instead of DOM functions, check the
OPT_XBROWSER_RECORD_LOWLEVEL check box.
For example, to record Click instead of DomClick and TypeKeys instead of SetText, check this
check box.
If your application uses a plug-in or AJAX, use native user input. If your application does not use a plug-
in or AJAX, we recommend using high-level DOM functions, which do not require the browser to be
focused or active during playback. As a result, tests that use DOM functions are faster and more
reliable.

8. Click the Custom Attributes tab.

9. Select xBrowser in the Select a tech domain list box and add the DOM attributes that you want to use
for locators to the text box.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added. If custom attributes are available, the locator generator uses these attributes
before any other attribute. The order of the list also represents the priority in which the attributes are
used by the locator generator. If the attributes that you specify are not available for the objects that you
select, Silk Test Classic uses the default attributes for xBrowser.

10.Click OK.

You can now record or manually create a test that uses ignores browser attributes and uses the type of
page input that you specified.

140 | Designing and Recording Test Cases with the Open Agent

Defining which Custom Locator Attributes to Use for
Recognition

The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unigue at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results and
stable recognition of the controls in your application. You can use any property that is available in the
respective technology as a custom attribute, given that the property is either a number, like an integer or a
double, a string, an item identifier, or an enumeration value.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

In xBrowser, WPF, Java SWT, and Swing applications, you can also retrieve arbitrary properties, such as a
WPFButton that defines myCustomProperty, and then use those properties as custom attributes. To
achieve optimal results, the application developers can add a custom automation ID to the controls that you
want to interact with in your test. In Web applications, the application developers can add an attribute to
controls that you want to interact with, such as <div myAutomationld="my unique element

name” />. This approach can eliminate the maintenance associated with locator changes. Or, in Java
SWT, the Ul developer can define a custom attribute, for example testAutomationld, for a widget that
uniquely identifies the widget in the application. You can then add that attribute to the list of custom
attributes, in this case testAutomationld, and you can then identify controls by that unique ID. This
approach can eliminate the maintenance associated with locator changes.

If more than one objects have the same custom attribute value assigned, all the objects with that value will
be returned when you call the custom attribute. For example, if you assign the unique ID loginName to
two different text boxes, both text boxes will be returned when you call the loginName attribute.

To define which custom attributes of a locator should be used for the recognition of the controls in your
AUT:

1. Click Options > Recorder and then click the Custom Attributes tab.
2. From the Select a tech domain list box, select the technology domain for the application that you are
testing.
Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.
3. Add the attributes that you want to use to the list.

If custom attributes are available, the locator generator uses these attributes before any other attribute.
The order of the list also represents the priority in which the attributes are used by the locator generator.
If the attributes that you specify are not available for the objects that you select, Silk Test Classic uses
the default attributes for the application that you are testing. Separate attribute names with a comma.

4. Click OK. You can now record or manually create a test case.

Setting Classes to Ignore

To specify the names of any classes that you want to ignore during recording and replay:

1. Click Options > Recorder. The Recording Options dialog box opens.
2. Click the Transparent Classes tab.

3. In the Transparent classes grid, type the name of the class that you want to ignore during recording
and replay.

Separate class names with a comma.

Designing and Recording Test Cases with the Open Agent | 141

4. Click OK.

Setting WPF Classes to Expose During Recording and
Playback

Silk Test Classic filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Options > Recorder. The Recording Options dialog box opens.
2. Click the Transparent Classes tab.

3. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.

Separate class names with a comma.
4. Click OK.

Setting Pre-Fill During Recording and Replaying

You can define whether items in a WPFItemsControl, like WPFComboBox or WPFListBox, are pre-filled
during recording and playback. WPF itself lazily loads items for certain controls, so these items are not
available for Silk Test Classic if they are not scrolled into view. Turn pre-filling on, which is the default
setting, to additionally access items that are not accessible without scrolling them into view. However, some
applications have problems when the items are pre-filled by Silk Test Classic in the background, and these
applications can therefore crash. In this case turn pre-filling off.

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the WPF tab.

3. Inthe Prefill items area, check the OPT_WPF_PREFILL_ITEMS check box.
4. Click OK.

Setting Replay Options for the Open Agent
There are several options that can be used to optimize replaying applications.

1. Click Options > Agent.
2. Click the Replay tab.
3. From the Replay mode list box, select one of the following options:

« Default: Use this mode for the most reliable results. By default, each control uses either the mouse
and keyboard (low level) or API (high level) modes. With the default mode, each control uses the
best method for the control type.

« High level: Use this mode to replay each control using the API.
* Low level: Use this mode to replay each control using the mouse and keyboard.

142 | Designing and Recording Test Cases with the Open Agent

4. To ensure that the window is active before a call is executed, check the Ensure window is active check
box.

5. Click OK.

Test Cases

This section describes how you can use automated tests to address single objectives of a test plan.

Overview of Test Cases

A test case is an automated test that addresses one objective of a test plan. A test case:

« Drives the application from the initial state to the state you want to test.

« Verifies that the actual state matches the expected (correct) state. Your QA department might use the
term baseline to refer to this expected state. This stage is the heart of the test case.

« Cleans up the application, in preparation for the next test case, by undoing the steps performed in the
first stage.

In order for a test case to function properly, the application must be in a stable state when the test case
begins to execute. This stable state is called the base state. The recovery system is responsible for
maintaining the base state in the event the application fails or crashes, either during the execution of a test
cases or between test cases.

Each test case is independent and should perform its own setup, driving the application to the state that
you want to test, executing the test case, and then returning the application to the base state. The test case
should not rely on the successful or unsuccessful completion of another test case, and the order in which
the test case is executed should have no bearing on its outcome. If a test case relies on a prior test case to
perform some setup actions, and an error causes the setup to fail or, worse yet, the application to crash, all
subsequent test cases will fail because they cannot achieve the state where the test is designed to begin.

A test case has a single purpose: a single test case should verify a single aspect of the application. When
a test case designed in this manner passes or fails, it is easy to determine specifically what aspect of the
target application is either working or not working.

If a test case contains more than one objective, many outcomes are possible. Therefore, an exception may
not point specifically to a single failure in the software under test but rather to several related function
points. This makes debugging more difficult and time-consuming and leads to confusion in interpreting and
quantifying results. The result is an overall lack of confidence in any statistics that might be generated. But
there are techniques you can use to perform more than one verification in a test case.

Types of test cases

Silk Test Classic supports two types of test cases, depending on the type of application that you are
testing. You can create test cases that use:

Hierarchical object This is a fast, easy method for creating scripts. This type of testing is supported

recognition for all application types.

Dynamic object This is a more robust and easy to maintain method for creating scripts. However,

recognition dynamic object recognition is only supported for applications that use the Open
Agent.

If you are using the Open Agent, you can create tests for both dynamic and hierarchical object recognition
in your test environment. Use the method best suited to meet your test requirements. You can use both
recognition methods within a single test case if necessary.

Designing and Recording Test Cases with the Open Agent | 143

Anatomy of a Basic Test Case

A test case is comprised of testcase keywords and object-oriented commands. You place a group of test
cases for an application into a file called a script.

Each automated test for an application begins with the testcase keyword, followed by the name of the test
case. The test case name should indicate the type of testing being performed.

The core of the test case is object-oriented 4Test commands that drive, verify, and clean up your
application. For example, consider this command:

TextEditor.File.New.Pick

The first part of the command, TextEditor .File_New, is the name of a GUI object. The last part of the
command, Pick, is the operation to perform on the GUI object. The dot operator (.) delimits each piece of
the command. When this command is executed at runtime, it picks the New menu item from the File menu
of the Text Editor application.

Types of Test Cases

There are two basic types of test cases:

« Level 1 tests, often called smoke tests or object tests, verify that an application’s GUI objects function
properly. For example, they verify that text boxes can accept keystrokes and check boxes can display a
check mark.

» Level 2 tests verify an application feature. For example, they verify that an application’s searching
capability can correctly find different types of search patterns.

You typically run Level 1 tests when you receive a new build of your application, and do not run Level 2
tests until your Level 1 tests achieve a specific pass/fail ratio. The reason for this is that unless your
application’s graphical user interface works, you cannot actually test the application itself.

Test Case Design

When defining test requirements, the goal is to vigorously test each application feature. To do so, you need
to decide which set of inputs to a feature will provide the most meaningful test results.

As you design your test cases, you may want to associate data with individual objects, which can then be
referenced inside test cases. You may find this preferable to declaring global variables or passing
parameters to your test cases.

The type of data you decide to define within a window declaration will vary, depending on the type of
testing you are doing. Some examples include:

e The default value that you expect the object to have when it displays.
* The tab sequence for each of a dialog box’s child objects.

The following declaration for the Find dialog contains a list that specifies the tab sequence of the dialog
box children.

window DialogBox Find

tag "Find"

parent TextEditor

LIST OF WINDOW EwTabOrder = {...}
FindWhat
CaseSensitive
Direction
Cancel

For more information about the syntax to use for lists, see LIST data type.

144 | Designing and Recording Test Cases with the Open Agent

Before you begin to design and record test cases, make sure that the built-in recovery system can close
representative dialogs from your application window.

Constructing a Test Case

This section explains the methodology you use when you design and record a test case.

A test case has three stages

Each test case that you record should have the following stages:

Stage 1 The test case drives the application from the initial state to the state you want to test.

Stage 2 The test case verifies that the actual state matches the expected (correct) state. Your QA
department might use the term baseline to refer to this expected state. This stage is the heart of
the test case.

Stage 3 The test case cleans up the application, in preparation for the next test case, by undoing the
steps performed in stage 1.

Each test case is independent

Each test case you record should perform its own setup in stage 1, and should undo this setup in stage 3,

so that the test case can be executed independently of every other test case. In other words, the test case
should not rely on the successful or unsuccessful completion of another test case, and the order in which it
is executed should have no bearing on its outcome.

If a test case relies on a prior test case to perform some setup actions, and an error causes the setup to fall
or, worse yet, the application to crash, all subsequent test cases will fail because they cannot achieve the
state where the test is designed to begin.

A test case has a single purpose

Each test case you record should verify a single aspect of the application in stage 2. When a test case
designed in this manner passes or fails, it's easy to determine specifically what aspect of the target
application is either working or not working.

If a test case contains more than one objective, many outcomes are possible. Therefore, an exception may
not point specifically to a single failure in the software under test but rather to several related function

points. This makes debugging more difficult and time-consuming and leads to confusion in interpreting and
quantifying results. The net result is an overall lack of confidence in any statistics that might be generated.

There are techniques you can use to do more than one verification in a test case.

A test case starts from a base state

In order for a test case to be able to function properly, the application must be in a stable state when the
test case begins to execute. This stable state is called the base state. The recovery system is responsible
for maintaining the base state in the event the application fails or crashes, either during a test case’s
execution or between test cases.

DefaultBaseState

To restore the application to the base state, the recovery system contains a routine called
Defaul tBaseState that makes sure that:

* The application is running and is not minimized.
« All other windows, for example dialog boxes, are closed.
« The main window of the application is active.

If these conditions are not sufficient for your application, you can customize the recovery system.

Designing and Recording Test Cases with the Open Agent | 145

Defining test requirements

When defining test requirements, the goal is to rigorously test each application feature. To do so, you need
to decide which set of inputs to a feature will provide the most meaningful test results.

Data in Test Cases

What data does the feature expect
A user can enter three pieces of information in the Find dialog box:

¢ The search can be case sensitive or insensitive, depending on whether the Case Sensitive check box
is checked or unchecked.

* The search can be forward or backward, depending on whether the Down or Up option button is
selected.

* The search can be for any combination of characters, depending on the value entered in the Find What
text box.

Create meaningful data combinations

To organize this information, it is helpful to construct a table that lists the possible combinations of inputs.
From this list, you can then decide which combinations are meaningful and should be tested. A partial table
for the Find dialog box is shown below:

Case Direction Search String
Sensitive

Yes Down Character

Yes Down Partial word (start)
Yes Down Partial word (end)
Yes Down Word

Yes Down Group of words
Yes Up Character

Yes Up Partial word (start)
Yes Up Partial word (end)
Yes Up Word

Yes Up Group of words

Saving Test Cases

When saving a test case, Silk Test Classic does the following:

e Saves a source file, giving it the .t extension; the source file is an ASCII text file, which you can edit.
« Saves an object file, giving it the _to extension; the object file is a binary file that is executable, but not
readable by you.

For example, if you name a test case (script file) mytests and save it, you will end up with two files: the
source file mytests.t, in the location you specify, and the object file mytests. to.

To save a new version of a script's object file when the script file is in view-only mode, click File > Save
Object File.

146 | Designing and Recording Test Cases with the Open Agent

Recording Without Window Declarations

If you record a test case against a GUI object for which there is no declaration or if you want to write a test
case from scratch against such an object, Silk Test Classic requires a special syntax to uniquely identify
the GUI object because there is no identifier.

This special syntax is called a dynamic instantiation and is composed of the class and tag of the object.
The general syntax of this kind of identifier is:

class('tag") .class(''tag").-

Example

If there is not a declaration for the Find dialog box of the Notepad application, the
syntax required to identify the object with the Classic Agent looks like the following:

MainWin(""Untitled - Notepad]$C:\Windows
\SysWowW64\notepad.exe') .DialogBox("'Find'™)

To create the dynamic tag, the recorder uses the multiple-tag settings that are stored in
the Record Window Declarations dialog box. In the example shown above, the tag for
the Notepad contains its caption as well as its window ID.

For the Open Agent, the syntax for the same example looks like the following:

FindMainWin("/MainWin[@caption="Untitled -
Notepad®]'") .FindDialogBox("'"Find")

Overview of Application States

When testing an application, typically, you have a number of test cases that have identical setup steps.
Rather than record the same steps over and over again, you can record the steps as an application state
and then associate the application state with the relevant test cases.

An application state is the state you want your application to be in after the base state is restored but
before you run one or more test cases. By creating an application state, you are creating reusable code
that saves space and time. Furthermore, if you need to modify the Setup stage, you can change it once, in
the application state routine.

At most, a test case can have one application state associated with it. However, that application state may
itself be based on another previously defined application state. For example, assume that:

* The test case Find is associated with the application state Setup.

* The application state Setup is based on the application state OpenFile.

* The application state OpenFile is based on the built-in application state, DefaultBaseState.
» Silk Test Classic would execute the programs in this order:

1. DefaultBaseState application state.
2. OpenFile application state.

3. Setup application state.

4. Find test case.

If a test case is based on a single application state, that application state must itself be based on
DefaultBaseState in order for the test case to use the recovery system. Similarly, if a test case is based on
a chain of application states, the final link in the chain must be DefaultBaseState. In this way, the built-in
recovery system of Silk Test Classic is still able to restore the application to its base state when necessary.

Designing and Recording Test Cases with the Open Agent | 147

Behavior of an Application State Based on NONE

If an application state is based on the keyword NONE, Silk Test Classic executes the application state
twice: when the test case with which it is associated is entered and when the test case is exited.

On the other hand, if an application state is based on DefaultBaseState, Silk Test Classic executes the
application state only when the associated test case is entered.

The following example code defines the application state InvokeFind as based on the NONE keyword and
associates that application state with the test case TestFind.

Appstate InvokeFind () basedon none
XFind. Invoke O
print (hello™)

testcase TestFind () appstate InvokeFind
print (""In TestFind")
xFind.Exit.Click O

When you run the test case in Silk Test Classic, in addition to opening the Find dialog box, closing it, and
reopening it, the test case also prints:

hello
In TestFind
hello

The test case prints hello twice because Silk Test Classic executes the application state both as the test
case is entered and as it is exited.

Example: A Feature of a Word Processor

For purposes of illustration, this topic develops test requirements for the searching feature of the sample
Text Editor application using the Find dialog box. This topic contains the following:

» Determining what data the feature expects.
« Creating meaningful data combinations.
< Overview of recording the stages of a test case.

When a user enters the criteria for the search and clicks Find Next, the search feature attempts to locate
the string. If the string is found, it is selected (highlighted). Otherwise, an informational message is
displayed.

Determining what data the feature expects
A user can enter three pieces of information in the Find dialog box:

* The search can be case sensitive or insensitive, depending on whether the Case Sensitive check box
is checked or unchecked.

* The search can be forward or backward, depending on whether the Down or Up option button is
clicked.

* The search can be for any combination of characters, depending on the value entered in the Find What
text box.

Creating meaningful data combinations

To organize this information, it is helpful to construct a table that lists the possible combinations of inputs.
From this list, you can then decide which combinations are meaningful and should be tested. A partial table
for the Find dialog box is shown below:

148 | Designing and Recording Test Cases with the Open Agent

Case Sensitive Direction Search String
Yes Down Character

Yes Down Partial word (start)
Yes Down Partial word (end)
Yes Down Word

Yes Down Group of words
Yes Up Character

Yes Up Partial word (start)
Yes Up Partial word (end)
Yes Up Word

Yes Up Group of words

Overview of recording the stages of a test case

A test case performs the included actions in three stages. The following table illustrates these stages,
describing in high-level terms the steps for each stage of a sample test case that tests whether the Find
facility is working.

Setup

=

Open a new document.
Type text into the document.

3. Position the text cursor either before or after the text, depending on the direction of the
search.

4. Select Find from the Search menu.
5. In the Find dialog box:

n

* Enter the text to search for in the Find What text box.
» Select a direction for the search.
» Make the search case sensitive or not.
* Click Find Next to do the search.
6. Click Cancel to close the Find dialog box.

Verify Record a 4Test verification statement that checks that the actual search string found, if any, is
the expected search string.

Cleanup 1 cjose the document.
2. Click No when prompted to save the file.

After learning the basics of recording, you can record from within a test plan, which makes recording easier
by automatically generating the links that connect the test plan to the test case.

Creating Test Cases with the Open Agent

This section describes how you can use the Open Agent to create test cases.

Application Configuration

An application configuration defines how Silk Test Classic connects to the application that you want to test.
Silk Test Classic automatically creates an application configuration when you create the base state.
However, at times, you might need to modify, remove, or add an additional application configuration. For

Designing and Recording Test Cases with the Open Agent | 149

example, if you are testing an application that modifies a database and you use a database viewer tool to
verify the database contents, you must add an additional application configuration for the database viewer
tool.

» For a Windows application, an application configuration includes the following:

e Executable pattern

All processes that match this pattern are enabled for testing. For example, the executable pattern for
Internet Explorer is *\1EXPLORE . EXE. All processes whose executable is named 1EXPLORE .EXE
and that are located in any arbitrary directory are enabled.

e Command line pattern

The command line pattern is an additional pattern that is used to constrain the process that is
enabled for testing by matching parts of the command line arguments (the part after the executable
name). An application configuration that contains a command line pattern enables only processes for
testing that match both the executable pattern and the command line pattern. If no command-line
pattern is defined, all processes with the specified executable pattern are enabled. Using the
command line is especially useful for Java applications because most Java programs run by using
Javaw.exe. This means that when you create an application configuration for a typical Java
application, the executable pattern, *\ Javaw.exe is used, which matches any Java process. Use
the command line pattern in such cases to ensure that only the application that you want is enabled
for testing. For example, if the command line of the application ends with
com.example.MyMainClass you might want to use *com.example.MyMainClass as the command
line pattern.

« For a Web application in a desktop browser, an application configuration includes only the browser type.

« For a Web application in a mobile browser, an application configuration includes the following:

e Browser type.
* Mobile Device Name.

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

Recording Test Cases for Standard and Web
Applications

This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Record Testcase dialog box opens.
2. Type the name of your test case in the Testcase name text box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

« If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

» If you chose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_ nhame.

150 | Designing and Recording Test Cases with the Open Agent

If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.
Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

Click Start Recording. Silk Test Classic performs the following actions:

* Closes the Record Testcase dialog box.
» Starts your application, if it was not already running. If you have not configured the application yet,
the Select Application dialog box opens and you can select the application that you want to test.

* Removes the editor window from the display.

* Displays the Recording window.

* Waits for you to take further action.

In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

. To stop recording, click Stop in the Recording window. Silk Test Classic displays the Record Testcase

dialog box, which contains the code that has been recorded for you.
To resume recording your interactions, click Resume Recording.

To add the recorded interactions to a script, click Paste to Editor in the Record Testcase window. If
you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens.

10.Perform one of the following steps:

* Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

* Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Recording Test Cases for Mobile Web Applications

This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1.

Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Record Testcase dialog box opens.
Type the name of your test case in the Testcase name text box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

« If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

« If you chose another application state, the test case is recorded as testcase testcase_name
(O appstate appstate_nhame.

If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.

Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

Designing and Recording Test Cases with the Open Agent | 151

5. Click Start Recording. Silk Test Classic performs the following actions:

* Closes the Record Testcase dialog box.

« Starts your application, if it was not already running. If you have not configured the application yet,
the Configure Test dialog box opens and you can select the application that you want to test.

* Removes the editor window from the display.
» Displays the Mobile Recording window.
« Wiaits for you to take further action.
6. Interact with your application, driving it to the state that you want to test.
7. In the Mobile Recording window, perform the actions that you want to record.
a) Click on the object with which you want to interact. The Choose Action dialog box opens.
b) From the list, select the action that you want to perform against the object.

c) Optional: If the action has parameters, type the parameters into the parameter fields. Silk Test
Classic automatically validates the parameters.

d) Click OK. Silk Test Classic adds the action to the recorded actions and replays it on the mobile
device or emulator.

For information about how to record an interaction with a mobile device, see Interacting with a Mobile
Device.

8. To verify an image or a property of a control during recording, click Ctri+AIlt.
For additional information, see Adding a Verification to a Script while Recording.
9. Optional: To interact with an object that is currently not visible in the Mobile Recording window, use the
Hierarchy View:
a) Click Toggle Hierarchy View. The Hierarchy View opens.
b) In the object tree, right-click on the object on which you want to perform an action.
c) Click Add New Action. The Choose Action dialog box opens.
d) Proceed as with any other action.
For example, to open the main menu of the device or emulator, right-click on the MobileDevice object in
the object tree and select the action PressMenu().
10.To pause the recording of interactions with the application, for example to move the application into a
different state, click Pause Recording.
11.To resume recording interactions, click Start Recording.
12.To add the recorded interactions to a script, click Stop Recording. If you have interacted with objects in
your application that have not been identified in your include files, the Update Files dialog box opens.
13.Perform one of the following steps:
* Click Paste testcase and update window declaration(s) and then click OK. In most cases, you

want to choose this option.

* Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Recording Window Declarations that Include Locator
Keywords

A window declaration specifies a cross-platform, logical name for a GUI object, called the identifier, and
maps the identifier to the object’s actual name, called the tag or locator. You can use locator keywords,
rather than tags, to create scripts that use dynamic object recognition and window declarations. Or, you
can include locators and tags in the same window declaration.

To record window declarations that include locator keywords, you must use the Open Agent.

To record window declarations using the Locator Spy:

152 | Designing and Recording Test Cases with the Open Agent

1. Configure the application to set up the technology domain and base state that your application requires.
2. Click Record > Window Locators. The Locator Spy opens.
3. Position the mouse over the object that you want to record and perform one of the following steps:

* Press Ctrl+Alt to capture the object hierarchy with the default Record Break key sequence.

* Press Ctrl+Shift to capture the object hierarchy if you specified the alternative Record Break key
sequence on the General Recording Options page of the Recording Options dialog box.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination. To
change the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

« If you use Picking mode, click the object that you want to record and press the Record Break keys.
4. Click Stop Recording Locator.
The Locator text box displays the XPath query string for the object on which the mouse rests. The

Locator Details section lists the hierarchy of objects for the locator that displays in the text box. The
hierarchy listed in the Locator Details section is what will be included in the INC file.

5. To refine the locator, in the Locator Details table, click Show additional locator attributes, right-click
an object and then choose Expand subtree. The objects display and any related attributes display in
the Locator Attribute table.

6. To replace the hierarchy that you recorded, select the locator that you want to use as the parent in the
Locator Details table. The new locator displays in the Locator text box.

7. Perform one of the following steps:
« To add the window declarations to the INC file for the project, position your cursor where you want to

add the window declarations in the INC file, and then click Paste Hierarchy to Editor.

* To copy the window declarations to the Clipboard, click Copy Hierarchy to Clipboard and then
paste the window declarations into a different editing window or into the current window at the
location of your choice.

8. Click Close.

Recording Locators Using the Locator Spy

This functionality is supported only if you are using the Open Agent.
Capture a locator using the Locator Spy and copy the locator to the test case or to the Clipboard.

Configure the application to set up the technology domain and base state that your application requires.
Click File > New. The New File dialog box opens.

Select 4Test script and then click OK. A new 4Test Script window opens.

Click Record > Window Locators.

Hwnn e

Note: If you have not configured the application yet, the Configure Test dialog box opens and you
can select the application that you want to test.
The Locator Spy opens.

5. Position the mouse over the object that you want to record. The related locator XPath query string
shows in the Selected Locator text box. The Locator Details section lists the hierarchy of objects for
the locator that displays in the text box.

6. Perform one of the following steps:

* Press Ctrl+Alt to capture the object with the default Record Break key sequence.

* Press Ctrl+Shift to capture the object if you specified the alternative Record Break key sequence on
the General Recording Options page of the Recording Options dialog box.

Designing and Recording Test Cases with the Open Agent | 153

7.

9.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination to use to
pause recording. To change the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

* Click Stop Recording Locator.
« If you use Picking mode, click the object that you want to record and press the Record Break keys.

Note: Silk Test Classic does not verify whether the locator string is unique. We recommend that
you ensure that the string is unique. Otherwise additional objects might be found when you run the
test. Furthermore, you might want to exclude some of the attributes that Silk Test Classic identifies
because the string will work without them.

To refine the locator, in the Locator Details table, click Show additional locator attributes, right-click
an object and then choose Expand subtree. The objects display and any related attributes display in
the Locator Attribute table.

Optional: You can replace a recorded locator attribute with another locator attribute from the Locator
Details table.

For example, your recorded locator might look like the following:
/Window[@caption="MyApp“]//Control[@id="tablel"]

If you have a caption Fi les listed in the Locator Details table, you can manually change the locator to
the following:

/Window[@caption="MyApp"]//Control[@caption="Files"]

The new locator displays in the Selected Locator text box.
Copy the locator to the test case or to the Clipboard.

10.Click Close.

Recording Additional Actions Into an Existing Test

This functionality is supported only if you are using the Open Agent.

Once a test is created, you can open the test and record additional actions to any point in the test. This
allows you to update an existing test with additional actions.

1.
2.

Open an existing test script.
Select the location in the test script into which you want to record additional actions.
Note: Recorded actions are inserted after the selected location. The application under test (AUT)

does not return to the base state. Instead, the AUT opens to the scope in which the preceding
actions in the test script were recorded.

Click Record > Actions.

Silk Test Classic minimizes and the Recording window opens.

Record the additional actions that you want to perform against the AUT.

For information about the actions available during recording, see Actions Available During Recording.

To stop recording, click Stop in the Recording window or Stop Recording in the Mobile Recording
window.

In the Record Actions dialog box, click Paste to Editor to insert the recorded actions into your script.
Click Close to close the Record Actions dialog box.

Specifying Whether to Use Locators or Tags to Resolve
Window Declarations

f Note: You can include locators and tags in the same window declaration.

154 | Designing and Recording Test Cases with the Open Agent

1. Click Options > General. The General Options dialog box opens.
2. Specify if you want to use locators or tags to resolve window declarations.

* To use locators to resolve window declarations, check the Prefer Locator check box.
* To use tags to resolve window declarations, uncheck the Prefer Locator check box.
3. Click OK.

Saving a Script File

To save a script file, click File > Save. If it is a new file, Silk Test Classic prompts you for the file name and
location.

If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes if
you want to add the file to the open project, or No if you do not want to add this file to the project.

To save a new version of a script’s object file when the script file is in view-only mode, choose File > Save
Object File.

If you are working within a project, you can add the file to your project. If you add object files (. to, . ino)
to your project, the files will display under the Data node on the Files tab. You cannot modify object files
within the Silk Test Classic editor because object files are binary. To modify an object file, open the source
file (-t or . inc), edit it, and then recompile.

Testing an Application State

Before you run a test case that is associated with an application state, make sure the application state
compiles and runs without error.

1. Make the window active that contains the application state and choose Run > Application State.
2. Onthe Run Application State dialog box, select the application state you want to run and click Run.

If there are compilation errors, Silk Test Classic displays an error window. Fix the errors and rerun the
application state.

Configuring Applications

When you configure an application, Silk Test Classic automatically creates a base state for the application.
An application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended execution.

Silk Test Classic has slightly different procedures depending on which type of application you are
configuring:

« A standard application, which is an application that does not use a Web browser, for example a
Windows application or a Java SWT application.

« A Web application, which is an application that uses a Web browser, for example a Web page, a Web
application on a mobile device, or an Apache Flex application.

Modifying an Application Configuration

An application configuration defines how Silk Test Classic connects to the application that you want to test.
Silk Test Classic automatically creates an application configuration when you create the base state.
However, at times, you might need to modify, remove, or add an additional application configuration. For
example, if you are testing an application that modifies a database and you use a database viewer tool to
verify the database contents, you must add an additional application configuration for the database viewer
tool.

1. Click Options > Application Configurations. The Edit Application Configurations dialog box opens
and lists the existing application configurations.

Designing and Recording Test Cases with the Open Agent | 155

2. To add an additional application configuration, click Add application configuration.

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

The Select Application dialog box opens. Select the tab and then the application that you want to test
and click OK.

3. To remove an application configuration, click Remove next to the appropriate application configuration.
4. To edit an application configuration, click Edit.
5. Click OK.

Reasons for Failure of Creating an Application
Configuration

When the program cannot attach to an application, the following error message box opens:
Failed to attach to application <Application Name>. For additional information, refer to the Help.

In this case, one or more of the issues listed in the following table may have caused the failure:

Issue Reason Solution

Time out Use a faster system or try to reduce the

¢ The system is not fast enough.
memory usage on your current system.

e The size of the memory of the
system is to small.

User Account Control (UAC) fails The application under test is executed = Manually start the recorder and the
with administrator rights. clients with administrator rights.

64-bit application The application uses a 64-hit Use the corresponding 32-bit
technology that is not yet supported. application.

Command-line pattern The command-line pattern is to specific. Remove ambiguous commands from

This issue occurs especially for Java. the pattern.
The replay may not work as intended.

Actions Available During Recording

This functionality is supported only if you are using the Open Agent.

During recording, you can perform the following actions in the Recording window:

Action Steps

Pause recording. Click Pause to bring the AUT into a specific state without recording the actions,
and then click Record to resume recording.

Change the sequence of the To change the sequence of the recorded actions in the Recording window,

recorded actions. select the actions that you want to move and drag them to the new location. To

select multiple actions press Ctr 1 and click on the actions.

Remove a recorded action. To remove a falsely recorded action from the Recording window, hover the
mouse cursor over the action and click Delete this entry.

Verify an image or a property ofa Move the mouse cursor over the object that you want to verify and press Ctrl
control. +Alt. For additional information, see Adding a Verification to a Script while
Recording.

156 | Designing and Recording Test Cases with the Open Agent

Verification

This section describes how you can verify one or more characteristics, or properties, of an object.

Verifying Object Properties

You will perform most of your verifications using properties. When you verify the properties of an object, a
VerifyProperties method statement is added to your script. The VerifyProperties method verifies
the selected properties of an object and its children.

Each object has many characteristics, or properties. For example, dialog boxes can have the following
verification properties:

« Caption

e« Children

o DefaultButton
« Enabled

« Focus

« Rect

« State

Caption is the text that displays in the title bar of the dialog box. Children is a list of all the objects
contained in the dialog box, DefaultButton is the button that is invoked when you press Enter, and so
on. In your test cases, you can verify the state of any of these properties.

You can also, in the same test case, verify properties of children of the selected object. For example, the
child objects in the Find dialog box, such as the text box FindWhat and the check box CaseSensitive,will
also be selected for verification.

By recording verification statements for the values of one or more of an object’s properties, you can
determine whether the state of the application is correct or in error when you run your test cases.

Verifying Object Properties (Open Agent)

This functionality is supported only if you are using the Open Agent.
Record verification statements to verify the properties of an object.
1. Record a test case.

For information on recording a test case, see Recording Test Cases With the Open Agent.

2. While recording, hover the cursor over the object, for which you want to verify a property, and click Ctrl
+Alt. The Verify Properties dialog box opens.

3. Select the properties that you want to verify, by checking the check boxes next to the property names.
To verify all or most properties, click Select All and then uncheck individual check boxes.
4. Click OK to close the Verify Properties dialog box.

When you finish recording the test case and paste the recorded test to the editor, all verifications are also
pasted to the test script.

Adding a Verification to a Script while Recording
This functionality is supported only if you are using the Open Agent.

Do the following to add a verification to a script during recording:

1. Begin recording.

Designing and Recording Test Cases with the Open Agent | 157

2. Move the mouse cursor over the object that you want to verify and press Ctrl+Alt.

When you are recording a mobile Web application, you can also click on the object and click Add
Verification.

Note: For any application that uses Ctr1+Shift as the shortcut key combination, press Ctrl
+Shift.

This option temporarily suspends recording and displays the Verify Properties dialog box.
3. To select the property that you want to verify, check the corresponding check box.
4. Click OK. Silk Test Classic adds the verification to the recorded script and you can continue recording.

Overview of Verifying Bitmaps

A bitmap is a picture of some portion of your application. Verifying a bitmap is usually only useful when the
actual appearance of an object needs to be verified to validate application correctness. For example, if you
are testing a drawing or CAD/CAM package, a test case might produce an illustration in a drawing region
that you want to compare to a baseline. Other possibilities include the verification of fonts, color charts, and
certain custom objects.

When comparing bitmaps, keep the following in mind:

* Bitmaps are not portable between GUIs. The format of a bitmap on a PC platform is . bmp.

* A bitmap comparison will fail if the image being verified does not have the same screen resolution,
color, window frame width, and window position when the test case is run on a different machine than
the one on which the baseline image was captured.

« Make sure that your test case sets the size of the application window to the same size it was when the
baseline bitmap was captured.

« Capture the smallest possible region of the image so that your test is comparing only what is relevant.

« |If practical, do not include the window’s frame (border), since this may have different colors and/or fonts
in different environments.

Verifying Appearance Using a Bitmap

When you are using the Classic Agent, use this procedure to compare the actual appearance of an image
against a baseline image. Or, use it to verify fonts, color charts, or custom objects.

Note: To verify a bitmap when you are using the Open Agent, you can add the VerifyBitmap
method to your script. The VerifyBitmap method is supported for both agents.

1. Complete the steps in Verifying a Test Case.

2. On the Verify Window dialog box, click the Bitmap tab and then select the region to update: Entire
Window, Client Area of Window (that is, without scroll bar or title bar), or Portion of Window.

3. Inthe Bitmap File Name text box, type the full path of the bitmap file that will be created.

The default path is based on the current directory. The default file name for the first bitmap is
bitmap.bmp. Click Browse if you need help choosing a new path or name.

4. Click OK. If you selected Entire Window or Client Area of Window, Silk Test Classic captures the
bitmap and returns you to your test application. If you selected Portion of Window, position the cursor
at the desired location to begin capturing a bitmap. While you press and hold the mouse button, drag
the mouse to the screen location where you want to end the capture. Release the mouse button.

A bitmap comparison will fail if the image being verified does not have the same screen resolution,
color, window frame width, and window position as the baseline image.
Capture the smallest possible region of the image so that your test is comparing only what is relevant.

5. If you are writing a complete test case, record the cleanup stage and paste the test case into the script.
If you have added a verification statement to an existing test case, paste it into your script and close the
Record Actions dialog box.

158 | Designing and Recording Test Cases with the Open Agent

Overview of Verifying an Objects State

Each class has a set of methods associated with it, including built-in verification methods. You can verify an
object’s state using one of these built-in verification methods or by using other methods in combination with
the built-in Verify function.

A class’s verification methods always begin with Ver i fy. For example, a TextField has the following
verification methods; VerifyPosition, VerifySelRange, VerifySelText, and VerifyValue.

You can use the built-in Ver i fy function to verify that two values are equal and generate an exception if
they are not. Typically, you use the VeriFfy function to test something that does not map directly to a built-
in property or method. Verify has the following syntax:

Verify (aActual, aExpected [, sDesc])

aAct ual The value to verify. ANYTYPE.
aExpect ed The expected value. ANYTYPE.
sDesc Optional: A message describing the comparison. STRING.

Usually, the value to verify is obtained by calling a method for the object being verified; you can use any
method that returns a value.

Example: Verify an object

This example describes how you can verify the number of option buttons in the
Direction RadioList in the Replace dialog box of the Text Editor. There is no property
or method you can directly use to verify this. But there is a method for RadioL.ist,
GetltemCount, which returns the number of option buttons. You can use the method
to provide the actual value, then specify the expected value in the script.

When doing the verification, position the mouse pointer over the RadioList and press
Ctri+Alt. Click the Method tab in the Verify Window dialog box, and select the
GetltemCount method.

Click OK to close the Verify Window dialog box, and complete your test case. Paste it
into a script. You now have the following script:

testcase VerifyFuncTest
TextEditor.Search.Replace.Pick
Replace.Direction.GetltemCount ()
Replace.Cancel .Click

Now use the Verify function to complete the verification statement. Change the line:
Replace.Direction._GetltemCount ()

to
Verify (Replace.Direction.GetltemCount (), 2)

That is, the call to GetltemCount (which returns the number of option buttons)
becomes the first argument to Verify. The expected value, in this case, 2, becomes
the second argument.

Your completed script is:

testcase VerifyFuncTest ()
TextEditor.Search.Replace.Pick ()

Verify (Replace.Direction.GetltemCount (), 2)
Replace.Cancel .Click O

Designing and Recording Test Cases with the Open Agent | 159

Fuzzy Verification

There are situations when Silk Test Classic cannot see the full contents of a control, such as a text box,
because of the way that the application paints the control on the screen. For example, consider a text box
whose contents are wider than the display area. In some situations the application clips the text to fit the
display area before drawing it, meaning that Silk Test Classic only sees the contents that are visible; not the
entire contents.

Consequently, when you later do a VerifyProperties against this text box, it may fail inappropriately.
For example, the true contents of the text box might be 29 Pagoda Street, but only 29 Pagoda
displays. Depending on how exactly the test is created and run, the expected value might be 29 Pagoda
whereas the value seen at runtime might be 29 Pagoda Street, or vice versa. So the test would fail,
even though it should pass.

To work around this problem, you can use fuzzy verification, where the rules for when two strings match
are loosened. Using fuzzy verification, the expected and actual values do not have to exactly match. The
two values are considered to match when one of them is the same as the first or last part of the other one.
Specifically, Veri fyProperties with fuzzy verification will pass whenever any of the following functions
would return TRUE, where actual is the actual value and expected is the expected value:

« MatchStr (actual + "*", expected)
« MatchStr ('*" + actual, expected)
« MatchStr (actual, expected + "*')
« MatchStr (actual, "*" + expected)

In string comparisons, * stands for any zero or more characters.

For example, all the following would pass if fuzzy verification is enabled:

Actual Value Expected Value

29 Pagoda 29 Pagoda Street
oda Street 29 Pagoda Street

29 Pagoda 29 Pagoda
Street

29 Pagoda oda Street
Street

Enabling fuzzy verification

You enable fuzzy verification by using an optional second argument to VerifyProperties, which has
this prototype:

VerifyProperties (WINPROPTREE WinPropTree [,FUZZYVERIFY FuzzyVerifyWhich])

where the FUZZYVERIFY data type is defined as:
type FUZZYVERIFY is BOOLEAN, DATACLASS, LIST OF DATACLASS

So, for the optional FuzzyVerifyWhich argument you can either specify TRUE or FALSE, one class
name, or a list of class names.

FuzzyVerifyWhich value

FALSE Fuzzy verification is disabled.
(default)

Oneclass Fyzzy verification is enabled for all objects of that class.

160 | Designing and Recording Test Cases with the Open Agent

Example window.VerifyProperties ({.},Table) enables fuzzy verification for all
tables in window (but no other object).

'—IiSt of Fuzzy verification is enabled for all objects of each listed class.
classes
Example window.VerifyProperties ({.}, {Table, TextField}) enables fuzzy

verification for all tables and text boxes in window (but no other object).

TRUE Fuzzy verification is enabled only for those objects whose FuzzyVerifyProperties
member is TRUE.

To set the FuzzyVerifyProperties member for an object, add the following line within
the object's declaration:

FUZZYVERIFY FuzzyVerifyProperties = TRUE

Example: If in the application's include file, the DeptDetai Is table has its
FuzzyVerifyProperties member set to TRUE:

window ChildWin EmpData

“Table DeptDetails

FUZZYVERIFY FuzzyVerifyProperties = TRUE
And the test has this line:
EmpData.VerifyProperties ({--.}, TRUE)

Then fuzzy verification is enabled for the DeptDetai Is table (and other objects in
EmpData that have FuzzyVerifyProperties set to TRUE), but no other object.

Fuzzy verification takes more time than standard verification, so only use it when necessary.

For more information, see the VerifyProperties method.

Defining your own verification properties

You can also define your own verification properties.

Verifying that a Window or Control is No Longer
Displayed

1. Click Record > Testcase to begin recording a test case and drive your application to the state you want
to verify. To record a verification statement in an existing test case, click Record > Actions.

2. When you are ready to record a verification statement, position the mouse cursor over the object you
want to verify, and press Ctr1+Alt. Silk Test Classic displays the Verify Window dialog box over your
application window.

3. Click the Property tab. Silk Test Classic lists the properties for the selected window or control on the
right.

4. Make sure that only the Exists property is selected for the window or control.

If additional properties are selected, the verification will fail because the actual list of properties will
differ from the expected list.

5. Change the value in the Property Value field from TRUE to FALSE.

6. Click OK to accept the Exists property for the selected window or control. Silk Test Classic closes the
Verify Window dialog box and displays the Record Status window. The test case will verify that the
window or control has the property value of FALSE, verifying that the object is no longer displayed. If
not, Silk Test Classic writes an error to the results file.

Designing and Recording Test Cases with the Open Agent | 161

Data-Driven Test Cases

Data-driven test cases enable you to invoke the same test case multiple times, once for each data
combination stored in a data source. The data is passed to the test case as a parameter. You can think of a
data-driven test case as a template for a class of test cases. Data-driven test cases offer the following
benefits:

* They reduce redundancy in a test plan.
« Writing a single test case for a group of similar test cases makes it easier to maintain scripts.
e They are reusable; adding new tests only requires adding new data.

Regardless of the technique you use, the basic process for creating a data-driven test case is:

1. Create a standard test case. It will be very helpful to have a good idea of what you are going to test and
how to perform the verification.

2. ldentify the data in the test case and the 4Test data types needed to store this data.

Modify the test case to use variables instead of hard data.

4. Modify the test case to specify input arguments to be used to pass in the data. Replace the hard coded
data in the test case with variables.

5. Call the test case and pass in the data, using one of four different techniques:

w

* Use a database and the Data Driven Workflow to run the test case, the preferred method.

e Click Run > Testcase and type the data in the Run Testcase dialog box.

* In a QA Organizer test plan, insert the data as an attribute to a test description.

« If the data exists in an external file, write a function to read the file and use a main() function to run
the test case.

Data-Driven Workflow

You can use the Data Driven Workflow to create data-driven test cases that use data stored in databases.
The Data Driven Workflow generates much of the necessary code and guides you through the process of
creating a data-driven test case.

Before you can create and run data-driven test cases, you need to perform the following actions:

1. Record a standard test case.
2. Set up or identify the existing data source with the information you want to use to run the test.
3. Configure your Data Source Name (DSN), if you are not using the default, which is Silk DDA Excel.

Note: When you use the Data Driven Workflow, Silk Test Classic uses a well-defined record format.
To run data-driven test cases that were not created through the Data Driven Workflow, you need to
convert your recordings to the new record format. To run data-driven test cases that do not follow the
record format, run the tests outside of the Data Driven Workflow.

To enable or disable the Data Driven Workflow, click Workflows > Data Driven.

b: pe T

Data Drive Testcase FindfReplace Yalues Run Testcase Explore Resulks

To create and execute a data-driven test case, sequentially click each icon in the workflow bar to perform
the corresponding procedure.

162 | Designing and Recording Test Cases with the Open Agent

Action Description

Data Drive Select a test case to data drive. Silk Test Classic copies the selected test case and creates a

Testcase new data-driven test case by adding a "'DD_"" prefix to the original name of the test case. Silk
Test Classic also writes other data-driven information to the new or existing data driven script file
(-g-tfile).

Find/Replace Find and replace values in the new test case with links to the data source.

Values

Run Testcase Run the data-driven test case, optionally selecting the rows and tables in the data source that
you want to use.

Explore Results View test results.

Working with Data-Driven Test Cases

Consider the following when you are working with data-driven test cases:

* The 4Test Editor contains additional menu selections and toolbars for you to use.

« Silk Test Classic can data drive only one test case at a time.

* You cannot duplicate test case hames. Data-driven test cases in the same script must have unique
names.

« The Classic 4Test editor is not available with data-driven test cases in .g. t files.

« You cannot create data-driven test cases from test cases in . inc files; you can only create data-driven
test cases from test cases in .t or .g.t files. However, you can open a project, add the *. inc, select
the test case from the test case folder of the project, and then select data drive.

« When you data drive a [use "<script>.t"] is added to the data-driven test case. This is the link to
the .t file where the test case originated. If you add a test case from another script file then another
use line pointing to that file is added. If the script file is in the same directory as the <script.g.t>,
then no path is given, otherwise, the absolute path is added to the use line. If this path changes, it is up
to you to correct the path; Silk Test Classic will not automatically update the path.

* When you open a .g -t file using File > Open, Silk Test Classic automatically loads the data source
information for that file. If you are in a .g-t file and that file’s data source is edited, click Edit > Data
Driven > Reload Database to refresh the information from the data source.

< If you add a new data-driven test case to an existing .g.t file that is fully collapsed, Silk Test Classic
expands the previous test case, but does not edit it.

Code Automatically Generated by Silk Test Classic

When you create a data-driven test case, Silk Test Classic verifies that the DSN configuration is correct by
connecting to the database, generates the 4Test code describing the DSN, and writes that information into
the data-driven script.

Do not delete or change the information created by Silk Test Classic. If you do, you may not be able to run
your data-driven test case.

When you click OK on the Specify Data Driven Testcase dialog box, Silk Test Classic automatically writes
the following information to the top of your data driven script file.

The information is delivered "rolled up" (collapsed); in order to see the details you need to click on the plus
sign to expand the code:

[+]1 7/ *** DATA DRIVEN ASSISTANT Section (!! DO NOT REMOVE 11) ***

The .inc files used by the original test cases, and the .t file indicating where the test case just came from, in
this case from Usability.t:

[1 use "datadrivetc.inc"
[1 use "Usability.t"

Designing and Recording Test Cases with the Open Agent | 163

A reference to the DSN, specifying the connect string, including username and password, for example:

[] // * KKk DSN * kK
[1 STRING gsDSNConnect = "DSN=SILK DDA Excel ;DBQ=C:\ddatesting
\TestExcel .x1s;UID=;PWD=;""

Each data-driven test case takes as a single argument a record consisting of a record for each table that is
used in the test case. The record definition is automatically generated as shown here:

[+]1 // testcase VerifyProductDetails (REC_DATALIST_ VerifyProductDetails rdVpd)
[1 7/ Name: REC <Testcase name>. Fields Types: Table record types. Field
Names: Table record
type with "REC_" replaced by "rec”
[-1 type REC DATALIST VerifyProductDetails is record

[1 REC_Products recProducts

[1 REC_Customers recCustomers

[1 REC _CreditCards recCreditCards

Each table record contains the column names in the same order as in the database. Spaces in table and
column names are removed. Special characters such as $ are replaced by underscores.

[17/ *** Global record for each Table ***
L1

[-1 type REC Products_ is record
STRING Item //1tem,

REAL Index //1ndex,

STRING Name //Name,

REAL ItemNum //I1temNum,

STRING Price //Price,

STRING Desc //Desc,

STRING Blurb //Blurb,

REAL NumlIlnStock //NumlnStock,
INTEGER QtyToOrder //QtyToOrder,
INTEGER OnSale //0nSale,

| s s | s | s { s { e { e | [|
e L L L e e e e el

el

Silk Test Classic writes a sample record for each table. This is the data used if you opt to use sample data
on the Run Testcase dialog box. A value from the original test case is inserted into the sample record,
even if there are syntax errors when that column is first used to replace a value.

[17/ *** Global record containing sample data for each table ***
[17/ ** Used when running a testcase with "Use Sample Data from Script”
checked ***

L1

[-1 REC_Products_ grTest Products = {...}
NULL /7 ltem

NULL // Index

NULL // Name

NULL /7 I1temNum
NULL // Price

NULL /7 Desc

NULL /7 Blurb

NULL /7 NumlnStock
2 // QtyToOrder
NULL // OnSale

I_||_|I_|I_|IHIHI_H_H_H_HH
S | S | S | S | S | S [[[R [|

L
L 17/ ** End of DATA DRIVEN ASSISTANT Section ***

Tips And Tricks for Data-Driven Test Cases

There are several things to know about working with data sources while you are creating data-driven test
cases.

* You must have an existing data source with tables and columns defined before you data drive a test
case. However, the data source does not need to contain rows of data. You cannot use the Data Driven
Workflow to create data sources or databases.

164 | Designing and Recording Test Cases with the Open Agent

« If you have a table in your data source that has a long name (greater than 25 characters), all of the
name may not be visible in the Find and Replace menu bar in the 4Test Editor. You may find it helpful
to change the size of the menu bar to display more of your table name.

* You cannot change to a different data source once you have started to find and replace values in a
script. If you do, you will have problems with prior replacements. If you want to change your data source,
you should create a new data-driven script file.

« If you are working with a data source that requires a user name and password, you can add the
username and password to the connect string in the g .t file. The first example below shows how SQL
Server requires a userid and password. [7 STRING gsDSNConnect =
""'DSN=USER.SQL .DSN;UID=SA; PWD=sesame ;" where UID=<your user ID> ("SA" in the example
above) and where PWD=<your password> ("sesame" in the example above). On the other hand, the
example below shows how the Connect string for a MS Excel DSN does not require user IDs or
passwords: [] STRING gsDSNConnect = ""DSN=Silk DDA Excel ;DBQ=C:

\TestExcel .xls;UID=;PWD=""

* You can choose to run with a sample record if the table is empty; however, this record is not inserted
into the database. The sample record is created by Silk Test Classic when it replaces values from the
test case by the table and columns in your database.

« Real numbers should be stored as valid 4Test Real numbers with format: [-]ddd.ddd[e[-]ddd],
even though databases such as MS Excel allow a wider range of formats — for example, currencies and

fractions.

« There are no restrictions on how you name your tables and columns within your data source. Silk Test
Classic automatically removes spaces, and converts dollar signs and other special characters to
underscores when it creates the sample record and writes other code to your data-driven test case. Silk
Test Classic handles MS Excel and MS Access table names without putting quotation marks around
them. This means that your table and column names will look familiar when you go to find and replace

values.

« If you encounter the error "ODBC Excel Driver numeric field overflow" while running a test case, check
the Excel workbook that you are using as your data source. You may have some columns that are
defined as STRING columns but contain numeric values in some of the rows. If you have a column that
you want to treat as numeric strings rather than as numbers, either format the column as 'Text' or begin
the number strings with a single-quote character. For example: '1003 instead of: 1003

« If modifying data sources in an existing Excel data sheet, use the remove column option to delete any
data to be removed, as simply deleting from the cell, using clear contents, or copy/pasting content will
not register correctly with the DDS file in Silk Test Classic and may lead to a data source mismatch
error: *** Error: Incompatible types -- Number of list elements exceeds number

of fields.

Formatting MS Excel worksheets for use as a data source

Use the 'General' format for the columns of your worksheets. Here are specific suggestions for column
formats based on the intended data type of the column:

Intended Data

Excel Column Format

Type of

Column

STRING If the column contains only text, no numbers, dates or booleans, then apply the '‘General' format. If
the column contains text and numbers, then you can still apply the ‘General' format if you begin the
number strings with a single-quote character. For example: '1003 instead of: 1003. Otherwise,
apply the 'Text' format.

INTEGER or ‘General' or 'Number' format.

REAL

BOOLEAN ‘General' format. Use only the values TRUE and FALSE.

Designing and Recording Test Cases with the Open Agent | 165

Intended Data Excel Column Format
Type of
Column

DATETIME ‘Custom’ format: yyyy-mm-dd hh:mm:ss. That agrees with the ISO format used by Silk Test Classic
DATETIME values.

Testing an Application with Invalid Data

This topic assumes that you are familiar with data driving test cases.
To thoroughly test an application feature, you need to test the feature with invalid as well as valid data.

For example, the sample Text Editor application displays a message box if a user specifies a search string
in the Find dialog box that doesn'’t exist in the document. To account for this, you can create a data-driven
test case, like the following, that verifies that the message box displays and has the correct message:

type SEARCHINFO is record

STRING sText // Text to type in document window
STRING sPos // Starting position of search
STRING sPattern // String to look for

BOOLEAN bCase // Case-sensitive or not

STRING sDirection // Direction of search
STRING sExpected // The expected match
STRING sMessage // The expected message in message box

testcase FindInvalidData (SEARCHINFO Data)
TextEditor.File.New.Pick
DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
TextEditor.Search.Find.Pick O
Find.FindWhat.SetText (Data.sPattern)
Find.CaseSensitive.SetState (Data.bCase)
Find.Direction.Select (Data.sDirection)
Find.FindNext.Click O

MessageBox.Message.VerifyValue (Data.sMessage)
MessageBox.OK.Click ()

Find.Cancel.Click O
TextEditor.File.Close.Pick O
MessageBox.No.Click O

The VerifyValue method call in this test case verifies that the message box contains the correct string.
For example, the message should be Cannot find Ca if the user enters Ca into the Find dialog box and
the document editing area does not contain this string.

Enabling and Disabling Workflow Bars

Only one workflow bar can be enabled at a time.

To enable or disable a workflow bar, click Workflows and then select the workflow bar that you want to turn
on or off. For example, click Workflows > Basic.

You can select one of the following workflows:
Workflow Description
Basic workflow Guides you through the process of creating a test case.

Data Driven workflow Guides you through the process of creating a data-driven test case.

166 | Designing and Recording Test Cases with the Open Agent

Data Source for Data-Driven Test Cases

When you install Silk Test Classic, the SILK DDA EXCEL DSN is copied to your installation computer. This
is the default DSN that Silk Test Classic uses. This DSN uses a MS Excel 8.0 driver and does not have a
particular workbook (. x1s file) associated with it.

The Select Data Source dialog box allows you to choose the data source:

« For new data-driven test cases, choose Silk DDA Excel.
« For backward compatibility, choose Segue DDA Excel. This allows existing .g. t files that reference
Segue DDA Excel to continue to run.

You do not have to use the default DSN. For additional information when using a different DSN, see
Configuring Your DSN.

You may use any of the following types of data sources:

« Text files and comma separated value files (*.txt and *.csv files)
e Microsoft Excel

* Microsoft SQL Server

* Microsoft Access

e Oracle

* Sybase SQL Anywhere

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Configuring Your DSN

The default DSN for data-driven test cases, Silk DDA Excel, is created during the installation of Silk Test
Classic. To use the default DSN you do not need to configure your DSN.

The Select Data Source dialog box allows you to choose the data source:

» For new data-driven test cases, choose Silk DDA Excel.
* For backward compatibility, choose Segue DDA Excel. This allows existing .g.t files that reference
Segue DDA Excel to continue to run.

The following instructions show how to configure a machine to use a different DSN than the Silk DDA Excel
default.

1. Click Start > Control Panel > System and Security > Administrative Tools > Data Sources (ODBC).

2. Onthe ODBC Data Source Administrator, click either the System DSN tab or the User DSN tab,
depending on whether you want to configure this DSN for one user or for every user on this machine.

3. Click Add.

4. On the Create New Data Source dialog box, select the driver for the data source and click Finish.
To restore the default DSN for Silk Test Classic, select the driver for Microsoft Excel Driver (*.xIs).

5. On the setup dialog box of the data source, enter a name for the data source.

To restore the default for Silk Test Classic, enter Si lk DDA Excel. For additional information about
the dialog box, refer to the database documentation or contact your database administrator.

6. Click OK.
Setting Up a Data Source

Before you can run a data-driven test case you must set up a file that contains the tables, which are called
worksheets in Microsoft Excel (Excel), and the columns that you want to use. The tables do not have to be
populated with data, but it might help to have at least one complete record filled out.

Designing and Recording Test Cases with the Open Agent | 167

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

1. Open one of the data sources for data-driven test cases, for example Excel.
2. Name at least one table, or worksheet if you are using Excel, and create column names for the table.
3. Save the data source.

Example

The Excel file TestExcel .x1s can be used as a data source for a data-driven test
case and includes the three worksheets Products, Customers, and CreditCards. The
Customers worksheet includes the columns Customer, Name, Address, and so on.

Ed Microsoft Excel - TestExc 5
J File Edit Wew Insert Farmat Tools Data Window Help Acrobat

J.ﬂ.rial vmvl?f g|§|§§|$%,|
A -] = Customer
A, | E | C B e e s

1 Customer Name Address City State Zip
2 Cust 1 Test Mame 123 Streetl City1 Fel A, 0241
3 Cust 2 Test Name2 123 Street2 City2 Fel 2, 02422
4 Cust 3 Test Mame3 123 Streets City3 Fel S, 02421
5 Cust 4 Test Named 123 Streeatd Cityd Pl 02422
b Custh Test Mameb 123 Streeth CityS Fel 5, 02421
7 Custh Test Mameb 123 Streetb Cityk Pl A, 02422
g

g

[4)4[p w1 Products Customers { CreditCards / | 4]

Ready | | bl b

Using an Oracle DSN to Data Drive a Test Case

To use an Oracle DSN to data drive a test case, select the test case to data drive, let Silk Test Classic
generate code into the new test case file, and then make the following manual modifications to the DSN:

1. Find out which columns are included in the table of your schema.

Different schemas may contain tables with the same name. The table lists for the Find/Replace Values
dialog box, the re-sizable menu bar, and the Specify Rows dialog box will list the same table name
once for each schema without indicating the schema. For each of those list items the column list will
contain the names of the columns in all of the tables with that name.

2. After finding and replacing values, split each table record into separate records according to the
schema. Do that for the sample record as well.

The record names should have the form: <Record prefix><schema>_<table>. For example, if the
schema is STUser and the table is Customers, the name of the table record type will be
REC_STUser_Customers and the declaration for the field in the test case record for the table will be
REC_STUser_Customers recSTUser_Customers // Customers.

3. Run the test case from a test plan, unless you are running all rows for all tables. Use the Specify Rows
dialog box to build the ddatestdata value, then modify that value to include the schema name in the
query.

Note: Specify a query for every table, even if you want to run all rows for a table. To run all rows,
leave the where clause blank.

Creating the Data-Driven Test Case

This section describes how you can create a data-driven test case.

168 | Designing and Recording Test Cases with the Open Agent

Selecting a Test Case to Data Drive

For information on the steps that you need to complete before you can select a test case to data drive, see
Data-Driven Workflow.

While you are in a script, choose one of the following to select a test case for data driving:

* Click Tools > Data Drive Testcase.
» Right-click into the script and select Data Drive Testcase.

When you select a test case, Silk Test Classic copies the selected test case and creates a new data-driven
test case by adding a DD__ prefix to the original name of the test case. Silk Test Classic also writes other
data-driven information to the new or existing data-driven script file script.g.t.

Finding and Replacing Values

For information on the steps that you need to complete before you can find and replace values in a test
case, see Data-Driven Workflow.

Values are text strings, numbers, and booleans (true/false) that exist in your original test cases. One of the
steps in creating a data-driven test case is to find these values and replace them with references to
columns in your data source.

Silk Test Classic checks to make sure that each value you select is appropriate for replacement by the
column in your test case. You can turn off this validation by clicking Edit > Data Driven > Validate
Replacements while you are in a .g. t file. This means that the Find aspect of Find and Replace works
as usual, but that the values that you replace are not validated. By turning off this checking, you suppress
the error messages that Silk Test Classic would have otherwise displayed. Any 4Test identifier or fragment
of a string is considered an invalid value for replacement unless Validate Replacements is turned off.

If you are new to creating data-driven test cases, we recommend that you keep this validation turned on.

Find and replace values in a test case using either the Find/Replace Values dialog box or the Find and
Replace re-sizable menu bar in the 4Test Editor. You can access the Find/Replace Values dialog box in
one of the following ways:

* Right-click into a test case in a .g-t file and select Data Drive Testcase. Specify the data source, the
data-driven script, and the data-driven test case. When you complete the Specify Data Driven
Testcase dialog box and the data-driven script opens in the 4Test Editor, the Find/Replace Values
dialog box opens automatically.

» After you have highlighted a value in a .g. t file, choose Edit > Data Driven > Find > Replace Values,
or right-click the value and select Find > Replace Values.

When you are using Find and Replace, sometimes a method requires a data type that does not match the
column that you want to replace. For example, SetText requires a string, but you may want to set a
number instead, or perhaps the database does not store data in the 4Test type that you would like to use.
Silk Test Classic can handle these kinds of conversions, with a few exceptions.

Running a Data-Driven Test Case

Once you have selected a test case to data drive, and found and replaced values, choose one of the
following ways to run the test case:

¢ Click Run > Run while in a .g-t file. This command runs main(), or if there is no main(), the
command runs all test cases. For each test case, this command runs all rows for all tables used by the
test case.

* Click Run > Testcase and select the data-driven test case from the list of test cases on the Run
Testcase dialog box, for all tables used by the test case.

e Click Run > Testcase > Run to run the test case for all rows for all tables used by the test case.

Designing and Recording Test Cases with the Open Agent | 169

Running a Test Case Using a Sample Record for Each Table Used by
the Data-Driven Test Case

This is useful if you want to do a quick test or are not connected to your data source. The sample record is
created as you replace values in the test case. When you first use a column to replace a test case value,
that value is inserted into the table record in the field for that column.

1. On the Run Testcase dialog box, click Use Sample Data from Script.

By default, Silk Test Classic runs every combination of rows in your tables. The number of test cases
that runs is:

of rows selected for Table 1 X the # of rows selected for
Table 2 X the number of rows for Table 3
. and so on

For example, if your test case uses 3 tables with 5 rows each, Silk Test Classic will run 125 test cases.

2. To select the rows you want to run on a table-by-table basis, click Specify Rows on the Run Testcase
dialog box to use the Specify Rows dialog box to create a query.

3. Specify arguments, if necessary, in the Arguments text box. Remember to separate multiple arguments
with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

« BaseStateExecutionFinished
« Connecting

« Verify

« Exists

« Is

« Get

« Set

« Print

o ForceActiveXEnum
« Wait

o Sleep

5. To view results using the Silk TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

Passing Data to a Test Case
Once you have defined your data-driven test case, you pass data to it, as follows:

< If you are not using the test plan editor, you pass data from a script's main function.
« If you are using the test plan editor, you embed the data in the test plan and the test plan editor passes
the data when you run the test plan.

Example Setup for Forward Case-Sensitive Search

Here is a sample application state that performs the setup for all forward case-sensitive searches in the
Find dialog box:

appstate Setup () basedon DefaultBaseState
TextEditor.File.New.Pick

170 | Designing and Recording Test Cases with the Open Agent

DocumentWindow.Document.TypeKeys (""Test Case<Home>')
TextEditor.Search_Find.Pick
Find.CaseSensitive.Check

Find.Direction.Select ('Down'™)

Building Queries

Before you define a query to access certain data in a data-driven test case, there are several steps you
need to complete. for additional information, see Using the Data Driven Workflow for more information.

Respond to the prompts on the Specify Rows dialog box to create a query for a table. The following are
examples of simple queries:

« To find and run the records of customers whose customer ID number is 1001: (CUSTID = 1001)

« To find and run the records of customers whose names begin with the letters "F" or "G": (CUST_NAME
LIKE “F%”) OR (CUSTNAME LIKE “G%7).

See the description of the enter values area in the Specify Rows dialog box to see examples of more
complex queries.

Adding a Data-Driven Test Case to a Test Plan

You can run a data-driven test case from a test plan as either a data-driven test case or as a regular test
case. To distinguish between the two cases, there are two keywords for you to use:

« ddatestcase specifies the name of a test case that runs as a data-driven test case.
* ddatestdata specifies the list of rows that will be run with the data-driven test case.

If the test case is specified with the keyword ddatestcase, it is run as a data-driven test case. Use this
keyword only with data-driven test cases.

To specify a data-driven test case in a test plan

« Add keyword ddatestcase in front of the test case name.

« Add the keyword ddatestdata as a list of queries that specify the particular rows you want the test case
to run with. The list of queries is represented as a single LIST OF STRING parameter.

Rules for using data-driven keywords

« The ddatestdata keyword requires simple select queries. To specify the row you want to run a test case
with, use the ddatestdata keyword with the format: select * from <table> where

« The keyword ddatestcase cannot be a level above the script file and still work. The script file has to be
at the same level or above it.

« Atest plan needs to specify a test case using either the keyword testcase or the keyword ddatestcase.
Using both causes a compiler error.

< If the ddatestdata keyword is present, then the ddatestcase is run using the ddatestdata value as the
rows to run.

e The default is to run all rows for all tables. The value for ddatestdata for this is
ALL_ROWS_FOR_ALL_TABLES.

» Using the keyword testdata in a test item with keyword ddatestcase will cause a compiler error.

» If the test case is specified with the keyword testcase, then the test case is run as a regular test case
and the testdata keyword or symbols must be present to specify the value that will be passed as the
regular argument. This value must be a record of the type defined for the ddatestcase, in other words of
type REC_DATALIST_<Testcase name>.

You can add a data-driven test case to a test plan by using the Testplan Detail dialog box or by editing the
test plan directly. However, if you edit the test plan directly, then the keywords are not automatically
validated and it is your responsibility to make sure that the keywords, which are testcase versus
ddatestcase and testdata versus ddatestdata, are appropriate for the intended execution of the test case.

Designing and Recording Test Cases with the Open Agent | 171

Whenever you use the Test Detail dialog box, be sure to click the Testcases button and select the test
case from the list. That will ensure that the proper keywords are inserted into the test plan.

Using sample records data within test plans

To run a test case with the sample record within a test plan, you must manually input the test data, in the
format ddatestdata: {''USE_SAMPLE_RECORD_<tablename>'}

For example:

script: example.t
ddatestcase: sampletc
ddatestdata: {"USE_SAMPLE RECORD_SpaceTable$"}

You must put the USE_SAMPLE_RECORD __ prefix in front of each table name that you want to run against. If
you are using two tables, you need to input the prefix twice, as shown below with two tables named
"Table1l" and "Table2":

ddatestdata: {"USE_SAMPLE_RECORD Tablel","USE_SAMPLE_RECORD Table2"}

Using a main Function in the Script

Although most of the script files you create contain only test cases, in some instances you need to add a
function named main to your script. You can use the main function to pass data to test cases as well as
control the order in which the test cases in the script are executed.

When you run a script file by clicking Run > Run:

« If the script file contains a main function, the main function is executed, then execution stops. Only test
cases and functions called by main will be executed, in the order in which they are specified in main.
» If the script does not contain a main function, the test cases are executed from top to bottom.

Example

The following template shows the structure of a script that contains a main function that passes data to a
data-driven test case:

main O

// 1. Declare a variable to hold current record

// 2. Store all data for test case in a list of records
// 3. Call the test case once for each record iIn the list

Using this structure, the following example shows how to create a script that defines data records and then
calls the sample test case once for each record in the list:

type SEARCHINFO is record

STRING sText // Text to type in document window
STRING sPos // Starting position of search
STRING sPattern // String to look for

BOOLEAN bCase // Case-sensitive or not

STRING sDirection // Direction of search
STRING sExpected // The expected match

main O

SEARCHINFO Data

list of SEARCHINFO IsData = {...}
{"Test Case'", "<END>'", "C'", TRUE, "Up'", "C"}
{""'Test Case', "<END>", "Ca'", TRUE, "Up", "Ca"}
// additional data records can be added here

for each Data in IsData
FindTest (Data)

testcase FindTest (SEARCHINFO Data)
TextEditor.File_New.Pick ()
DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
TextEditor.Search.Find.Pick ()

172 | Designing and Recording Test Cases with the Open Agent

Find.FindWhat.SetText (Data.sPattern)
Find.CaseSensitive._SetState (Data.bCase)
Find.Direction.Select (Data.sDirection)
Find.FindNext.Click O
Find.Cancel.Click O
DocumentWindow.Document.VerifySelText ({Data.sExpected})
TextEditor.File.Close.Pick ()

MessageBox-No.Click ()

When you click Run > Run, the main function is called and the FindTest test case will be executed once
for every instance of Data in IsData (the list of SEARCHINFO records). In the script shown above, the test
case will be run twice. Here is the results file that is produced:

Script findtest.t - Passed

Passed: 2 tests (100%)

Failed: O tests (0%)

Totals: 2 tests, O errors, 0 warnings

Testcase FindTest ({"Test Case'™, "<END>', "C", TRUE, "Up"™, "C"}) - Passed
Testcase FindTest ({"Test Case', "<END>", "Ca'™, TRUE, "Up'"™, "Ca"}) - Passed

Note: With data-driven test cases, Silk Test Classic records the parameters that are passed in, in the
results file.

In this sample data-driven test case, the test case data is stored in a list within the script itself. It is also
possible to store the data externally and read records into a list using the Fi leReadValue function.

Using do...except to Handle an Exception

The VerifyValue method, like all 4Test verification methods, raises an exception if the actual value does
not match the expected (baseline) value. When this happens, Silk Test Classic halts the execution of the
test case and transfers control to the recovery system. The recovery system then returns the application to
the base state.

However, suppose you don’t want Silk Test Classic to transfer control to the recovery system, but instead
want to trap the exception and handle it yourself. For example, you might want to log the error and continue
executing the test case. To do this, you can use the 4Test do. . . except statement and related
statements, which allow you to handle the exception yourself.

Characters Excluded from Recording and Replaying

The following characters are ignored by Silk Test during recording and replay:

Characters Control
Menultem

tab Menultem

& All controls. The ampersand (&) is used as an accelerator
and therefore not recorded.

Designing and Recording Test Cases with the Open Agent | 173

Testing in Your Environment with the Open

Agent

This section describes how you can test applications in your environment with the Open Agent.

Distributed Testing with the Open Agent

This section describes how you can run tests on multiple machines.

Configuring Your Test Environment

This topic contains information about configuration tasks that you can perform on your test environment to
test on multiple machines.

When you are
working with ...

PC-Class
Platforms

TCP/IP

LAN Manager
or Windows for
Workgroups

NetBIOS on
PCs

Configure the following ...

Explicitly assign a unique network name to remote agents so that Silk Test Classic can
identify the agent when your test case connects to that machine.

On PCs. Windows machines generally come with TCP/IP. Silk Test Classic on
Microsoft Windows can use any TCP/IP software package that supports the Windows
Sockets Interface Standard, Version 1.1, (WINSOCK), and supplies WINSOCK . DLL.

This functionality is supported only if you are using the Classic Agent.

Increase the SESSIONS value, the default is 6, to a higher value. This variable is
defined in the protocol . ini file, which is typically located in your Windows
directory.

Increase the NCBS value in protocol .. ini to twice the SESSIONS value.

The LAN Manager network environment and Windows for Workgroups have the
ability to use more than one protocol driver at a time. NetBEUI is the protocol driver
frequently used by LAN Manager. In order for Silk Test Classic and the agent to run,
the NetBEUI protocol must be the first protocol loaded. The LANABASE option
under the [NETBEUI_XIF] section of protocol . ini must be set to 0 (zero). If
additional protocols are loaded, they must have a sequentially higher LANABASE
setting. For example, if you are running both NetBEUI and TCP/IP, the LANABASE
setting for NetBEUI is (as always) O (zero), and the value for TCP/IP isl (one).

This functionality is supported only if you are using the Classic Agent.

Under Windows, install NetBEUI with NetBIOS.

In the Network control panel, set NetBEUI as the default protocol.

On Windows, NetBIOS is started automatically.

Explicitly assign a unique network name to remote agents so that Silk Test Classic
can identify the agent when your test case issues a Connect function for that
machine. This step is not necessary for agents using TCP/IP because Silk Test
Classic automatically uses the workstation’s TCP/IP name. The name must be from
1 to 16 alphanumeric characters long and must not be the standard name you use
for your machine itself or the name of any other distributed agent. On some
systems, using the same name can cause a system crash. A safe alternative is to

174 | Testing in Your Environment with the Open Agent

When you are Configure the following ...
working with ...

derive the agent name from the machine name. For example, if a machine is called
Rome, call the Agent Rome_QAP.

» Your NetBIOS adapter may be configured as any host adapter number, including
adapter 0. Check with your network administrator if you are not sure how to do this
or need to change your configuration.

Client/Server Testing Configurations

The processes that participate in a client/server testing scenario are logically associated with three
different computers:

1. System A runs Silk Test Classic, which processes test scripts and sends application commands to the
agent.

2. System B runs the client application and the agent, which submits the application commands to the
client application.

3. System C runs the server software, which reacts to requests submitted by the client application.

The following sections describe different hardware/software configurations that can support Silk Test
Classic testing.

Configuration 1

Machine 1 shows the software configuration you would have when testing a stand-alone application.
Machine 2 shows Silk Test Classic and a client/server application with all of your software running on one
machine. This configuration allows you to do all types of functional testing other than testing the behavior of
the connection between a client and a remote server.

Machine 1 Machine 2

(|] & lio nt i -l)
-= Application (

Testing a stand-alone
application with SilkTest

Testing a clientizerver
application with software
allin one machine

During your initial test development phase, you can reduce your hardware needs by making two (and
possibly all) of these systems the same. If you write tests for an application running on the same system as

Testing in Your Environment with the Open Agent | 175

Silk Test Classic, you can implement the tests without consideration of any of the issues of remote testing.
You can then expand your testing program incrementally to take your testing into each new phase.

Configuration 2

A testing configuration in which the client application runs on the same machine as Silk Test Classic and
the server application runs on a separate machine.

Note: In this configuration, as with Machine 2 in Configuration 1, there is no communication between
Silk Test Classic and the server. This means that you must manage the work of starting and initializing
the server database manually. For some kinds of testing this is appropriate.

Machine 1 Machine =2

N

]

This configuration lets you test the remote client-to-server connection and is appropriate for many stress
tests. It allows you to do volume load testing from the point of view of the client application, but not the
server.

Configuration 3

Multiple copies of the client application running on separate machines, with Silk Test Classic driving the
client application by means of the agent process on each client machine, and the client application driving
the server application. This is just the multi-client version of the previous configuration. You could run a
fourth instance of the client application on the Silk Test Classic machine. The actual number of client
machines used is your choice.

176 | Testing in Your Environment with the Open Agent

Target M achines

Host M achine

i Tert "#bff

werver M achin

This configuration is appropriate for load testing and configuration testing if you have no need to
automatically manipulate the server. You must have at least two clients to test concurrency and mutual-
exclusion functionality.

Configuration 4

Once you are running Silk Test Classic, it makes sense to have your script initialize your server
automatically. Configuration 4 uses the same hardware configuration as Configuration 3, but Silk Test
Classic is also driving the server directly. This figure shows Silk Test Classic using an agent on the server
machine to drive the server’'s GUI (the lower connecting arrow); this approach can be used to start the
server's database and sometimes can be used to initialize it to a base state. The upper arrow shows Silk
Test Classic using SQL commands to directly manipulate the server database; use this approach when
using the agent is not sufficient. After starting the database with the agent, use SQL commands to initialize
it to a base state. The SQL commands are submitted by means of Silk Test Classic’s database functions,
which do not require the services of the agent.

Testing in Your Environment with the Open Agent | 177

database

Host Client

Configuration 4 is the most complete testing configuration. It requires the database tester. You can use it
for all types of Silk Test Classic testing, including volume load testing of the server, peak load testing, and
performance testing.

The special features that allow Silk Test Classic to provide rigorous testing for client/ server applications
are the following:

e Automatic control of multiple applications.

« Multithreading for automatic control of concurrent applications.
* Reporting results by thread ID.

» Testing across networks using a variety of protocols.

The added value that the database tester provides for the client/server environment is direct database
access from the test script.

Networking Protocols Used by the Open Agent

The Open Agent uses exclusively the TCP/IP protocol.

Single Local Applications

In a single-application test environment, if the application is local, you do not have to determine an agent
name or issue a connection command. When you start an agent on the local machine, Silk Test Classic
automatically connects to it and directs all agent commands to it.

Remote Applications

When you have one or more remote agents in your testing network, you enable networking by specifying
the network type.

For projects or scripts that use the Classic Agent, if you are not using TCP/IP, you have to assign to each
agent the unique name that your scripts use to direct test operations to the associated application. For
additional information, see Enabling Networking and Assigning the Classic Agent Name and Port.

You can use Silk Test Classic to test two applications on the same target from one host machine.

178 | Testing in Your Environment with the Open Agent

Single Remote Applications

In a single-application test environment, if the application is remote, specify the agent name in the
Runtime Options dialog box. This causes Silk Test Classic to automatically connect to that machine and
to direct all agent commands to that machine. This contrasts with the multi-application case, in which you
explicitly connect to the target machines and explicitly specify which machines are to receive which
sections of code.

Multiple Remote Applications

When you enable networking by selecting the networking type in the Runtime Options dialog box on the
host, do not set the Agent Name text box to an agent name if you have multiple remote agents. This field
only accepts a single agent name and using it prevents you from handling all your client machines the
same way.

If you specify one agent name from your set of agents, then you cannot issue a Connect call to that agent
and thus do not receive the machine handle that the Connect function returns. Since you have to issue
some Connect calls, be consistent and avoid writing exception code to handle a machine that is
automatically connected.

For projects or scripts that use the Classic Agent, you can specify multiple agents from within your script
file by adding the following command line to the agent:
agent —p portNumber

Configuring a Network of Computers

To configure a network of computers so that they can run Silk Test Classic and the Silk Test Classic agents,
perform the following steps:

1. Install, or have already running, networking protocols supported by Silk Test Classic.
2. Install Silk Test Classic on the host machine and the agent software on all target machines.
3. Establish connectability between host and agents.
This may be automatic or may require some setup, depending on the circumstances.
4. Enable networking on any target machines.

Use the Agent window, as described in Enabling Networking and Assigning the Classic Agent Name
and Port.

5. Enable networking on the host machine.
Use the Runtime Options dialog box. Details may vary, depending on your configuration.
6. Gather the information that your test scripts need when making explicit connections.

For example, you can edit the agent names into a list definition and have your test plan pass the list
variable name as an argument for test cases controlled by that plan. The test cases then pass each
agent name to a Connect or SetUpMachine function and that function makes the explicit host-to-
agent connection.

Configuration details are specific to the different protocols and operating systems you are using. In general,
set up your Agents and make all adjustments to the partner . ini file or environment variables before
enabling networking on the host machine.

Enabling Networking on a Remote Host

Once the protocol has been picked for any PC agents and the port settings are consistent, you can enable
networking on the host.

Do this by choosing Options > Runtime and setting the port number and/or agent name. You can skip this
step if you do not have to change the default port number and you are not specifying an agent name for a
single-remote-application configuration.

Testing in Your Environment with the Open Agent | 179

Configuring Open Agent Port Numbers

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the agent. Then,
the information service forwards communication to the port that the agent uses. However, if you have a port
number conflict or an issue with a firewall, you must configure the port number for that machine or for the
information service.

The default port of the information service is 22901. When you can use the default port, you can type
hostname without the port number for ease of use. If you do specify a port number, ensure that it matches
the value for the default port of the information service or one of the additional information service ports.
Otherwise, communication will fail.

After changing the port number, restart the Open Agent, Silk Test Classic, Silk Test Recorder, and the
application that you want to test.

Running Test Cases in Parallel

A concurrent, or multithreaded, script is one in which multiple statements can execute in parallel.
Concurrency allows you to more effectively test distributed systems, by permitting multiple client
applications to submit requests to a server simultaneously.

The 4Test language fully supports the development of concurrent scripts which enables a script to:

» Create and coordinate multiple concurrent threads.

* Protect access to variables, which are global to all threads.
« Synchronize threads with semaphores.

« Protect critical sections of code for atomic operations.

« Recover from errors in the event of script deadlock.

Concurrency

For Silk Test Classic, concurrent processing means that Agents on a specified set of machines drive the
associated applications simultaneously. To accomplish this, the host machine interleaves execution of the
sets of code assigned to each machine. This means that when you are executing identical tests on several
machines, each machine can be in the process of executing the same operation. For example, select the
Edit.FindChange menu item.

At the end of a set of concurrent operations, you will frequently want to synchronize the machines so that
you know that all are ready and waiting before you submit the next operation. You can do this easily with
4Test.

There are several reasons for executing test cases concurrently:

« You want to save testing time by running your functional tests for all the different platforms at the same
time and by logging the results centrally, on the host machine.

* You are testing cross-network operations.

* You need to place a multi-user load on the server.

* You are testing the application’s handling of concurrent access to the same database record on the
server.

To accomplish testing concurrent database accesses, you simply set all the machines to be ready to make
the access and then you synchronize. When all the machines are ready, you execute the operation that
commits the access operation—for example, clicking OK. Consider the following example:
// [A] Execute 6 operations on all machines concurrently
for each sMachine in IsMachine

spawn

SixOpsFunction (sMachine)

rendezvous // Synchronize

180 | Testing in Your Environment with the Open Agent

// [B] Do one operation on each machine
for each sMachine in IsMachine

spawn
[sMachine]MessageBox.OK.Click () // One operation
rendezvous // Synchronize

In code fragment [A], the six operations defined by the function SixOpsFunction are executed
simultaneously on all machines in a previously defined list of Agent names. After the parallel operation, the
script waits for all the machines to complete; on completion, they will present a message box, unless the
application fails. In code fragment [B], the message box is dismissed. By putting the message dismissal
operation into its own parallel statement block instead of adding it to the SixOpsFunction, you are able
to synchronize and all machines click at almost the same instant.

In order to specify that a set of machines should execute concurrently, you use a 4Test command that
starts concurrent threads. In the fragments above, the spawn statement starts a thread for each machine.

Global Variables

Suppose the code for each machine is counting instances of some event. You want a single count for the
whole test and so each machine adds its count to a global variable. When you are executing the code for
all your machines in parallel, two instances of the statement iGlobal = iGlobal + iCount could be executing
in parallel. Since the instructions that implement this statement would then be interleaved, you could get
erroneous results. To prevent this problem, you can declare a variable shareable. When you do so, you can
use the access statement to gain exclusive access to the shared variable for the duration of the block of
code following the access statement. Make variables shareable whenever the potential for conflict exists.

Recovering Multiple Tests
There are three major categories of operations that an Agent executes on a target machine:

» Setup operations that bring the application to the state from which the next test will start.

« Testing operations that exercise a portion of the application and verify that it executed correctly.

« Cleanup operations that handle the normal completion of a test plus the case where the test failed and
the application is left in an indeterminate state. In either case, the cleanup operations return the
application to a known base state.

When there are multiple machines being tested and more than one application, the Agent on each machine
must execute the correct operations to establish the appropriate state, regardless of the current state of the
application.

Remote Recording

Once you establish a connection to a target machine, any action you initiate on the host machine, which is
the machine running Silk Test Classic, is executed on the target machine.

With the Classic Agent, one Agent process can run locally on the host machine, but in a networked
environment, the host machine can connect to any number of remote Agents simultaneously or
sequentially. You can record and replay tests remotely using the Classic Agent. If you initiate a Record/
Testcase command on the host machine, you record the interactions of the user manipulating the
application under test on the target machine. In order to use the Record menu’s remote recording
operations, you must place the target machine’s name into the Runtime Options dialog box. Choose
Options > Runtime.

With the Open Agent, one Agent process can run locally on the host machine. In a networked environment,
any number of Agents can replay tests on remote machines. However, you can record only on a local
machine.

Testing in Your Environment with the Open Agent | 181

Threads and Concurrent Programming

Silk Test Classic can run test cases in parallel on more than one machine. To run test cases in parallel, you
can use parallel threads within main() or in a function called by main(). If you attempt to run test cases in
parallel on the same machine, you will generate a runtime error.

A more elegant alternative to parallel threads is to use a multitestcase function, which provides a robust
multi-machine recovery system. For additional information on multitestcase code templates, see Using the
Client/Server Template and Using the Parallel Template.

In the 4Test environment, a thread is a mechanism for interleaving the execution of blocks of client code
assigned to different Agents so that one script can drive multiple client applications simultaneously. A
thread is part of the script that starts it, not a separate script. Each thread has its own call stack and data
stack. However, all the threads that a script spawns share access to the same global variables, function
arguments, and data types. A file that one thread opens is accessible to any thread in that script.

While the creation of a thread carries no requirement that you use it to submit operations to a client
application, the typical reason for creating a multithread script is so that each thread can drive test
functions for one client, which allows multiple client application operations to execute in parallel.

When a script connects to a machine, any thread in that script is also connected to the machine. Therefore,
you must direct the testing operations in a thread to a particular Agent machine. Threads interleave at the
machine instruction level; therefore, no single 4Test statement is atomic with respect to a statement in
another thread.

Driving Multiple Machines

When you want to run tests on multiple machines simultaneously, you connect to all the machines and then
you direct specific test operations to particular machines. This enables you to drive different applications
concurrently. For example, you can test the intercommunication capabilities of two different applications or
you can drive both a client application and its server.

To do this, at the beginning of a test script you issue for each machine an explicit connection command.
This can be either Connect(agent_name) or SetMachine(agent_name). This connection lasts for the
duration of the script unless you issue a Disconnect(agent_name) command. In the body of the script
you can specify that a particular portion of code is to be executed on a particular machine. The
SetMachine(agent_name) command specifies that the following statements are directed to that Agent.
You can specify that just one statement is directed to a particular Agent by using the bracket form of the
machine handle operator. For example [""Client_A"]SYS_SetDir ('c:\mydir').

Since 4Test allows you to pass variables to these functions, you can write a block of code that sends the
same operations to a particular set of target machines and you can pass the SetMachine function in that
block of code a variable initialized from a list that specifies the machines in that set. Thus, specifying which
machines receive which operations is very simple.

Protecting Access to Global Variables

When a new thread is spawned, 4Test creates a new copy of all local variables and function arguments for
it to use. However, all threads have equal access to global variables. To avoid a situation in which multiple
threads modify a variable simultaneously, you must declare the variable as shareable. A shareable variable
is available to only one thread at a time.

Instances where threads modify variables simultaneously generate unpredictable results. Errors of this kind
are difficult to detect. Make variables shareable wherever the potential for conflict exists.

A declaration for a shareable variable has the following form:
[scope] share data-type name [= expr] {, name [= expr]}

* scope can be either public or private. If omitted, the default is public.

182 | Testing in Your Environment with the Open Agent

» data-type is a standard or user-defined data type.

* name is the identifier that refers to the shareable variable.

e expris an expression that evaluates to the initial value you want to give the variable. The value must
have the same type you gave the variable. If you try to use a variable before its value is set, 4Test raises
an exception.

At any point in the execution of a script, a shared variable can only be accessed from within the block of

code that has explicitly been granted access to it. You request access to shareable variables by using the

access statement.

An access statement has the following form:

access namel, name2,
statement

where namel, name2, ... is a list of identifiers of optional length, each of which refers to a shareable
variable and statement is the statement to be executed when access to the variables can be granted.

If no other thread currently has access to any of the shareable variables listed, 4Test executes the specified
statement. Otherwise, 4Test blocks the thread where the access statement occurs until access can be
granted to all the shareable variables listed. At that point, 4Test blocks competing threads and executes the
blocked thread.

Example

share INTEGER iTestNum = O
public share STRING asWeekDay [7]
share ANYTYPE aWhoKnows

void IncrementTestNum ()
access i1TestNum
iTestNum = iTestNum + 1

Synchronizing Threads with Semaphores

Use semaphores to mutually exclude competing threads or control access to a resource. A semaphore is a
built-in 4Test data type that can only be assigned a value once. The value must be an integer greater than
zero. Once it is set, your code can get the semaphore's value, but cannot set it.

Example

The following code example shows legal and illegal manipulations of a variable of type
SEMAPHORE:

SEMAPHORE semA = 10 // Legal

semA = 20 // l1llegal -

existing semaphore
// cannot be
reinitialized

if (semA == [SEMAPHORE]2)... // Legal - note the
typecast

Print ('SemA has {semA} resources left.") // Legal

SEMAPHORE semB = 0O // l1llegal - must be

greater than O

To compare an integer to a semaphore variable, you must typecast from integer to semaphore using
[SEMAPHORE].

ﬁ Note: You cannot cast a semaphore to an integer.

To use a semaphore, you first declare and initialize a variable of type SEMAPHORE. Thereafter, 4Test
controls the value of the semaphore variable. You can acquire the semaphore if it has a value greater than

Testing in Your Environment with the Open Agent | 183

zero. When you have completed your semaphore-protected work, you release the semaphore. The
Acquire function decrements the value of the semaphore by one and the Release function increments it
by one. Thus, if you initialize the semaphore to 5, five threads can simultaneously execute semaphore-
protected operations while a sixth thread has to wait until one of the five invokes the Release function for
that semaphore.

The Acqui re function either blocks the calling thread because the specified semaphore is zero, or
"acquires" the semaphore by decrementing its value by one. Release checks for any threads blocked by
the specified semaphore and unblocks the first blocked thread in the list. If no thread is blocked, Release
"releases" the semaphore by incrementing its value by one so that the next invocation of Acquire
succeeds, which means it does not block.

A call to Acquire has the following form:

void Acquire(SEMAPHORE semA)
Where semA s the semaphore variable to acquire.

A call to Release has the following form:
void Release(SEMAPHORE semA)

Where semA s the semaphore variable to release.

If more than one thread was suspended by a call to Acquire, the threads are released in the order in
which they were suspended.

A semaphore that is assigned an initial value of 1 is called a binary semaphore, because it can only take
on the values 0 or 1. A semaphore that is assigned an initial value of greater than one is called a counting
semaphore because it is used to count a number of protected resources.

Example: Application only supports three simultaneous users

Suppose you are running a distributed test on eight machines using eight 4Test threads.
Assume that the application you are testing accesses a database, but can support only
three simultaneous users. The following code uses a semaphore to handle this
situation:

SEMAPHORE DBUsers = 3

Aééuire (DBUsers)
access database
Release (DBUsers)

The declaration of the semaphore is global; each thread contains the code to acquire
and release the semaphore. The initial value of three ensures that no more than three
threads will ever be executing the database access code simultaneously.

Testing In Parallel but Not Synchronously

This topic illustrates a method for running test functions in parallel on multiple clients, but with different
tests running on each client. This provides a realistic multi-user load as opposed to a load in which all
clients perform the same operations at roughly the same time.

Example

This example suggests a method by which each client, operating in a separate thread,
executes a test that is assigned by a random number. The RandSeed function is called
first so that the random number sequence is the same for each iteration of this multi-
user test scenario. This enables you to subsequently repeat the test with the same
conditions.

184 | Testing in Your Environment with the Open Agent

The example reads a list of client machines from a file, clients. txt, and receives the
test count as in input argument. These external variables make the example scalable as
to the number of machines being tested and the number of tests to be run on each. The
number of different testcases is twelve in this example, but could be changed by
modifying the SelectTest function and adding further test functions. For each
machine in the client machine list, the example spawns a thread in which the specified
client executes a randomly selected test, repeating for the specified number of tests.

i Note: You can execute this test as it is written because it sets
its own application states. However, when you use multi-
application support, this is automatic. And if you want to use
this approach to drive different applications or to initialize a
server before starting the testing, you must add multi-
application support.

testcase ParallelRandomLoadTest (INTEGER iTestCount)
LIST OF STRING IsClients
RandSeed (3)

// list of client names
ListRead (IsClients, "clients.txt'")

STRING sClientName

for each sClientName in IsClients

spawn
// Connect to client, which becomes current machine
Connect (sClientName)
SetAppState (“‘MyAppState'™) // Initialize

application

TestClient (iTestCount)
Disconnect (sClientName)

rendezvous

TestClient (INTEGER iTestCount)
for i = 1 to iTestCount
SelectTest ()

SelectTest ()

INTEGER i = RandInt (1, 12)

// This syntax invokes Testl to Testl2, based on i
eC'Test{i}") O

// Define the actual test functions
Testl O
// Do the test .

Test2 O

// Do the test .
Test12 ()

// Do the test .

Statement Types
This section describes the statement types that are available for managing distributed tests.
Parallel Processing Statements

You create and manage multiple threads using combinations of the 4Test statements parallel, spawn,
rendezvous, and critical.

Testing in Your Environment with the Open Agent | 185

In 4Test, all running threads, which are those not blocked, have the same priority with respect to one
another. 4Test executes one instruction for a thread, then passes control to the next thread. The first thread
called is the first run, and so on.

All threads run to completion unless they are deadlocked. 4Test detects script deadlock and raises an
exception.

i Note: The 4Test exit statement terminates all threads immediately when it is executed by one thread.

Using Parallel Statements

A parallel statement spawns a statement for each machine specified and blocks the calling thread until the
threads it spawns have all completed. It condenses the actions of spawn and rendezvous and can make
code more readable.

The parallel statement executes a single statement for each thread. Thus if you want to run complete tests
in parallel threads, use the invocation of a test function, which may execute many statements, with the
parallel statement, or use a block of statements with spawn and rendezvous.

To use the parallel statement, you must specify the machines for which threads are to be started. You can
follow the parallel keyword with a list of statements, each of which specifies a different Agent name. For
example:

parallel

DoSomething (“'Clientl™)
DoSomething (*'Client2')

The DoSomething function then typically issues a SetMachine(sMachine) call to direct its machine
operations to the proper Agent.

Using a Spawn Statement

A spawn statement begins execution of the specified statement or block of statements in a new thread.
Since the purpose of spawn is to initiate concurrent test operations on multiple machines, the structure of a
block of spawned code is typically:

« A SetMachine command, which directs subsequent machine operations to the specified agent.
« A set of machine operations to drive the application.
« A verification of the results of the machine operations.

You can use spawn to start a single thread for one machine, and then use successive spawn statements to
start threads for other machines being tested. Silk Test Classic scans for all spawn statements preceding a
rendezvous statement and starts all the threads at the same time. However, the typical use of spawn is in a
loop, like the following:
for each sMachine in IsMachine
spawn // start thread for each sMachine
SetMachine (sMachine)
DoSomething)
rendezvous

The preceding example achieves the same result when written as follows:

for each sMachine in IsMachine
spawn
[sMachine]DoSomething ()
rendezvous

To use a spawn statement in tests that use TrueLog, use the OPT_PAUSE_TRUELOG option to disable
TrueLog. Otherwise, issuing a spawn statement when TrueLog is enabled causes Silk Test Classic to hang
or crash.

186 | Testing in Your Environment with the Open Agent

Using Templates

This section describes how you can use templates for distributed testing.

Using the Parallel Template

This template is stored as paral lel .t in the Examples subdirectory of the Silk Test Classic installation
directory. The code tests a single application that runs on an externally defined set of machines.

This multi-test-case template accepts a list of machine names. The application whose main window is
MyMainWin is invoked on each machine. The same operations are then performed on each machine in
parallel. If any test case fails, the multi-test-case will be marked as having failed; however, a failed test case
within a thread does not abort the thread.

You can use this template by doing three edits:

* Include the file that contains your window declarations.

e Substitute the MainWin name of your application, which is defined in your MainWin window declaration,
with the Mainwin name of the template, MyMainWin.

« Insert the calls to one or more tests, or to the main function, where indicated.

Use myframe.inc.

use "myframe.inc"
multitestcase MyParallelTest (LIST of STRING IsMachines)

STRING sMachine

// Connect to all machines in parallel:
for each sMachine in IsMachines
spawn
SetUpMachine (sMachine, MyMainWin)
rendezvous

// Set app state of each machine, invoking If necessary:
SetMultiAppStates()

// Run testcases in parallel
for each sMachine in IsMachines
spawn
SetMachine (sMachine)
// Call testcase(s) or call main(Q)
rendezvous

Client/Server Template

This template is stored as multi_cs.t in the Examples subdirectory of the Silk Test Classic installation
directory. This test case invokes the server application and any number of client applications, based on the
list of machines passed to it, and runs the same function on all clients concurrently, after which the server
will perform end-of-session processing.

You can use this template by doing the following edits:

* Include the files that contain your window declarations for both the client application and the server
application.

» Substitute the MainWin name of your server application, which is defined in your MainWin window
declaration, with the MainWin name of the template, MyServerApp.

« Substitute the MainWin name of your client application, which is defined in your MainWin window
declaration, with the Mainwin name of the template, MyCl ientApp.

* Replace the call to PerformClientActivity with a function that you have written to perform client
operations and tests.

Testing in Your Environment with the Open Agent | 187

* Replace the call to DoServerAdministration with a function that you have written to perform server
administrative processing and/or cleanup.

use "'myframe.inc"
multitestcase MyClientServerTest (STRING sServer, LIST of STRING IsClients)
STRING sClient

// Connect to server machine:
SetUpMachine (sServer, MyServerApp)

// Connect to all client machines in parallel:
for each sClient in IsClients
spawn
SetUpMachine (sClient, MyClientApp)
rendezvous

// Set app state of each machine, invoking if necessary:
SetMultiAppStates()

// Run functions in parallel on each client:
for each sClient in IsClients
spawn
// Make client do some work:
[sClient] PerformClientActivity()
rendezvous

// Perform end-of-session processing on server application:
[sServer] DoServerAdministration()

Testing Multiple Machines

This section describes strategies for testing multiple machines.

Running Tests on One Remote Target

Use one of the following methods to specify that you want a script, suite, or test plan to run on a remote
target instead of the host:

« Enter the name of the target Agent in the Runtime Options dialog box of the host. You also need to
select a network protocol in the dialog box. If you have been testing a script by running Silk Test Classic
and the Agent on the same system, you can then test the script on a remote system without editing your
script by using this method.

« Specify the target Agent’'s name by enclosing it within brackets before the script or suite name. For
example [Ohio]myscript.t.

* You can select (none) in the Runtime Options dialog box of the host and then specify the name of the
target Agent in a call to the Connect function in your script. For example, to connect to a machine
named Ontario:
testcase MyTestcase ()

Connect ('Ontario’™)

// Call fTirst testcase
DoTestl)

// Call second testcase

DoTest2 (O
Disconnect ('Ontario™

When you are driving only one remote target, there is no need to specify the current machine; all test case
code is automatically directed to the only connected machine.

When you use the multi-application support functions, you do not have to make explicit calls to Connect;
the support functions issue these calls for you

188 | Testing in Your Environment with the Open Agent

Running Tests Serially on Multiple Targets

To run your scripts or suites serially on multiple target machines, specify the name of the target Agent
within the suite file. For example, the following code runs a suite of three scripts serially on two target
machines named Ohio and Montana:

[Ohio] scriptl.t

[Ohio] script2.t

[Ohio] script3.t

[Montana] scriptl.t

[Montana] script2.t

[Montana] script3.t

Any spaces between the name of the target Agent and the script name are not significant.

Alternatively, to run test cases serially on multiple target machines, switch among the target machines from
within the script, by using the Connect and Disconnect functions of 4Test. For example, the following
script contains a function named DoSomeTesting that is called once for each machine in a list of target
machines, with the name of the target Agent as an argument:
testcase TestSerially O
STRING sMachine
// Define list of agent names
LIST OF STRING IsMachines = {...}
""Ohio"
"Montana"

// Invoke test function for each name in list
for each sMachine in IsMachines
DoSomeTesting (sMachine)

// Define the test function
DoSomeTesting (STRING sMachine)
Connect (sMachine)
Print ('Target machine: {sMachine}')
// do some testing...
Disconnect (sMachine)

You will rarely need to run one test serially on multiple machines. Consider this example a step on the way
to understanding parallel testing.

Specifying the Target Machine Driven By a Thread

While the typical purpose for a thread is to direct test operations to a particular test machine, you have total
flexibility as to which machine is being driven by a particular thread at any point in time. For example, in the
code below, the spawn statement starts a thread for each machine in a predefined list of test machines.
The SetMachine command directs the code in that thread to the Agent on the specified machine. But the
["server™] machine handle operator directs the code in the doThis function to the machine named
server. The code following the doThis invocation continues to be sent to the sMachine specified in the
SetMachine command.

for each smachine in IsMachine
spawn // start thread for each sMachine
SetMachine (sMachine)
// ... code executed on sMachine
["'server"]doThis() // code executed on "server"
// ...continue with code for sMachine
rendezvous

While the machine handle operator takes only a machine handle, 4Test implicitly casts the string form of
the Agent machine’s name as a machine handle and so in the preceding example the machine name is
effectively the same as a machine handle.

Testing in Your Environment with the Open Agent | 189

Specifying the Target Machine For a Single Command

To specify the target machine for a single command, use the machine handle operator on the command.
For example, to execute the SYS_SetDir function on the target machine specified by the sMachinel
variable, type sMachinel->SYS SetDir (sDir).

To allow you to conveniently perform system related functions (SYS_) on the host, you can preface the
function call with the machine handle operator, specifying the globally defined constant hHost as the
argument to the operator. For example, to set the working directory on the host machine to c:\mydir,
type hHost->SYS_SetDir ('c:\mydir'™).

You can use this syntax with a method call, for example sMachine->
TextEditor.Search.Find.Pick, but when invoking a method, this form of the machine handle must
be the first token in the statement.

If you need to use this kind of statement, use the alternative form of the machine handle operator
described below.

You can use the SetMachine function to change target machines for an entire block of code.

The hHost constant cannot be used in simple handle compares like hMyMachineHandle== hHost. This will
never be TRUE. A better method is to use GetMachineName(hHost) and compare names. If hHost is used
as an argument, it will refer to the "(local)" host not the target host.

Example

The following example shows valid and invalid syntax:

// Valid machine handle operator use
for each sMachine in IsMachine
sMachine-> TextEditor.Search.Find.Pick

// Invalid machine handle operator use with method
if (sMachine->ProjX.DuplicateAlert_Exists())
Print ('Duplicate warning on {sMachine} recipient.™)

If you need to use this kind of statement, use the alternative form of the machine handle operator
described below.

You can use the SetMachine function to change target machines for an entire block of code.

The hHost constant cannot be used in simple handle compares, like hMyMachineHandle== hHost. This
will never be TRUE. A better method is to use GetMachineName(hHost) and compare names. If hHost is
used as an argument, it will refer to the local host, not the target host.

Reporting Distributed Results

You can view test results in each of several formats, depending on the kind of information you need from
the report. Each format sorts the results data differently, as follows:

Elapsed Sorts results for all threads and all machines in event order. This enables you to see the
time complete set of results for a time period and may give you a sense of the load on the
server during that time period or may indicate a performance problem.

Machine Sorts results for all threads running on one machine and presents the results in time-sorted
order for that machine before reporting on the next machine.

Thread Sorts results for all tests run under one thread and presents the results in time-sorted order
for that thread before reporting on the next thread.

190 | Testing in Your Environment with the Open Agent

Alternative Machine Handle Operator

An alternative syntax for the machine handle operator is the bracket form, like the following example shows.
[hMachine] Any4TestFunctionCall ()

Example

To execute the SYS_SetDir function on the target machine specified by the string
sMachineA, you do this:

[sMachineA] SYS_SetDir (sDir)

The correct form of the invalid syntax shown above is:
// Invalid machine handle operator use
if ([sMachine]ProjX.DuplicateAlert_Exists())
Print ('Duplicate warning on {sMachine} recipient.')
To execute the SYS_SetDir function on the host machine, you can do the following:

[hHost] SYS SetDir (sDir)

You can also use this form of the machine handle operator with a function that is not being used to return a
value or with a method.

Example

for each sMachine iIn IsMachine
[sMachine] FormatTest7 ()

Example

for each sMachine in IsMachine
[sMachine] TextEditor.Search.Find.Pick

Testing Clients Concurrently

In concurrent testing, Silk Test Classic executes one function on two or more clients at the same time. This
topic demonstrates one way to perform the same tests concurrently on multiple clients.

For example, suppose you want to initiate two concurrent database transactions on the same record, and
then test how well the server performs. To accomplish this, you need to change the script presented in
Testing Clients Plus Server Serially to look like this:

testcase TestConcurrently
Connect (“'server'™)
Connect (‘clientl™)
Connect (‘client2™)

DoSomeSetup (‘'server™) // initialize server first

Disconnect (‘'server'™) // testcase is thru with server

spawn // start thread for clientl
UpdateDatabase (‘‘clientl™)

Spawn // start thread for client2

UpdateDatabase (‘client2'™)
rendezvous // synchronize
Disconnect (“'clientl™)
Disconnect (“‘client2™)

DoSomeSetup (STRING sMachine) // define server setup

Testing in Your Environment with the Open Agent | 191

HTIMER hTimer

hTimer = TimerCreate ()

TimerStart (hTimer)

SetMachine (sMachine)

// code to do server setup goes here

TimerStop (hTimer)

Print ("Time on {sMachine} is: {TimerStr (hTimer)}'")
TimerDestroy (hTimer)

UpdateDatabase (STRING sMachine) // define update test
HTIMER hTimer
hTimer = TimerCreate ()
TimerStart (hTimer)
SetMachine (sMachine)
// code to update database goes here
TimerStop (hTimer)
Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
TimerDestroy (hTimer)

An alternative but equivalent approach is to use the parallel statement in place of the spawn and
rendezvous:

testcase TestConcurrently2 ()
Connect (“'server"”
Connect ('clientl™)
Connect ('client2™)

DoSomeSetup (“'server'™)
Disconnect (‘'server'™)

parallel // automatic synchronization
UpdateDatabase (“'clientl'™) // thread for clientl
UpdateDatabase (“'client2™) // thread for client2

Disconnect ('clientl™)
Disconnect (“'client2™)

DoSomeSetup (STRING sMachine)
HTIMER hTimer
hTimer = TimerCreate ()
TimerStart (hTimer)
SetMachine (sMachine)
// code to do server setup goes here
TimerStop (hTimer)
Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
TimerDestroy (hTimer)

UpdateDatabase (STRING sMachine)
HTIMER hTimer
hTimer = TimerCreate ()
TimerStart (hTimer)
SetMachine (sMachine)
// code to update database goes here
TimerStop (hTimer)
Print ("Time on {sMachine} is: {TimerStr (hTimer)}™")
TimerDestroy (hTimer)

If you use variables to specify different database records for each client’s database transactions, you can
use the above techniques to guarantee parallel execution without concurrent database accesses.

Testing Clients Plus Server Serially

In a client/server application, the server and its clients typically run on different target machines. This topic
explains how to build tests that test the server and its clients in a serial fashion. In this scenario, the

192 | Testing in Your Environment with the Open Agent

SetMachine function switches among the target machines on which the server and its clients are running.
The following script fragment tests a client/server database application in the following steps:

1.
2.

Connect to three target machines, which are server, clientl, and client2.
Call the DoSomeSetup function, which calls SetMachine to make "server" the current target machine,
and then perform some setup.

Call the UpdateDatabase function once for each client machine. The function sets the target machine
to the specified client, then does a database update. It creates a timer to time the operation on this
client.

Disconnect from all target machines.

Example

This example shows how you direct sets of test case statements to particular machines.
If you were doing functional testing of one application, you might want to drive the
server first and then the application. However, this example is not realistic because it
does not show the support necessary to bring the different machines to their different
application states and to recover from a failure on any machine.

testcase TestClient Server ()
Connect (“'server™)
Connect (‘clientl™)
Connect ('client2™)
DoSomeSetup (‘'server'™)
UpdateDatabase (*'clientl™)
UpdateDatabase (‘‘client2'™)
DisconnectAll O

DoSomeSetup (STRING sMachine)
HTIMER hTimer
hTimer = TimerCreate ()
TimerStart (hTimer)
SetMachine (sMachine)
// code to do server setup goes here
TimerStop (hTimer)
Print (""Time on {sMachine} is: {TimerStr (hTimer)}™")
TimerDestroy (hTimer)

UpdateDatabase (STRING sMachine)
HTIMER hTimer
hTimer = TimerCreate ()
TimerStart (hTimer)
SetMachine (sMachine)
// code to update database goes here
TimerStop (hTimer)
Print ("Time on {sMachine} is: {TimerStr (hTimer)}"™)
TimerDestroy (hTimer)

Testing Databases

You may be testing a distributed application that accesses a database or you may be directly testing
database software. In either of these cases, you might want to manipulate the database directly from Silk
Test Classic for several purposes:

To exercise certain database functions that are present in a GUI that runs directly on the server
machine and is not a client application. For example, administrative functions used for setting up the
database.

To set the server database to a known state.

To verify an application’s database results without using the application.

Testing in Your Environment with the Open Agent | 193

« To read information from the database to use as input to a test case.

Silk Test Classic can drive a server application’s GUI by means of the Silk Test Classic Agent exactly as it
drives a client application. In addition, the database tester provides direct access, using SQL, from a test
script to any database supported by ODBC drivers. These database functions enable you to read and write
database records without using the client application. Thus, you can verify client test results without
assuming the ability of the client to do that verification.

In addition to using the SQL functions in your tests, you can also use these functions to help manage your
testing process as follows:

« Maintain a bug database, updating it with the results of your testing.
« Manage your test data in a database instead of in a text file.

The database functions, among other things, allow you to connect to a database, submit an SQL
statement, read data from the selected record(s) if the SQL statement was SELECT, and subsequently
disconnect from the database. About a dozen of these functions allow you to access your database’s
catalog tables.

The functions that support these operations begin with the letters "DB_".

Testing Multiple Applications

This section describes testing multiple applications.

Overview of Multi-Application Testing

Silk Test Classic can easily drive multiple different applications simultaneously. Thus you can bring a
server’'s database to a known state at the same time you are bringing multiple instances of the client
application to their base state window. Likewise, you can drive a server database with several different
client applications at the same time.

The essential difference between single-application and multi-application testing is clearly the difference
between "one" and "many." When the following entities in a test case are greater than one, they need
special consideration and support functions found in Silk Test Classic:

e Agent names.
« Application main window names.
» Sets of application states associated with each main window name.

Multi-machine testing requires that you map both the name of an application and all application states for
that application to the machine on which it will be tested. This makes it possible for you to direct test
operations to the right machines, and it enables Silk Test Classic to automatically set the machines to the
proper application state before a test is run, and to clean up after a test has failed.

Test Case Structure in a Multi-Application Environment

This topic describes Silk Test Classic components that enable concurrent testing of more than one
application. For example, there are functions that make it possible to drive both the client application and
the client’s server from Silk Test Classic, to set each to its base state, and to recover each if it fails.
Compare with the test case structure of a single-application environment.

The multi-application environment uses the same defaults. inc file as does the single-application
environment. However, when you define a function as a multitestcase, 4Test uses functions defined in the
cs. inc file to invoke functions in defaults. inc. Thus, it can pass the appropriate application states or
base states to these functions, depending on the requirements of a particular test machine.

Instead of preceding the test case function declaration with the keyword testcase, you must use the
keyword multitestcase to give your test case the multi-application recovery system.

194 | Testing in Your Environment with the Open Agent

cs. Inc is an automatically included file that contains functions used only in the multi-application
environment. For additional information about this file and the functions that it contains, see cs.inc. You
may need to include other files also.

Invoking a Test Case in a Multi-Application Environment

The keyword for a test case declaration is different when you are performing distributed testing. In the
single-application environment, you invoke a test case with no arguments or you may specify an application
state function. However, in a multi-application environment, instead of preceding the test case function
declaration with the keyword testcase, you must use the keyword multitestcase to give your test case the
multi-application recovery system.

Declaring a function as a multitestcase gives that function the ability to invoke functions declared with the
keyword testcase. A multitestcase thus can be viewed as a wrapper for stand-alone test cases; it provides
a means of assigning tests to particular machines and lets you invoke previously written test cases from
the multi-test case file by simply adding a use statement to the file to include the test case definitions.

When you are using multi-application environment support, you can pass the test case the names of the
machines to be tested during that execution of the test case, but not the application state function. In a
multi-application environment, one test case can use multiple application states; you specify these in the
required code at the beginning of the test case.

Test Case Structure in a Single-Application Environment

The code that implements a test case for a single application is similar to that of a test case for applications
on multiple separate machines in a client/server environment.

This topic summarizes the structure of the single-application version and some Silk Test Classic
components used to implement it. You can compare the structure with the support code needed for running
multiple applications.

The include file defaults. inc implements the recovery system for a single application test. For
information about the DefaulBaseState function and the functions that are contained within
defaults. inc, see defaults.inc.

Your test case needs certain definitions that other test cases in your testing program will also need. These
include:

* Window declarations
* Application states
 Utility functions

Placing these general purpose definitions in an include file, or several smaller files, saves repetitive coding.
When you use Silk Test Classic to record window declarations and application states, Silk Test Classic
names the generated file frame. inc.

Window Declarations for Multi-Application Testing

In the client/server environment, unlike the stand-alone environment, you can test two or more different
applications at the same time. For example, you could run the functional tests for application "A" on
multiple machines at the same time that you are running the functional tests for application "B" on the same
machines. The include files that you must generate may therefore have to take into consideration different
platforms and/or different applications.

When you are driving two or more applications from Silk Test Classic, you need separate window
declarations for each different application. You must be certain that your main window declaration for each
separate application is unigue. If the same application is running on different platforms concurrently, you
may need to use GUI specifiers to specialize the window declarations. 4Test will identify a window
declaration statement, that is preceded by a GUI specifier, as being true only on the specified GUI.

Testing in Your Environment with the Open Agent | 195

In addition, you may find that the operations needed to establish a particular application state are slightly
different between platforms. In this case, you just record application states for each platform and give them
names that identify the state and the GUI for your convenience.

Recording window declarations on a client machine that is not the host machine, requires that you operate
both Silk Test Classic on the host machine and the application on its machine at the same time. You record
window declarations and application states in much the same way for a remote machine as for an
application running in the Silk Test Classic host machine. The primary difference is that you start the
recording operation by selecting Test Frame in Silk Test Classic on the host system and you do the actual
recording of application operations on the remote system.

If you have two or more applications being tested in parallel, you need to have two or more sets of window
declarations. You must have window declarations, and application states, if needed, for each different
application. When recording window declarations and application states on a remote machine, you will find
it convenient to have the machine physically near to your host system.

Remote Recording

This functionality is supported only if you are using the Classic Agent.

Concurrency Test Example Code

The concurrency test example is designed to allow any number of test machines to attempt to access a
server database at the same time. This tests for problems with concurrency, such as deadlock or out-of-
sequence writes.

This example uses only one application. However, it is coded in the style required by the multi-application
environment because you will probably want to use an Agent to start and initialize the server during this
type of test. There is no requirement in the client/server environment that you use the single-application
style of test case just because you are driving only one application. For consistency of coding style, you will
probably find it convenient to always use the multi-application files and functions.

For detailed information on the code example, see Concurrency Test Explained.

const ACCEPT_TIMEOUT = 15

multitestcase MyTest (LIST OF STRING IsMachine)
STRING sMachine
INTEGER iSucceed
STRING sError

for each sMachine in IsMachine
SetUpMachine (sMachine, Personnel)
SetMultiAppStates ()

/*** HAVE EACH MACHINE EDIT THE SAME EMPLOYEE ***/
for each sMachine in IsMachine
spawn

/*** SET THE CURRENT MACHINE FOR THIS THREAD ***/
SetMachine (sMachine)

/*** EDIT THE EMPLOYEE RECORD 'John Doe' ***/
Personnel .EmployeeList.Select (*'John Doe')
Personnel .Employee.Edit.Pick ()

/*** CHANGE THE SALARY TO A RANDOM NUMBER BETWEEN

50000 AND 70000 ***/

Employee.Salary.SetText ([STRING] Randint (50000, 70000))
rendezvous

/*** ATTEMPT TO HAVE EACH MACHINE SAVE THE EMPLOYEE RECORD ***/

for each sMachine iIn IsMachine
Spawn

196 | Testing in Your Environment with the Open Agent

/*** SET THE CURRENT MACHINE FOR THIS THREAD ***/
SetMachine (sMachine)

/*** SELECT THE OK BUTTON ***/
Employee.OK.Click ()

/*** CHECK IF THERE IS A MESSAGE BOX ***/
if (MessageBox.Exists (ACCEPT_TIMEOUT))
SetMachineData (NULL, "sMessage',
MessageBox.Message .GetText ())
MessageBox.OK.Click O
Employee.Cancel .Click O
else if (Employee.Exists ())
AppError (“Employee dialog not
dismissed after {ACCEPT_TIMEOUT} seconds'™)
rendezvous

/*** VERIFY THE OF NUMBER OF MACHINES WHICH SUCCEEDED ***/
iSucceed = 0
for each sMachine in IsMachine
sError = GetMachineData (sMachine, ''sMessage')
if (sMessage == NULL)
iSucceed += 1
else
Print ('Machine {sMachine} got message "{sMessage}"')

Verify (iSucceed, 1, "number of machines that succeeded')

Concurrency Test Explained

Before you record and/or code your concurrency test, you record window declarations that describe the
elements of the application’s GUI. These are placed in a file named frame . inc, which is automatically
included with your test case when you compile. Use Silk Test Classic to generate this file because Silk Test
Classic does most of the work.

The following code sample gives just those window declarations that are used in the Concurrency Test
Example:

window MainWin Personnel

tag "'Personnel™
PopupList EmployeelList
Menu Employee

tag "Employee"
Menultem Edit

tag "Edit"
// ...

window DialogBox Employee
tag "Employee"
parent Personnel
TextField Salary

tag "Salary"
PushButton OK
tag ""OK™
// ...

The following explanation of the Concurrency Test Example gives the testing paradigm for a simple
concurrency test and provides explanations of many of the code constructs. This should enable you to read
the example without referring to the Help. There you will find more detailed explanations of these language
constructs, plus explanations of the constructs not explained here. The explanation of each piece of code
follows that code.

const ACCEPT_TIMEOUT = 15

Testing in Your Environment with the Open Agent | 197

The first line of the testcase file defines the timeout value (in seconds) to be used while waiting for a
window to display.

multitestcase MyTest (LIST OF STRING IsMachine)

The test case function declaration starts with the multitestcase keyword. It specifies a LIST OF STRING
argument that contains the machine names for the set of client machines to be tested. You can implement
and maintain this list in your test plan, by using the test plan editor. The machine names you use in this list
are the names of the Agents of your target machines.

for each sMachine in IsMachine
SetUpMachine (sMachine, Personnel)

To prepare your client machines for testing, you must connect Silk Test Classic to each Agent and, by
means of the Agent, bring up the application on each machine. In this example, all Agents are running the
same software and so all have the same MainWin declaration and therefore just one test frame file. This
means you can initialize all your machines the same way; for each machine being tested, you pass to
SetUpMachine the main window name you specified in your test frame file. The SetUpMachine function
issues a Connect call for each machine. It associates the main window name you specified (Personnel)
with each machine so that the DefaultBaseState function can subsequently retrieve it.

SetMultiAppStates ()

The SetMultiAppStates function reads the information associated with each machine to determine whether
the machine needs to be set to an application state. In this case no application state was specified (it would
have been a third argument for SetUpMachine). Therefore, SetMultiAppStates calls the DefaultBaseState
function for each machine. In this example, DefaultBaseState drives the Agent for each machine to open
the main window of the Personnel application. This application is then active on the client machine and
4Test can send test case statements to the Agent to drive application operations.

for each sMachine in IsMachine

spawn
// The code to be executed in parallel by
// all machines... (described below)
rendezvous

Because this is a concurrency test, you want all client applications to execute the test at exactly the same
time. The spawn statement starts an execution thread in which each statement in the indented code block
runs in parallel with all currently running threads. In this example, a thread is started for each machine in
the list of machines being tested. 4Test sends the statements in the indented code block to the Agents on
each machine and then waits at the rendezvous statement until all Agents report that all the code
statements have been executed.

The following is the code defined for the spawn statement:

// The code to be executed in parallel by
// all machines:

SetMachine (sMachine)

Personnel .EmployeeList.Select (*'John Doe')
Personnel .Employee.Edit.Pick ()
Employee.Salary.SetText

[STRING] RandInt (50000, 70000))

Each thread executes operations that prepare for an attempt to perform concurrent writes to the same
database record. The SetMachine function establishes the Agent that is to execute the code in this thread.
The next two statements drive the application’s user interface to select John Doe’s record from the
employee list box and then to pick the Edit option from the Employee menu. This opens the Employee
dialog box and displays John Doe’s employee record. The last thread operation sets the salary field in this
dialog box to a random number. At this point the client is prepared to attempt a write to John Doe’s
employee record. When this point has been reached by all clients, the rendezvous statement is satisfied,
and 4Test can continue with the next script statement.

for each sMachine iIn IsMachine
spawn

198 | Testing in Your Environment with the Open Agent

SetMachine (sMachine)

Employee.OK.Click ()

if (MessageBox.Exists (ACCEPT_TIMEOUT))
SetMachineData (NULL, "sMessage",
MessageBox.Message.GetText ())
MessageBox.OK.Click O
Employee.Cancel .Click

else if (Employee.Exists ())
AppError ('Employee dialog not dismissed

after {ACCEPT_TIMEOUT} seconds'™)
rendezvous

Now that all the clients are ready to write to the database, the script creates a thread for each client, in
which each attempts to save the same employee record at the same time. There is only one operation for
each Agent to execute: Employee.OK.Click, which clicks the OK button to commit the edit performed in
the previous thread.

The test expects the application to report the concurrency conflict with message boxes for all but one client
and for that client to close its dialog box within 15 seconds. The if-else construct saves the text of the
message in the error message box by means of the SetMachineData function. It then closes the message
box and the Employee window so that the recovery system will not report that it had to close windows.
This is good practice because it means fewer messages to interpret in the results file.

The "else if" section of the if-else checks to see whether the Employee window remains open, presumably
because it is held by a deadlock condition; this is a test case failure. In this case, the AppError function
places the string "***ERROR:" in front of the descriptive error message and raises an exception; all Agents
terminate their threads and the test case exits.
iSucceed = 0
for each sMachine in IsMachine
sMessage = GetMachineData (sMachine, ‘‘sMessage')
if (sMessage == NULL)
iSucceed += 1
else
Print (""Machine {sMachine} got message "{sMessage}"'")
Verify (iSucceed, 1, "number of machines that succeeded™)

The last section of code evaluates the results of the concurrency test in the event that all threads
completed. If more than one client successfully wrote to the database, the test actually failed.

GetMachineData retrieves the message box message (if any) associated with each machine. If there was
no message, iSucceed is incremented; it holds the count of "successes." The Print function writes the text
of the message box to the results file for each machine that had a message box. You can read the results
file to verify that the correct message was reported. Alternatively, you could modify the test to automatically
verify the message text.

The Verify function verifies that one and only one machine succeeded. If the comparison in the Verify
function fails, Verify raises an exception. All exceptions are listed in the results file.

Code for template.t

This fragment of an example test case shows the required code with which you start a multi-application test
case. It connects Silk Test Classic to all the machines being tested and brings each to its first screen. This
is just a template; you must tailor your code to fit your actual needs. For information on the significance of
each line of code, see Template.t Explained.
multitestcase MyTest (STRING sMachl, STRING sMach2)
SetUpMachine (sMachl, MyFirstApp, "MyFirstAppState'™)
SetUpMachine (sMach2, MySecondApp, "‘MySecondAppState'™)
SetMultiAppStates ()
spawn
SetMachine (sMachl)
// Here is placed code that drives test operations

Testing in Your Environment with the Open Agent | 199

spawn
SetMachine (sMach2)
// Here is placed code that drives test operations

rendezvous
// ll---ll

template.t Explained

The following line of code in Code for template.t is the first required line in a multi-application test case file.
It is the test case declaration.

y Note: The code does not pass an application state as in the stand-alone environment.

multitestcase MyTest (STRING sMachl, STRING sMach2)

In the multi-application environment the arguments to your test case are names of the machines to be
tested; you specify application states inside the test case. You can code the machine names arguments as
you like. For example, you can pass a file name as the only argument, and then, in the test case, read the
names of the machines from that file. Or you can define a LIST OF HMACHINE data structure in your test
plan, if you are using the test plan editor, to specify the required machines and pass the name of the list,
when you invoke the test case from the test plan. This template assumes that you are using a test plan and
that it passes the Agent names when it invokes the test case. For this example, the test plan might specify
the following:

Mytest ("Clientl"™, "Client2")

The next two code lines are the first required lines in the test case:

SetUpMachine (sMachl, MyFirstApp, "MyFirstAppState')
SetUpMachine (sMach2, My2ndApp, ‘‘My2ndAppState')

You must execute the SetUpMachine function for every client machine that will be tested. For each
SetUpMachine call, you specify the application to be tested, by passing the name of the main window,
and the state to which you want the application to be set, by passing the name of the application state if
you have defined one.

The SetUpMachine function issues a Connect call for a machine you want to test and then configures
either the base state or a specified application state.

It does this as follows:

* It associates the client application’s main window name with the specified machine so that the
DefaultBaseState function can subsequently retrieve it to set the base state.

« It associates the name of the application’s base state, if one is specified, with the specified machine so
that the SetMul tiAppStates function can subsequently retrieve it and set the application to that state
at the start of the test case.

The first argument for SetUpMachine is the machine name of one of your client machines. The second
argument is the name you supply in your main window declaration in your test frame file, frame. inc. For
this example, the frame. inc file specifies the following:

window MainWin MyFirstApp
Because this template specifies two different applications, it requires two different test frame files.

The third argument is the name you provide for your application state function in your appstate declaration
for this test. For this example, the appstate declaration is the following:

appstate MyFirstAppState () based on MyFirstBaseState

The appstate declaration could also be of the form:
appstate MyFirstBaseState ()

200 | Testing in Your Environment with the Open Agent

Although the DefaultBaseState function is designed to handle most types of GUI-based applications,
you may find that you need to define your own base state. It would be the application state that all your
tests for this application use. In this case, you would still pass this application state to SetUpMachine so
that your application would always be brought to this state at the start of each test case.

This template specifies two application states for generality. You would not use an application state if you
wanted to start from the main window each time. If you have a number of tests that require you to bring the
application to the same state, it saves test-case code to record the application state once, and pass its
name to SetUpMachine. You will probably place your application state declarations in your test frame file.

SetMultiAppStates ()

The SetMultiAppStates function must always be called, even if the test case specifies no application

state, because SetMul tiAppStates calls the DefaultBaseState function in the absence of an

appstate declaration. SetMul tiAppStates uses the information that SetUpMachine associated with

each connected machine to set potentially different application states or base states for each machine.
spawn

SetMachine (sMachl)
// Here is placed code that drives test operations

The spawn statement starts an execution thread, in which each statement in the indented code block below
it runs in parallel with all currently running threads. There is no requirement that your test case should drive
all your test machines at the same time, however, this is usually the case. The SetMachine function
directs 4Test to execute this thread’s code by means of the Agent on the specified machine. This thread
can then go on to drive a portion, or all, of the test operations for this machine.
spawn
SetMachine (sMach2)
// Here is placed code that drives test operations

rendezvous
// ll---ll

The second spawn statement starts the thread for the second machine in this template. The rendezvous
statement blocks the execution of the calling thread until all threads spawned have completed. You can use
the rendezvous statement to synchronize machines as necessary before continuing with the test case.

defaults.inc

The defaults. inc file is provided by Silk Test Classic and implements the recovery system for a single
application test. That is, it contains the Defaul tBaseState function that performs any cleanup needed
after an operation under test fails and returns the application to its base state.

You can define a base state function to replace the Defaul tBaseState function by defining an
application state without using the basedon keyword. This creates an application state that 4Test executes
instead of the Defaul tBaseState function.

The defaults. inc file contains six other functions that 4Test automatically executes unless you define
functions that replace them:

DefaultScriptEnter A null function, allows you to define a ScriptEnter function, as discussed
below.
DefaultScriptExit Logs an exception to the results file when a script exits because of an

(BOOLEAN bException) exception.

DefaultTestcaseEnter Executes the SetAppState function. If you have specified an application
state for this test case, the SetAppState function brings your test
application to that state. If you have no application state defined,
SetAppState brings the application to the base state (if necessary).

Testing in Your Environment with the Open Agent | 201

DefaultTestcaseExit Logs an exception to the results file when a test case exits because of an
(BOOLEAN bException) exception. The function then executes the SetBaseState function, which
calls a base state function that you have defined or the
Defaul tBaseState function.

DefaultTestPlanEnter A null function, allows you to define TestPlanEnter, as discussed below,
to allow logging of results.

DefaultTestPlanExit A null function, allows you to define TestPlanExit, as discussed below,
(BOOLEAN bException) to allow logging of results.

The word "Default" in each of the above function names signifies that you can define alternative functions
to replace these. If, for example, you define a function called TestcaseEnter, 4Test will invoke your function
before executing any of the code in your test case and will not invoke DefaultTestcaseEnter.

TestPlanEnter() is not called until the first test case in the plan is run. Or the first marked test case, if
you are only running marked test cases. Similarly, TestPlanExit() is called at the completion of the last
marked test case. TestPlanExit() is only called if the last marked test description contains an executable
test case, which means not a manual test case or a commented out test case specifier.

cs.inc

cs. inc is an automatically included file that contains functions used only in the multi-application
environment. The following functions provide a recovery system for managing automated testing of client/
server applications:

SetMultiAppStates Sets an application state for each connected machine, if the "AppState"
machine data lists one; if not, it calls the Defaul tBaseState function,
which sets the application to its main window.

SetMultiBaseStates Sets the application to the lowest state in the application state hierarchy for
each connected machine, if the "AppState" machine data lists an
application state. The lowest application state is one in which the appstate
declaration did not use the basedon keyword. If there is no "AppState"
information associated with this machine, SetMultiBaseStates calls the
DefaultBaseState function, which sets the application to its main
window, invoking it beforehand if necessary.

SetUpMachine Connects Silk Test Classic to an agent on the specified machine. It provides
a way to associate a main window declaration and an application state
function with a machine name. These parameters are stored as data
accessible by means of the GetMachineData function. Both of these
names (the second and third arguments to the function) are optional,
however, if you omit both arguments, you will have no recovery system.

DefaultMultiTestCaseEnter Executes at the beginning of a multi-test case. It invokes a
DisconnectAll function. The invocation of the SetAppState function is
performed by the SetMultiAppStates function because the
Defaul tTestCaseEnter function is not executed for a multi-test case.

DefaultMultiTestCaseExit Executes just before a multi-test case terminates. It logs any pending
exception, then invokes SetMul tiBaseStates and DisconnectAll.

Include File Size

The maximum size of an include file is approximately 65536 lines. If your include file is very large, split it
into two files and continue with your testing.

202 | Testing in Your Environment with the Open Agent

Troubleshooting Distributed Testing

This section provides troubleshooting information for testing on multiple machines.

Handling Limited Licenses

By default, Silk Test Classic starts up an unplanned Agent on the local workstation. If you do not want to
use the local workstation as a test machine, set the Agent Name field in the Runtime Options dialog box
to (none) instead of (local). This will free up one license for a remote Agent.

Testing Apache Flex Applications

Silk Test provides built-in support for testing Apache Flex applications. Silk Test also provides several
sample Apache Flex applications. You can access the sample applications at http://demo.borland.com/flex/
SilkTest16.0/index.html.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Before you can test your own Apache Flex application, your Apache Flex developers must perform the
following steps:

< Enabling your Apache Flex application for testing

« Creating testable Apache Flex applications

e Coding Apache Flex containers

* Implementing automation support for custom controls

To test your own Apache Flex application, follow these steps:

« Configuring security settings for your local Flash Player
* Recording a test

* Playing back a test

e Customizing Apache Flex scripts

« Testing a custom Apache Flex control

Note: Loading an Apache Flex application and initializing the Flex automation framework may take
some time depending on the machine on which you are testing and the complexity of your Apache
Flex application. Set the Window timeout value to a higher value to enable your application to fully
load.

Overview of Apache Flex Support

Silk Test Classic provides built-in support for testing Apache Flex (Flex) applications using Internet
Explorer, Mozilla Firefox, or the Standalone Flash Player, and Adobe AIR applications built with Flex 4 or
later.

Silk Test Classic also supports multiple application domains in Flex 3.x and 4.x applications, which enables
you to test sub-applications. Silk Test Classic recognizes each sub-application in the locator hierarchy tree
as an application tree with the relevant application domain context. At the root level in the locator attribute
table, Flex 4.x sub-applications use the SparkApplication class. Flex 3.x sub-applications use the
FlexApplication class.

For information on the supported versions and potential known issues, refer to the Release Notes.

Testing in Your Environment with the Open Agent | 203

http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Sample Applications

To access the Silk Test Classic sample Flex applications, go to http://demo.borland.com/flex/SilkTest16.0/
index.html.

Object Recognition

Flex applications support hierarchical object recognition and dynamic object recognition. You can create
tests for both dynamic and hierarchical object recognition in your test environment. You can use both
recognition methods within a single test case if necessary. Use the method best suited to meet your test
requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing Flex test cases that use hierarchical object recognition or dynamic object recognition without
locator keywords in an INC file are supported. You can replay these tests, but you cannot record new tests
with hierarchical object recognition or dynamic object recognition without locator keywords in an INC file.
However, you can manually create tests as needed. Then, replay the tests at your convenience. For
instance, any test cases that you recorded with Silk Test 2008 use hierarchical object recognition. You can
replay these tests in Silk Test Classic.

Supported Controls

For a complete list of the record and replay controls available for Flex testing, refer to the Flex Class
Reference in the 4Test Language section of the Help.

The Silk Test Classic Flex Automation SDK is based on the Automation API for Flex. The Silk Test Classic
Automation SDK supports the same components in the same manner that the Automation API for Flex
supports them. For instance, the typekey statement in the Flex Automation API does not support all keys.
You can use the input text statement to resolve this issue. For more information about using the Flex
Automation API, refer to the Apache Flex Release Notes.

Agent Support

When you create a Silk Test Classic Flex project, the Open Agent is assigned as the default Agent.

Configuring Security Settings for Your Local Flash
Player

Before you launch an Apache Flex application, that runs as a local application, for the first time, you must
configure security settings for your local Flash Player. You must modify the Adobe specific security settings
to enable the local application access to the file system.

To configure the security settings for your local Flash player:

1. Open the Flex Security Settings Page by clicking Flash Player Security Manager on http://
demo.borland.com/flex/SilkTest16.0/index.html.

Click Always allow.

In the Edit Locations menu, click Add Location.

Click Browse for folder and navigate to the folder where your local application is installed.
Click Confirm and then close the browser.

a s DN

Configuring Flex Applications to Run in Adobe Flash
Player

To run an Apache Flex application in Flash Player, one or both of the following must be true:

204 | Testing in Your Environment with the Open Agent

http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html

« The developer who creates the Flex application must compile the application as an EXE file. When a
user launches the application, it will open in Flash Player. Install Windows Flash Player from http://
www.adobe.com/support/flashplayer/downloads.html.

« The user must have Windows Flash Player Projector installed. When a user opens a Flex .SWF file, he
can configure it to open in Flash Player. Windows Flash Projector is not installed when Flash Player is
installed unless you install the Apache Flex developer suite. Install Windows Flash Projector from http://
www.adobe.com/support/flashplayer/downloads.html.

1. For Microsoft Windows 7 and Microsoft Windows Server 2008 R2, configure Flash Player to run as
administrator. Perform the following steps:

a) Right-click the Adobe Flash Player program shortcut or the FlashPlayer . exe file, then click
Properties.
b) In the Properties dialog box, click the Compatibility tab.
¢) Check the Run this program as an administrator check box and then click OK.
2. Start the .SWF file in Flash Player from the command prompt (cmd.exe) by typing:
"<Application_Install _Directory>\Applicati onNane.swf"
By default, the <SilkTest_Install_Directory> is located at Program Files\Silk\Silk Test.

Configuring Flex Applications for Adobe Flash Player
Security Restrictions

The security model in Adobe Flash Player 10 has changed from earlier versions. When you record tests
that use Flash Player, recording works as expected. However, when you play back tests, unexpected
results occur when high-level clicks are used in certain situations. For instance, a File Reference dialog
box cannot be opened programmatically and when you attempt to play back this scenario, the test fails
because of security restrictions.

To work around the security restrictions, you can perform a low-level click on the button that opens the
dialog box. To create a low-level click, add a parameter to the Click method.

For example, instead of using SparkButton: :Click(), use
SparkButton: :Click(MouseButton.Left). A Click() without parameters is a high-level click and
a click with parameters (such as the button) is replayed as a low-level click.

1. Record the steps that use Flash Player.

2. Navigate to the Click method and add a parameter.
For example, to open the Open File dialog box, specify:

SparkButton(*'@caption="0Open File Dialog.."").Click(MouseButton.Left)

When you play back the test, it works as expected.

Customizing Apache Flex Scripts

You can manually customize your Flex scripts. You can insert verifications using the Verification wizard.
Or, you can insert verifications manually using the Verify function on Flex object properties.

To customize Adobe Flex scripts:

1. Record a testcase for your Flex application.
2. Open the script file that you want to customize.
3. Manually type the code that you want to add.
For example, the following code adds a verification call to your script:

Desktop.Find("'//BrowserApplication™).Find(*"'//BrowserWindow')
-.Find(""//FlexApplication[@caption="explorer®]") .Find(*'//

Testing in Your Environment with the Open Agent | 205

http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html

FlexButton[@caption="0K"]")
-VerifyProperties({---})

Each Flex object has a list of properties that you can verify. For a list of the properties available for
verification, review the Flex. inc file. To access the file, navigate to the <SilkTest directory>
\extend\Flex directory. By default, this file is located in Cz:\Program Files\Silk\SilkTest
\extend\Flex\Flex.inc.

Styles in Apache Flex Applications

For applications developed in Apache Flex 3.x, Silk Test Classic does not distinguish between styles and
properties. As a result, styles are exposed as properties. However, with Apache Flex 4.x, all new Flex
controls, which are prefixed with Spark, such as SparkButton, do not expose styles as properties. As a
result, the GetProperty() and GetPropertyList() methods for Flex 4.x controls do not return styles,
such as color or fontSize, but only properties, such as text and name.

The GetStyle(string styleName) method returns values of styles as a string. To find out which styles
exist, refer to the Adobe Help located at http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/package-detail.html.

If the style is not set, a StyleNotSetException occurs during playback.

For the Flex 3.x controls, such as FlexTree, you can use GetProperty() to retrieve styles. Or, you can
use GetStyle(). Both the GetProperty() and GetStyle() methods work with Flex 3.x controls.

Calculating the Color Style
In Flex, the color is represented as a number. It can be calculated using the following formula:
red*65536 + green*256 + blue

Example

In this example, the GetProperty() and GetStyle() methods are used to retrieve
styles:

Window myTree = Application.Find('//
FlexTree[@caption="myTree"]")

COLOR c¢ = {170, 179, 179}

Verify(myTree.DisabledColor, c)
Verify(myTree.GetProperty(‘'disabledColor™), {170, 179, 179})
Verify(myTree.GetStyle("'disabledColor™), "11187123")

The number 11187123 for the color calculates as 170*65536 + 179*256 + 179.

Locator Attributes for Apache Flex Controls

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for Apache Flex (Flex) controls:
aut omat i onName The name of the application.

caption Similar to automationName.

aut omat i onCl assNane For example FlexButton.

cl assNane The fully qualified name of the implementation class, for example
mx.controls._Button.

206 | Testing in Your Environment with the Open Agent

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html

aut omat i onl ndex The index of the control in the view of the FlexAutomation, for example

index:1.
i ndex Similar to automationlndex but without the prefix, for example 1.
id The identifier of the control.
wi ndow d Similar to 1d.
| abel The label of the control.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Apache Flex Methods

You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Call dynamic methods on objects with the Dynami cInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList() method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList() method.

i Note: Most properties are read-only and cannot be set.

Supported Methods and Properties
The following methods and properties can be called:

* Methods and properties that Silk Test Classic supports for the control.

* All public methods that the Flex API defines.

« If the control is a custom control that is derived from a standard control, all methods and properties from
the standard control can be called.

Supported Parameter Types
The following parameter types are supported:

All built-in Silk Test Classic Silk Test Classic types includes primitive types, such as boolean, int,
types and string, lists, and other types, such as Point.

Returned Values
The following values are returned for properties and methods that have a return value:

» The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.
* All methods that have no return value return NULL.

Example

A custom calculator control has a Reset method and an Add method, which performs
an addition of two numbers. You can use the following code to call the methods directly
from your tests:

customControl . Invoke(*"Reset™)
REAL sum = customControl _Dynamiclnvoke(**Add",{1,2})

Testing in Your Environment with the Open Agent | 207

Testing Multiple Flex Applications on the Same Web
Page

When multiple Flex applications exist on the same Web page, Silk Test Classic uses the Flex application 1D
or the application size property to determine which application to test. If multiple applications exist on the
same page, but they are different sizes, Silk Test Classic uses the size property to determine on which
application to perform any actions. Silk Test Classic uses JavaScript to find the Flex application ID to
determine on which application to perform any actions if:

» multiple Flex applications exist on a single Web page.
« those applications are the same size.

In this situation, if JavaScript is not enabled on the browser machine, an error occurs when a script runs.

To test multiple Flex applications that are different sizes on a single Web page , follow the steps in Testing
Apache Flex Applications.

To test multiple Flex applications that are the same size on a single Web page, perform the following steps:

1. Enable JavaScript.
* In Internet Explorer:

1. Click Tools > Internet Options.

2. Click the Security tab.

3. Click Custom level.

4. In the Scripting section, under Active Scripting, click Enable and click OK.
e In Mozilla Firefox:

1. Choose Tools > Options.
2. Click Content and then check the Enable JavaScript check box.
3. Click OK.

2. Follow the steps in Testing Apache Flex Applications.

Note: If a frame exists on the web page and the applications are the same size, this method will not
work.

Silk Test Classic provides sample applications that demonstrate multiple applications on a single Web
page. You can access the sample applications at http://demo.borland.com/flex/SilkTest16.0/index.html.

Adobe AIR Support

Silk Test Classic supports testing with Adobe AIR for applications that are compiled with the Flex 4
compiler. For details about supported versions, check the Release Notes for the latest information.

Silk Test provides a sample Adobe AIR application. You can access the sample application at http://
demao.borland.com/flex/SilkTest16.0/index.html and then click the Adobe AIR application that you want to
use. You can select the application with or without automation. In order to execute the AIR application, you
must install the Adobe AIR Runtime.

Apache Flex Exception Values

Exception values are generated under given error conditions. Flex support defines the following set of
exception values:

E_FLEX_REPLAY A generic exception, which is thrown when no other
known exception occurs in Flex.

208 | Testing in Your Environment with the Open Agent

http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html

E_FLEX_ REPLAY_EVENT An error occurred when replaying the Flex event.

E_FLEX_ REPLAY_METHCD An error occurred when replaying the Flex method.
E FLEX REPLAY_ READ PROPERTY An error occurred when reading a property.

E FLEX REPLAY_ VRl TE_PROPERTY An error occurred when writing a property.
E_FLEX REPLAY_STYLE NOT_SET The style is not set to a Flex object.

E_FLEX_ REPLAY_SUPPORTS_TABLUAR The property used is meant for use with tabular

data. However, the specified class does not support
tabular data.

E_FLEX_REPLAY_I NVALI D_FLEX SDK_VERSI ON If you replay a Flex 3.x event, method, or property in
a Flex 2.0 environment, this error occurs.

E VO PROPERTY_NOT_ FOUND When reading or writing a property, if the property is
not defined for the object, this exception occurs.

The E_VO_PROPERTY_NOT_FOUND exception can also be thrown when you test Flex, but it is not limited to
the Flex environment.

Overview of the Flex Select Method Using Name or
Index

You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test Classic records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

You can record Select events using the index for the following controls:

« FlexList

« FlexTree

« FlexDataGrid

« FlexAdvancedDataGrid
« FlexOLAPDataGrid

« FlexComboBox

The default setting is ItemBasedSelection (Select event), which uses the name control. To use the index,
you must adapt the AutomationEnvironment to use the IndexBasedSelection (Selectindex event). To
change the behavior for one of these classes, you must modify the FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml file using the following code. Those XML files are located in
the <Silk Test_install_directory>\ng\agent\plugins

\com.borland. fastxd.techdomain.flex.agent_< version>\config
\automationEnvironment folder. Make the following adaptations in the corresponding xml file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnablelndexBasedSelection=""true” >

</ClasslInfo>

With this adaption the IndexBasedSelection is used for recording FlexList: :SelectlIndex events.
Setting the EnablelndexBasedSelection=to false in the code or removing the Boolean returns
recording to using the name (FlexList: :Select events).

Testing in Your Environment with the Open Agent | 209

Note: You must re-start your application, which automatically re-starts the Silk Test Agent, in order for
these changes to become active.

Selecting an Item in the FlexDataGrid Control

You can select an item in the FlexDataGrid control using the following procedures.
If you know the index value of the FlexDataGrid item, use the SelectIndex method

For example, type FlexDataGrid.Selectindex(l)

1. If you know the content value of the FlexDataGrid item, use the Select method

2. ldentify the row that you want to select with the required formatted string. ltems must be separated by a
pipe (“| ”). At least one Item must be enclosed by two stars (“*"). This identifies the item where the click
will be performed.

The syntax is: FlexDataGrid.Select(**lteml* | Item2 | Item3”)

The following example selects an item using the Select method (randomly).

[1 LIST OF LIST OF STRING allVisibleltems

[1 window dataGrid =
AdobeFlashPlayer9.FlexApplicationO. Index0. Indexl.SwfLoader .ControlsSimpleDataG
ridSwf._DataGridControlExample.Dg

[1]

[1 7/ lets get all currently visible items

[1 allVisibleltems = dataGrid.GetValues(dataGrid.firstVisibleRow,
dataGrid. lastVisibleRow)

[1]

[1 7/ pick a random element that we want to select

[1 integer randomRow = RandInt(dataGrid.firstVisibleRow,
dataGrid. lastVisibleRow)

[1 LIST OF STRING randomRowltems = allVisibleltems[randomRow]
[1 print(""This is the row we want to select: {randomRow}'")
[1]

[1 /7/ now lets construct the string we need for the select method
[1 STRING selectString

[1 STRING itemText

[1 INTEGER col = 0

[-] for each itemText in randomRowltems

[-]1 if col ==

[1 selectString = "*{itemText}*"

[-]1 else

[1 selectString = selectString + " | {itemText}"

[1 col++

[1])

[17/ now lets select the item

[1 print(C'We will select {selectString}'")

[1 dataGrid.Select(selectString)

Enabling Your Flex Application for Testing

To enable your Flex application for testing, your Apache Flex developers must include the following
components in the Flex application:

« Apache Flex Automation Package
« Silk Test Automation Package

210 | Testing in Your Environment with the Open Agent

Apache Flex Automation Package

The Flex automation package provides developers with the ability to create Flex applications that use the
Automation API. You can download the Flex automation package from Adobe's website, http://
www.adobe.com. The package includes:

« Automation libraries — the automation.swc and automation_agent.swc libraries are the implementations
of the delegates for the Flex framework components. The automation_agent.swc file and its associated
resource bundle are the generic agent mechanism. An agent, such as the Silk Test Agent, builds on top
of these libraries.

e Samples

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, the typekey statement in the Flex Automation APl does not
support all keys. You can use the input text statement to resolve this issue. For more information
about using the Flex Automation API, see the Apache Flex Release Notes.

Silk Test Automation Package

Silk Test's Open Agent uses the Apache Flex automation agent libraries. The FlexTechDomain.swc file
contains the Silk Test specific implementation.

You can enable your application for testing using either of the following methods:

« Linking automation packages to your Flex application
* Run-time loading

Linking Automation Packages to Your Flex Application

You must precompile Flex applications that you plan to test. The functional testing classes are embedded
in the application at compile time, and the application has no external dependencies for automated testing
at run time.

When you embed functional testing classes in your application SWF file at compile time, the size of the
SWEF file increases. If the size of the SWF file is not important, use the same SWF file for functional testing
and deployment. If the size of the SWF file is important, generate two SWF files, one with functional testing
classes embedded and one without. Use the SWF file that does not include the embedded testing classes
for deployment.

When you precompile the Flex application for testing, in the include-libraries compiler option, reference the
following files:

e automation.swc

« automation_agent.swc

* FlexTechDomain.swc

e automation_charts.swc (include only if your application uses charts and Flex 2.0)

e automation_dmv.swc (include if your application uses charts and Flex > 3.x)

< automation_flasflexkit.swc (include if your application uses embedded flash content)
e automation_spark.swc (include if your application uses the new Flex 4.x controls)

e automation_air.swc (include if your application is an AIR application)

« automation_airspark.swc (include if your application is an AIR application and uses new Flex 4.x
controls)

When you create the final release version of your Flex application, you recompile the application without
the references to these SWC files. For more information about using the automation SWC files, see the
Apache Flex Release Notes.

If you do not deploy your application to a server, but instead request it by using the file protocol or run it
from within Apache Flex Builder, you must include each SWF file in the local-trusted sandbox. This requires

Testing in Your Environment with the Open Agent | 211

http://www.adobe.com
http://www.adobe.com

additional configuration information. Add the additional configuration information by modifying the
compiler's configuration file or using a command-line option.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache FlexRelease Notes.

Precompiling the Flex Application for Testing

You can enable your application for testing by precompiling your application for testing or by using run-time
loading.

1. Include the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries in the compiler’s
configuration file by adding the following code to the configuration file:

<include-libraries>

<library>/libs/automation.swc</library>
<library>/libs/automation_agent.swc</library>
<library>pathinfo/FlexTechDomain.swc</library>

</include-libraries>

y Note: If your application uses charts, you must also add the automation_charts.swc file.

2. Specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the include-libraries compiler option with the command-line compiler.

The configuration files are located at:
Apache Flex 2 SDK — <flex_installation_directory>/frameworks/flex-config.xml
Apache Flex Data Services — <flex_installation_directory>/flex/WEB-INF/flex/flex-config.xml

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: Explicitly setting the include-libraries option on the command line overwrites, rather than
appends, the existing libraries. If you add the automation.swc and automation_agent.swc files
using the include-libraries option on the command line, ensure that you use the += operator. This
appends rather than overwrites the existing libraries that are included.

f Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and

successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround
is to not compile the application SWF files that Explorer loads with automation libraries. For
example, compile only the Explorer main application with automation libraries. Another alternative

212 | Testing in Your Environment with the Open Agent

is to use the module loader instead of swfloader. For more information about using the Flex
Automation API, see the Apache FlexRelease Notes.

Run-Time Loading

1. Copy the content of the SiTk\Silk Test\ng\AutomationSDK\Flex\<ver si on>
\FlexAutomationLauncher directory into the directory of the Flex application that you are testing.

2. Open FlexAutomationLauncher . html in Windows Explorer and add the following parameter as a
suffix to the file path:
?automationurl=Your Appl i cati on. swf

where YourApplication.swf is the name of the SWF file for your Flex application.

3. Add File:/// as a prefix to the file path.
For example, if your file URL includes a parameter, such as: ?automationurl=explorer.swf,
type: .
file:///C:/Program%20Files/Silk/Silk Test/ng/sampleapplications/Flex/3.2/
FlexControlExplorer32/FlexAutomationLauncher _html?automationurl=explorer.swf

Run-Time Loading

You can load Flex automation support at run time using the Silk Test Flex Automation Launcher. This
application is compiled with the automation libraries and loads your application with the SWFLoader class.
This automatically enables your application for testing without compiling automation libraries into your SWF
file. The Silk Test Flex Automation Launcher is available in HTML and SWF file formats.

Limitations

» The Flex Automation Launcher Application automatically becomes the root application. If your
application must be the root application, you cannot load automation support with the Silk Test Flex
Automation Launcher.

« Testing applications that load external libraries — Applications that load other SWF file libraries require a
special setting for automated testing. A library that is loaded at run time (including run-time shared
libraries (RSLs) must be loaded into the ApplicationDomain of the loading application. If the SWF file
used in the application is loaded in a different application domain, automated testing record and
playback will not function properly. The following example shows a library that is loaded into the same
ApplicationDomain:

import flash.display.*;
import flash.net.URLRequest;
import flash.system.ApplicationDomain;

import flash.system.LoaderContext;

var ldr:Loader = new Loader();

var urlReq:URLRequest = new URLRequest("'RuntimeClasses.swf');
var context:LoaderContext = new LoaderContext();

context._applicationDomain = ApplicationDomain.currentDomain;

loader.load(request, context);

Testing in Your Environment with the Open Agent | 213

Using the Command Line to Add Configuration Information

To specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the command-line compiler, use the include-libraries compiler option.

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=._/frameworks/libs/automation.swc; . ./frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: If your application uses charts, you must also add the automation_charts.swc file to the
include-libraries compiler option.

Explicitly setting the include-libraries option on the command line overwrites, rather than appends, the
existing libraries. If you add the automation.swc and automation_agent. swc files using the include-
libraries option on the command line, ensure that you use the += operator. This appends rather than
overwrites the existing libraries that are included.

To add automated testing support to a Flex Builder project, you must also add the automation.swc and
automation_agent.swc files to the include-libraries compiler option.
Passing Parameters into a Flex Application

You can pass parameters into a Flex application using the following procedures.

Passing Parameters into a Flex Application Before Runtime

You can pass parameters into a Flex application before runtime using automation libraries.
1. Compile your application with the appropriate automation libraries.

2. Use the standard Flex mechanism for the parameter as you typically would.

Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher
Before you begin this task, prepare your application for run-time loading.

1. Open the FlexAutomationLauncher.html file or create a file using
FlexAutomationLauncher_html as an example.

2. Navigate to the following section:
<script language="JavaScript'” type="text/javascript'>

AC_FL_RunContent(eef

src', "FlexAutomationLauncher™,
“"width™, "100%",

"height™, "100%",

"align', "middle",

"1d", "FlexAutomationLauncher™,
"quality', "high",

"bgcolor', "white",

"name™, "FlexAutomationLauncher™,

"allowScriptAccess",""sameDomain",

214 | Testing in Your Environment with the Open Agent

"type', "application/x-shockwave-flash”,
"pluginspage"™, "http://www.adobe.com/go/getflashplayer™,

"flashvars', "your Par anet er =your Par anet er Val ue''+
"&aut omat i onur | =Your Appl i cati on. swf ™

E

</script>

f Note: Do not change the "FlexAutomationLauncher" value for "src", "id", or "name."

3. Add your own parameter to "yourParameter=yourParameterValue".

4. Pass the name of the Flex application that you want to test as value for the "&
automationurl=YourApplication.swf" value.

5. Save the file.

Creating Testable Flex Applications

As a Flex developer, you can employ techniques to make Flex applications as "test friendly" as possible.
These include:

* Providing Meaningful Identification of Objects
< Avoiding Duplication of Objects

Providing Meaningful Identification of Objects

To create "test friendly" applications, ensure that objects are identifiable in scripts. You can set the value of
the ID property for all controls that are tested, and ensure that you use a meaningful string for that ID

property.
To provide meaningful identification of objects:

« Give all testable MXML components an ID to ensure that the test script has a unique identifier to use
when referring to that Flex control.

« Make these identifiers as human-readable as possible to make it easier for the user to identify that
object in the testing script. For example, set the id property of a Panel container inside a TabNavigator
to submit_panel rather than panell or p1.

When working with Silk Test Classic, an object is automatically given a name depending on certain tags,
for instance, id, childindex. If there is no value for the id property, Silk Test Classic uses other properties,
such as the childindex property. Assigning a value to the id property makes the testing scripts easier to
read.

Avoiding Duplication of Objects

Automation agents rely on the fact that some properties of object instances will not be changed during run
time. If you change the Flex component property that is used by Silk Test Classic as the object name at run
time, unexpected results can occur. For example, if you create a Button control without an
automationName property, and you do not initially set the value of its label property, and then later set the
value of the label property, problems might occur. In this case, Silk Test Classic uses the value of the
label property of Button controls to identify an object if the automationName property is not set. If you later
set the value of the 1abel property, or change the value of an existing label, Silk Test Classic identifies the
object as a new object and does not reference the existing object.

To avoid duplicating objects:

Testing in Your Environment with the Open Agent | 215

« Understand what properties are used to identify objects in the agent and avoid changing those
properties at run time.

e Set unique, human-readable id or automationName properties for all objects that are included in the
recorded script.

Flex AutomationName and Automationindex Properties

The Flex Automation API introduces the automationName and automationlndex properties. If you
provide the automationName, Silk Test Classic uses this value for the recorded window declaration's
name. Providing a meaningful name makes it easier for Silk Test Classic to identify that object. As a best
practice, set the value of the automationName property for all objects that are part of the application's
test.

Use the automationlndex property to assign a unique index value to an object. For instance, if two
objects share the same name, assign an index value to distinguish between the two objects.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache Flex Release Notes.

Setting the Flex automationName Property

The automationName property defines the name of a component as it appears in tests. The default value
of this property varies depending on the type of component. For example, the automationName for a
Button control is the label of the Button control. Sometimes, the automationName is the same as the id
property for the control, but this is not always the case.

For some components, Flex sets the value of the automationName property to a recognizable attribute of
that component. This helps testers recognize the component in their tests. Because testers typically do not
have access to the underlying source code of the application, having a control's visible property define that
control can be useful. For example, a Button labeled "Process Form Now" appears in the test as
FlexButton(''Process Form Now'™).

If you implement a new component, or derive from an existing component, you might want to override the
default value of the automationName property. For example, UIComponent sets the value of the
automationName to the component's id property by default. However, some components use their own
methods for setting the value. For example, in the Flex Store sample application, containers are used to
create the product thumbnails. A container's default automationName would not be very useful because it
is the same as the container's id property. So, in Flex Store, the custom component that generates a
product thumbnail explicitly sets the automationName to the product name to make testing the
application easier.

Example

The following example from the CatalogPanel.mxml custom component sets the value
of the automationName property to the name of the item as it appears in the catalog.
This is more recognizable than the default automation name.

thumbs[i].automationName = catalog[i].name;

216 | Testing in Your Environment with the Open Agent

Example

The following example sets the automationName property of the ComboBox control to
"Credit Card List"; rather than using the id property, the testing tool typically uses
"Credit Card List" to identify the ComboBox in its scripts:

<?xml version="1.0"7?>
<I-- at/SimpleComboBox.mxml -->
<mx:Application xmIns:mx="http://www.adobe.com/2006/mxml*">
<mx:Script>
<I[CDATAL
[Bindable]
public var cards: Array = [
{label:"Visa'", data:1},
{label:"MasterCard", data:2},
{label:"American Express", data:3}

1;

[Bindable]
public var selectedltem:Object;
1
1>
</mx:Script>
<mx:Panel title="ComboBox Control Example'>
<mx:ComboBox id="cbl" dataProvider="{cards}"
width="150"
close=""'selectedl tem=ComboBox(event. target) .selectedltem"
automationName="Credit Card List"
/>
<mx:VBox width="250">
<mx:Text width="200" color="blue™ text="Select a type of
credit card.”™ />
<mx:Label text="You selected: {selectedltem.label}'"/>
<mx:Label text="Data: {selectedltem.data}"/>
</mx:VBox>
</mx:Panel>
</mx:Application>

Setting the value of the automationName property ensures that the object name will
not change at run time. This helps to eliminate unexpected results.

If you set the value of the automationName property, tests use that value rather than
the default value. For example, by default, Silk Test Classic uses a Button control's label
property as the name of the Button in the script. If the label changes, the script can
break. You can prevent this from happening by explicitly setting the value of the
automationName property.

Buttons that have no label, but have an icon, are recorded by their index number. In this
case, ensure that you set the automationName property to something meaningful so
that the tester can recognize the Button in the script. After the value of the
automationName property is set, do not change the value during the component's life
cycle. For item renderers, use the automationValue property rather than the
automationName property. To use the automationValue property, override the
createAutomationlIDPart() method and return a new value that you assign to the
automationName property, as the following example shows:
<mx:List xmlns:mx="http://www.adobe.com/2006/mxml"">
<mx:Script>
<I[CDATAL
import mx.automation.lAutomationObject;

override public function
createAutomationlIDPart(item: l1AutomationObject) ::Object {

Testing in Your Environment with the Open Agent | 217

var id:Object = super.createAutomationlDPart(item);
id["automationName'™] = id["automationlndex'];
return id;

}

11>
</mx:Script>
</mx:List>

Use this technique to add index values to the children of any container or list-like
control. There is no method for a child to specify an index for itself.

Setting the Flex Select Method to Use Name or Index

You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test records Se lect methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

1. Determine which class you want to modify to use the Index.
You can record Select events using the index for the following controls:

« FlexList
« FlexTree
o FlexDataCGrid
« FlexOLAPDataGrid
« FlexComboBox
« FlexAdvancedDataCGrid
2. Determine which XML file is related to the class that you want to modify.
The XML files related to the preceding controls include: FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml.
3. Navigate to the XML files that are related to the class that you want to modify.

The XML files are located in the <Silk Test_install_directory>\ng\agent\plugins
\com.borland. fastxd.techdomain.flex.agent <version>\config
\automationEnvironment folder.

4. Make the following adaptations in the corresponding XML file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnablelndexBasedSelection="true” >

</ClasslInfo>

For instance, you might use "FlexList" as the " FlexControlName" and modify the
FlexCommonControls.xml file.

With this adaption the IndexBasedSelection is used for recording FlexList: :SelectlIndex events.

Note: Setting the EnablelndexBasedSelection=to false in the code or removing the
boolean returns recording to using the name (FlexList: :Select events).

5. Re-start your Flex application and the Open Agent in order for these changes to become active.

Coding Flex Containers

Containers differ from other kinds of controls because they are used both to record user interactions (such
as when a user moves to the next pane in an Accordion container) and to provide unique locations for
controls in the testing scripts.

218 | Testing in Your Environment with the Open Agent

Adding and Removing Containers from the Automation Hierarchy

In general, the automated testing feature reduces the amount of detail about nested containers in its
scripts. It removes containers that have no impact on the results of the test or on the identification of the
controls from the script. This applies to containers that are used exclusively for layout, such as the HBox,
VBox, and Canvas containers, except when they are being used in multiple-view navigator containers, such
as the ViewStack, TabNavigator, or Accordion containers. In these cases, they are added to the automation
hierarchy to provide navigation.

Many composite components use containers, such as Canvas or VBox, to organize their children. These
containers do not have any visible impact on the application. As a result, you typically exclude these
containers from testing because there is no user interaction and no visual need for their operations to be
recordable. By excluding a container from testing, the related test script is less cluttered and easier to read.

To exclude a container from being recorded (but not exclude its children), set the container's
showlnAutomationHierarchy property to false. This property is defined by the UlComponent class,
so all containers that are a subclass of UlComponent have this property. Children of containers that are
not visible in the hierarchy appear as children of the next highest visible parent.

The default value of the showlnAutomationHierarchy property depends on the type of container. For
containers such as Panel, Accordion, Application, DividedBox, and Form, the default value is true; for
other containers, such as Canvas, HBox, VBox, and Formitem, the default value is false.

The following example forces the VBox containers to be included in the test script's hierarchy:

<?xml version="1.0"7?>

<!-- at/NestedButton.mxml -->

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"">

<mx:Panel title="ComboBox Control Example">

<mx:HBox id="hb"">

<mx:VBox id="'vbl" showlnAutomationHierarchy="true">

<mx:Canvas id=""cl">

<mx:Button id="bl"™ automationName="'Nested Button 1" label="Click Me" />
</mx:Canvas>

</mx:VBox>

<mx:VBox id="'vb2" showlnAutomationHierarchy="true">

<mx:Canvas id="c2">

<mx:Button id="b2" automationName="'Nested Button 2" label="Click Me 2" />
</mx:Canvas>

</mx:VBox>

</mx:HBox>

</mx:Panel>

</mx:Application>

Multiview Containers

Avoid using the same label on multiple tabs in multiview containers, such as the TabNavigator and
Accordion containers. Although it is possible to use the same labels, this is generally not an acceptable Ul
design practice and can cause problems with control identification in your testing environment.

Flex Automation Testing Workflow

The Silk Test Classic workflow for testing Flex applications includes:

« Automated Testing Initialization
« Automated Testing Recording
e Automated Testing Playback

Flex Automated Testing Initialization

When the user launches the Flex application, the following initialization events occur:

Testing in Your Environment with the Open Agent | 219

n

The automation initialization code associates component delegate classes with component classes.
The component delegate classes implement the |AutomationObject interface.

An instance for the AutomationManager is created in the mixin init() method. (The
AutomationManager is a mixin.)

The SystemManager initializes the application. Component instances and their corresponding delegate
instances are created. Delegate instances add event listeners for events of interest.

The Silk Test Classic FlexTechDomain is a mixin. In the FlexTechDomain init() method, the
FlexTechDomain registers for the SystemManager . APPLICATION_COMPLETE event. When the event
is received, it creates a FlexTechDomain instance.

The FlexTechDomain instance connects via a TCP/IP socket to the Silk Test Agent on the same
machine that registers for record/playback functionality.

The FlexTechDomain requests information about the automation environment. This information is stored
in XML files and is forwarded from the Silk Test Agent to the FlexTechDomain.

Flex Automated Testing Recording

When the user records a new test in Silk Test Classic for a Flex application, the following events occur:

1.

2.

8.
9.

Silk Test Classic calls the Silk Test Agent to start recording. The Agent forwards this command to the
FlexTechDomain instance.

FlexTechDomain notifies AutomationManager to start recording by calling beginRecording(). The
AutomationManager adds a listener for the AutomationRecordEvent. RECORD event from the
SystemManager.

The user interacts with the application. For example, suppose the user clicks a Button control.

The ButtonDelegate.clickEventHandler () method dispatches an AutomationRecordEvent
event with the click event and Button instance as properties.

The AutomationManager record event handler determines which properties of the click event to store
based on the XML environment information. It converts the values into proper type or format. It
dispatches the record event.

The FlexTechDomain event handler receives the event. It calls the

AutomationManager .createlD() method to create the AutomationID object of the button. This
object provides a structure for object identification. The AutomationID structure is an array of
AutomationIDParts. An AutomationIDPart is created by using IAutomationObject. (The UlComponent.id,
automationName, automationValue, childindex, and label properties of the Button control are read and
stored in the object. The label property is used because the XML information specifies that this property
can be used for identification for the Button.)

FlexTechDomain uses the AutomationManager .getParent() method to get the logical parent of
Button. The AutomationIlDPart objects of parent controls are collected at each level up to the application
level.

All the AutomationIDParts are included as part of the AutomationID object.

The FlexTechDomain sends the information in a call to Silk Test Classic.

10.When the user stops recording, the FlexTechDomain.endRecording() method is called.

Flex Automated Testing Playback

When the user clicks the Playback button in Silk Test Classic, the following events occur:

1.

For each script call, Silk Test Classic contacts the Silk Test Agent and sends the information for the
script call to be executed. This information includes the complete window declaration, the event name,
and parameters.

The Silk Test Agent forwards that information to the FlexTechDomain.

The FlexTechDomain uses AutomaionManager .resolvelDToSingleObject with the window
declaration information. The AutomationManager returns the resolved object based on the descriptive
information (automationName, automationindex, id, and so on).

Once the Flex control is resolved, FlexTechDomain calls

AutomationManager . replayAutomatableEvent() to replay the event.

220 | Testing in Your Environment with the Open Agent

5. The AutomationManager .replayAutomatableEvent() method invokes the
IAutomationObject.replayAutomatableEvent() method on the delegate class. The delegate
uses the 1AutomationObjectHelper.replayMouseEvent() method (or one of the other replay
methods, such as replayKeyboardEvent()) to play back the event.

6. If there are verifications in your script, FlexTechDomain invokes
AutomationManager .getProperties() to access the values that must be verified.

Testing the Silk Test Component Explorer Flex Sample
Application

Silk Test provides a sample Apache Flex test application called the Component Explorer. You can access
the sample application at http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/
Flex3TestApp.html.

To test the Component Explorer, follow the steps described in the following topics:

« Configuring Security Settings for Your Local Flash Player

* Launching the Component Explorer

e Creating a New Project

« Configuring Web Applications

* Recording a Sample Testcase for the Component Explorer
* Running a Test Case

e Customizing Apache FlexScripts

Silk Test provides several sample Apache Flex applications. To access the samples, go to http://
demao.borland.com/flex/SilkTest16.0/index.html and choose the sample application you want to use.

Configuring Security Settings for Your Local Flash Player

Before you launch an Apache Flex application, that runs as a local application, for the first time, you must
configure security settings for your local Flash Player. You must modify the Adobe specific security settings
to enable the local application access to the file system.

To configure the security settings for your local Flash player:

1. Open the Flex Security Settings Page by clicking Flash Player Security Manager on http://
demo.borland.com/flex/SilkTest16.0/index.html.

Click Always allow.

In the Edit Locations menu, click Add Location.

Click Browse for folder and navigate to the folder where your local application is installed.
Click Confirm and then close the browser.

o~ WD

Launching the Component Explorer

Silk Test provides a sample Apache Flex application, the Component Explorer. Compiled with the Adobe
Automation SDK and the Silk Test specific automation implementation, the Component Explorer is pre-
configured for testing.

Before you launch the application for the first time, you must configure security settings for your local Flash
Player.

To launch the Component Explorer in Internet Explorer, open http://demo.borland.com/flex/
SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html.

The application launches in Internet Explorer.

Testing in Your Environment with the Open Agent | 221

http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest16.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html

Creating a New Project

You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar.

2. On the Create Project dialog box, type the Project Name and Description.

3. Click OK to save your project in the default location, C:\Users\<Current user>\Documents\Silk
Test Classic Projects.
To save your project in a different location, click Browse and specify the folder in which you want to
save your project.
Silk Test Classic creates a <Project name> folder within this directory, saves the projectname.vtp
and projectname. ini to this location and copies the extension .ini files, which are appexpex. ini,
axext._ini, domex. ini, and javaex. ini, to the extend subdirectory. If you do not want to save
your project in the default location, click Browse and specify the folder in which you want to save your
project. Silk Test Classic then creates your project and displays nodes on the Files and Global tabs for
the files and resources associated with this project.

4. Perform one of the following steps:

« If your test uses the Open Agent, configure the application to set up the test environment.
< If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Configuring Web Applications

Configure the Web application that you want to test to set up the environment that Silk Test Classic will
create each time you record or replay a test case. If you are testing a Web application or an application that
uses a child technology domain of the xBrowser technology domain, for example an Apache Flex
application, use this configuration.

1. Click Configure Application on the basic workflow bar.

If you do not see Configure Application on the workflow bar, ensure that the default agent is set to the
Open Agent.

The Select Application dialog box opens.
2. Select the Web tab.
3. Select the browser that you want to use from the list of available browsers.

If you want to record a test against a Web application, select Internet Explorer or a mobile browser.
You can use one of the other supported browsers to replay tests but not to record them.

4. Optional: Specify the Web page to open in the Browse to URL text box.
5. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

222 | Testing in Your Environment with the Open Agent

6. Click OK.

» If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame . inc by default.

« If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application. By default,
Silk Test Classic lists the caption of the main window of the application as the locator for the base state.
Then Silk Test Classic opens the Web page.

9. Record the test case whenever you are ready.

Recording a Sample Test Case for the Component Explorer

Use the following procedure to become familiar with the sample Silk Test Classic Flex application, the
Component Explorer.

To record a test case for the Component Explorer:

1. Click Record Testcase on the Basic Workflow bar.
2. In the Record Testcase dialog box, type the name of your test case in the Testcase name text box.

Test case names are case sensitive; they can have any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default BaseState before the test case begins executing.

4. Click Start Recording. Silk Test Classic closes the Record Testcase dialog box and displays the Flex
sample application.

5. When the Record Status window opens, record the following scenario using the Flex sample
application.

It is essential that you perform these steps exactly as they are documented. Otherwise, your test case
script may not match the sample provided later in this document.

Click the * arrow next to the Visual Components tree element to expand the list.
Click the * arrow next to the General Controls tree element to expand the list.
Click the SimpleAlert tree element.

In the Alert Control Example section, click Click Me near the top of the window and then click OK in
the Hello World message box.

© © N o

10'Click the ¥ arrow next to the General Controls tree element to hide the list.

11.click the ¥ arrow next to the Visual Components tree element to hide the list.

12.In the Recording Status window, click Stop Recording. SilkTest opens the Record Testcase dialog
box, which contains the script that has been recorded for you.

13.Click Paste to Editor. The Update Files dialog box opens.
14.Choose Paste testcase and update window declaration(s) and then click OK.

Your testcase should include the following calls:

WebBrowser .BrowserWindow.Application.CompLibTree.Open(*Visual Components')
WebBrowser .BrowserWindow.Application.CompLibTree.Open(*"Visual
Components>General Controls'™)

WebBrowser .BrowserWindow.Application.CompLibTree.Select(*'Visual
Components>General Controls>SimpleAlert™)

WebBrowser .BrowserWindow.Application.Buttonl.Click()

WebBrowser .BrowserWindow.Application.Ok.Click()

Testing in Your Environment with the Open Agent | 223

WebBrowser .BrowserWindow.Application.CompLibTree.Close("'Visual
Components>General Controls™)
WebBrowser .BrowserWindow.Application.CompLibTree.Close("'Visual Components')

The Silk Test Classic Flex Automation SDK is based on the Automation API for Flex. The Silk Test Classic
Automation SDK supports the same components in the same manner that the Automation API for Flex
supports them. For instance, when an application is compiled with automation code and successive .swf
files are loaded, a memory leak occurs and the application runs out of memory eventually. The Flex
Component Explorer sample application is affected by this issue. The workaround is to not compile the
application .swf files that Explorer loads with automation libraries. For example, compile only the Explorer
main application with automation libraries. Another alternative is to use the module loader instead of
swfloader. For more information about using the Flex Automation API, refer to the Apache Flex Release
Notes.

Running a Test Case

When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.
If the workflow bar is not visible, choose Workflows > Basic to enable it.
Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.
Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

o BaseStateExecutionFinished
« Connecting
« Verify
o Exists
« Is
« Get
« Set
« Print
o ForceActiveXEnum
« Wait
« Sleep
5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.
6. Click Run. Silk Test Classic runs the test case and generates a results file.
For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag

Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

224 | Testing in Your Environment with the Open Agent

7. Optional: If necessary, you can click both Shift keys at the same time to stop the execution of the test.

Customizing Apache Flex Scripts

You can manually customize your Flex scripts. You can insert verifications using the Verification wizard.
Or, you can insert verifications manually using the Verify function on Flex object properties.

To customize Adobe Flex scripts:

1. Record a testcase for your Flex application.
2. Open the script file that you want to customize.
3. Manually type the code that you want to add.
For example, the following code adds a verification call to your script:

Desktop.Find(**'//BrowserApplication™) _Find('//BrowserWindow')
-Find("'//FlexApplication[@caption="explorer®]") .Find("'//
FlexButton[@caption="0K"]'")

-VerifyProperties({---})

Each Flex object has a list of properties that you can verify. For a list of the properties available for
verification, review the Flex. inc file. To access the file, navigate to the <SilkTest directory>
\extend\Flex directory. By default, this file is located in C:\Program Files\Silk\SilkTest
\extend\Flex\Flex.inc.

Testing Flex Custom Controls

Silk Test Classic supports testing Flex custom controls. By default, Silk Test Classic provides record and
playback support for the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

Option Description
Basic With basic support, you use dynamic invoke to interact with the custom control during
support replay. Use this low-effort approach when you want to access properties and methods of

the custom control in the test application that Silk Test Classic does not expose. The
developer of the custom control can also add methods and properties to the custom control
specifically for making the control easier to test. A Silk Test Classic user can then call those
methods or properties using the dynamic invoke feature.

The advantages of basic support include:

» Dynamic invoke requires no code changes in the test application.
« Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

* No specific class name is included in the locator. For example, Silk Test Classic
records //FlexBox rather than //FlexSpinner.

* Only limited recording support.
« Silk Test Classic cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking
Apache Flex Methods.

Advanced \jith advanced support, you create specific automation support for the custom control. This
support additional automation support provides recording support and more powerful play-back
support. The advantages of advanced support include:

« High-level recording and playback support, including the recording and replaying of
events.

Testing in Your Environment with the Open Agent | 225

Option Description

» Silk Test Classic treats the custom control exactly the same as any other built-in Flex
control.

« Seamless integration into Silk Test Classic API.

« Silk Test Classic uses the specific class name in the locator. For example, Silk Test
Classic records //FlexSpinner.

The disadvantages of advanced support include:

* Implementation effort is required. The test application must be modified and the Open
Agent must be extended.

Defining a Custom Control in the Test Application

Typically, the test application already contains custom controls, which were added during development of
the application. If your test application already includes custom controls, you can proceed to Testing a
Custom Control Using Dynamic Invoke or to Testing a Custom Control Using Automation Support.

This procedure shows how a Flex application developer can create a spinner custom control in Flex. The
spinner custom control that we create in this topic is used in several topics to illustrate the process of
implementing and testing a custom control in Silk Test Classic.

The spinner custom control includes two buttons and a text box, as shown in the following graphic.

Crowin Up

The user can click Down to decrement the value that is displayed in the text field and click Up to increment
the value in the text field.

The custom control offers a public CurrentValue property that can be set and retrieved.
To define the custom control:

1. In the test application, define the layout of the control.
For example, for the spinner control type:

<?xml version="1.0" encoding=""utf-8"7>
<customcontrols:SpinnerClass xmIns:mx="http://www.adobe.com/2006/mxml"
xmIns:controls="mx.controls.*" xmlns:customcontrols="customcontrols.*">
<controls:Button id="downButton' label="Down" />
<controls:Textlnput id="text" enabled="false" />
<controls:Button id="upButton' label="Up"/>
</customcontrols:SpinnerClass>

2. Define the implementation of the custom control.
For example, for the spinner control type:

package
customcontrols
{
import flash._events.MouseEvent;
import mx.containers.HBox;
import mx.controls.Button;
import mx.controls.Textlnput;
import mx.core.UlComponent;
import mx.events.FlexEvent;
[Event(name=""increment', type="‘customcontrols.SpinnerEvent)]
[Event(name="'decrement', type="‘customcontrols.SpinnerEvent)]

public class SpinnerClass extends HBox

public var downButton : Button;

226 | Testing in Your Environment with the Open Agent

public var upButton : Button;

public var text : Textlnput;

public var ssss: SpinnerAutomationDelegate;
private var _lowerBound : int = O;

private var _upperBound : int = 5;

private var value : int = 0O;

private var _stepSize : int = 1;

public function SpinnerClass()

addEventListener(FlexEvent.CREATION COMPLETE,
creationCompleteHandler);

}

private function creationCompleteHandler(event:FlexEvent) : void
downButton.addEventListener(MouseEvent.CLICK, downButtonClickHandler);

upButton.addEventListener(MouseEvent.CLICK, upButtonClickHandler);
updateText();

rivate function downButtonClickHandler(event : MouseEvent) : void

T W

if(currentValue - stepSize >= lowerBound)

currentValue = currentValue - stepSize;

}

else

upperBound - stepSize + currentValue - lowerBound +

currentValue

}

var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.DECREMENT) ;

spinnerEvent.steps = _stepSize;

dispatchEvent(spinnerEvent);

1;

rivate function upButtonClickHandler(event : MouseEvent) : void

T W

if(currentValue <= upperBound - stepSize)
currentValue = currentValue + stepSize;

else

currentValue = lowerBound + currentValue + stepSize - upperBound -
1;
3 _ _
var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent. INCREMENT) ;
spinnerkEvent.steps = _stepSize;
dispatchEvent(spinnerEvent);

rivate function updateText() : void

AT W

if(text = null)

text.text = value.toString();
he
e

public function get currentValue() : int

Testing in Your Environment with the Open Agent | 227

{

return _value;

}

public function set currentValue(v : int) : void

{
_value = v;
if(v < lowerBound)

_value = lowerBound;

else if(v > upperBound)

{

_value = upperBound;

3pdateText();
+

public function get stepSize() : int
{

return _stepSize;

}

public function set stepSize(v : int)

{

_stepSize = v;

public function get lowerBound() : int

{

return _lowerBound;

}
public function set lowerBound(v : int)

_lowerBound = v;
if(currentValue < lowerBound)

{

currentValue = lowerBound;

}
}

public function get upperBound() : int
{

}

public function set upperBound(v : int)

{

return _upperBound;

_upperBound = v;
if(currentValue > upperBound)

{

currentValue = upperBound;

}
}
}
+

3. Define the events that the control uses.
For example, for the spinner control type:
package customcontrols

{

import flash.events.Event;

228 | Testing in Your Environment with the Open Agent

: void

4.

public class SpinnerEvent extends Event
{
public static const INCREMENT : String
public static const DECREMENT : String

"increment"';
"decrement"';

private var _steps : int;

public function SpinnerEvent(eventName : String)

{

super(eventName) ;

public function set steps(value:int) : void

{

_steps = value;

public function get steps() : int
{

+
+
}

Proceed to Implement Automation Support.

return _steps;

Testing a Custom Control Using Dynamic Invoke

Silk Test Classic provides record and playback support for custom controls using dynamic invoke to interact
with the custom control during replay. Use this low-effort approach when you want to access properties and
methods of the custom control in the test application that Silk Test Classic does not expose. The developer
of the custom control can also add methods and properties to the custom control specifically for making the
control easier to test.

To test a custom control using dynamic invoke:

1.

a e

To retrieve a list of supported dynamic methods for a control, use the GetDynamicMethodList
method.

Call dynamic methods on objects with the Dynamiclnvoke method.

Call multiple dynamic methods on objects with the DynamiclnvokeMethods method.

To retrieve a list of supported dynamic properties for a control, use the GetPropertyList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method.

Example

This example tests a spinner custom control that includes two buttons and a text box, as
shown in the following graphic.

Diowin Up

The user can click Down to decrement the value that is displayed in the text box and
click Up to increment the value in the text box.

The custom control offers a public CurrentValue property that can be set and
retrieved. The value in this example is 3.

To set the spinner's value to 4, type the following:

WINDOW spinner = Desktop.Find(*'//
FlexBox[@className=customcontrols.Spinner]")
spinner.SetProperty(*'CurrentValue™, 4)

Testing in Your Environment with the Open Agent | 229

Testing a Custom Control Using Automation Support
Before you can test a custom control in Silk Test Classic, perform the following steps:

« Define the custom control in the test application.
e Implement automation support.

You can create specific automation support for the custom control. This additional automation support
provides recording support and more powerful play-back support. To create automation support, the test
application must be modified and the Open Agent must be extended.

After the test application has been modified and includes automation support, perform the following steps:

1. Open an existing Flex project or create a new project.
2. Click File > New.
The New File dialog box opens.
3. Choose 4Test include and then click OK.
A new include file opens.
4. Type the custom control class information in the INC file and then click Save.

For example, the INC file for the FlexSpinner class looks like the following:
winclass FlexSpinner : FlexBox
tag "[FlexSpinner]"
builtin void Increment(INTEGER steps)
builtin void Decrement(INTEGER steps)
property stepSize
builtin INTEGER Get()
property lowerBound
builtin INTEGER Get()
property currentValue
builtin INTEGER Get()
builtin Set(INTEGER value)
property upperBound
builtin INTEGER Get()

5. Click Options > Runtime Options and in the Use Files field navigate to the custom control INC file.
6. Record and replay tests for the custom control.

Implementing Automation Support for a Custom Control

Before you can test a custom control, implement automation support, which is the automation delegate, in
ActionScript for the custom control and compile that into the test application.

The following procedure uses a custom Flex spinner control to demonstrate how to implement automation
support for a custom control. The spinner custom control includes two buttons and a text box, as shown in
the following graphic.

Drowin Up

The user can click Down to decrement the value that is displayed in the text box and click Up to increment
the value in the text box.

The custom control offers a public CurrentValue property that can be set and retrieved.

1. Implement automation support, which is the automation delegate, in ActionScript for the custom control.

For further information about implementing an automation delegate, see the Adobe Live Documentation
at http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html.

230 | Testing in Your Environment with the Open Agent

http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html

In this example, the automation delegate adds support for the methods increment and decrement.
The example code for the automation delegate looks like this:

package customcontrols
{
import flash.display.DisplayObject;
import mx.automation.Automation;
import customcontrols.SpinnerEvent;
import mx.automation.delegates.containers.BoxAutomationIimpl;
import flash.events.Event;
import mx.automation.lAutomationObjectHelper;
import mx.events.FlexEvent;
import flash.events. lIEventDispatcher;
import mx.preloaders.DownloadProgressBar;
import flash.events.MouseEvent;
import mx.core.EventPriority;

[Mixin]
public class SpinnerAutomationDelegate extends BoxAutomationlmpl

{
public static function init(root:DisplayObject) : void

//register delegate for the automation
Automation.registerDelegateClass(Spinner, SpinnerAutomationDelegate);

public function SpinnerAutomationDelegate(obj:Spinner)

{
super(obj);
// listen to the events of interest (for recording)
obj.addEventListener(SpinnerEvent_DECREMENT, decrementHandler);
obj .addEventListener(SpinnerEvent. INCREMENT, incrementHandler);

}

protected function decrementHandler(event : SpinnerEvent) : void

recordAutomatableEvent(event);

by
protected function incrementHandler(event : SpinnerEvent) : void
{
recordAutomatableEvent(event);
}
protected function get spinner() : Spinner
{
return uiComponent as Spinner;
be
// -
// override functions
/)

override public function get automationValue():Array

return [spinner.currentValue.toString() 1;

by
private function replayClicks(button : IEventDispatcher, steps : int)
Boolean
var helper : lAutomationObjectHelper =

Automation.automationObjectHelper;
var result : Boolean;
for(var i:int; i1 < steps; i++)

Testing in Your Environment with the Open Agent | 231

helper.replayClick(button);
+

return result;

}

override public function replayAutomatableEvent(event:Event):Boolean

if(event is SpinnerEvent)

{
var spinnerEvent : SpinnerEvent = event as SpinnerEvent;
if(event.type == SpinnerEvent. INCREMENT)
{

return replayClicks(spinner.upButton, spinnerEvent.steps);

else if

{

return replayClicks(spinner.downButton, spinnerEvent.steps);
else

return false;

+
}
else
{
return super.replayAutomatableEvent(event);
}
+

// do not expose the child controls, which are the buttons and the
textfield, as individual controls
override public function get numAutomationChildren():int

return O;

}
}
+

2. To introduce the automation delegate to the Open Agent, create an XML file that describes the custom
control.

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

The XML file for the spinner custom control looks like this:

<?xml version="1.0" encoding=""UTF-8"7?>
<Typelnformation>
<ClassiInfo Name="FlexSpinner' Extends="FlexBox"'>
<Implementation Class="customcontrols.Spinner"™ />
<Events>
<Event Name=''Decrement''>
<Implementation Class="customcontrols.SpinnerEvent"
Type="'decrement" />
<Property Name="'steps'>
<PropertyType Type="integer™ />
</Property>
</Event>
</Events>
<Properties>
<Property Name="lowerBound" accessType="read">
<PropertyType Type="integer"™ />
</Property>

232 | Testing in Your Environment with the Open Agent

<Property Name="upperBound' accessType="read">
<PropertyType Type="integer' />
</Property>
<I-- expose read and write access for the currentValue property -->
<Property Name="‘currentValue' accessType=""both">
<PropertyType Type="integer" />
</Property>
<Property Name="'stepSize'" accessType="‘read">
<PropertyType Type="integer" />
</Property>
</Properties>
</ClassiInfo>
</Typelnformation>

3. Include the XML file for the custom control in the folder that includes all the XML files, which describe all
classes, methods, and properties for the supported Flex controls.

Silk Test Classic contains several XML files that describe all classes, methods, and properties for the
supported Flex controls. Those XML files are located in the <silktest_install_directory>\ng
\agent\plugins\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Open Agent starts
and initializes support for Flex, it reads the contents of this directory.

To test the Flex Spinner sample control, you must copy the CustomControls.xml file into this folder. If
the Open Agent is currently running, restart it after you copy the file into the folder.

Now, you can test the custom control using Silk Test Classic.

Flex Class Definition File

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test Classic contains several XML files that describe all classes, events, and properties for the
common Flex common and specialized controls. Those XML files are located in the
<silktest_install_directory>\ng\agent\plugins

\com.borland. fastxd. techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the agent starts and
initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

<Typelnformation>
<ClassInfo>
<Implementation />
<Events>

<Event />
</Events>
<Properties>
<Property />

;}ﬁroperties>
</ClassInfo>
</Typelnformation>

Testing in Your Environment with the Open Agent | 233

Client/Server Application Support

Silk Test Classic provides built-in support for testing client/server applications including:

« .NET WinForms

e Java AWT applications

« Java SWT/RCP application

« Java Swing applications

* Windows-based applications

In a client/server environment, Silk Test Classic drives the client application by means of an Agent process
running on each application’s machine. The application then drives the server just as it always does. Silk
Test Classic is also capable of driving the GUI belonging to a server or of directly driving a server database
by running scripts that submit SQL statements to the database. These methods of directly manipulating the
server application are intended to support testing in which the client application drives the server. For
additional information on this capability, see Testing Databases.

Client/Server Testing Challenges

Silk Test Classic provides powerful support for testing client/server applications and databases in a
networked environment. Testing multiple remote applications raises the level of complexity of QA
engineering above that required for stand-alone application testing. Here are just a few of the testing
methodology challenges raised by client/server testing:

« Managing simultaneous automatic regression tests on different configurations and platforms.
« Ensuring the reproducibility of client/server tests that modify a server database.

» Verifying the server operations of a client application independently, without relying on the application
under test.

» Testing the concurrency features of a client/server application.

» Testing the intercommunication capabilities of networked applications.

« Closing down multiple failed applications and bringing them back to a particular base state (recovery
control).

« Testing the functioning of the server application when driven at peak request rates and at maximum
data rates (peak load and volume testing).

« Automated regression testing of multi-tier client/server architectures.

Verifying Tables in ClientServer Applications

This functionality is supported only if you are using the Classic Agent.

When verifying a table in a client/server application, that is, an object of the Table class or of a class
derived from Table, you can verify the value of every cell in a specified range in the table using the Table
tab in the Verify Window dialog box. For additional information on verifying tables in Web applications, see
Working with Borderless Tables.

Specifying the range

You specify the range of cells to verify in the Range text boxes using the following syntax for the starting
and ending cells in the range:

row_number : column_name

or
row_number : column_number

234 | Testing in Your Environment with the Open Agent

Example

Specifying the following in the Range text boxes of the Verify Window dialog box
causes the value of every cell in rows 1 through 3 to be verified, starting with the column
named ID and ending with the column named Company_Name:

From field: 1 :id
To field: 3 : company_name

After you specify a cell range in the Verify Window dialog box, you can click Update to
display the values in the specified range.

Specifying a file to store the values

You specify a file to store the current values of the selected range in the Table File Name text box.

What happens
When you dismiss the Verify Window dialog box and paste the code into your script, the following occurs:

* The values that are currently in the table's specified cell range are stored in the file named in the Table
File Name text box in the Verify Window dialog box.

« AVerifyFileRangeValue method is pasted in your script that references the file and the cell range
you specified.

For example, the following VerifyFileRangeValue method call would be recorded for the preceding
example:

table._VerifyFileRangevValue (file.tbl", {{"1",
"1d"}, {"3", "‘company_name''}})

When you run your script, the values in the range specified in the second argument to
VerifyFileRangeValue are compared to the values stored in the file referenced in the first argument to
VerifyFileRangeValue.

For additional information, see the VerifyFileRangeValue method.

Evolving a Testing Strategy

There are several reasons for moving your QA program from local to remote testing:

* You may have a stand-alone application that runs on many different platforms and now you want to
simultaneously drive testing on all the platforms from one Silk Test Classic host system.

* You may have been testing a client/server application as a single local application and now you want to
drive multiple instances of the application so as to apply a heavier load to the server.

* You may want to upgrade your client/server testing so that your test cases can automatically initialize
the server and recover from server failures— in addition to driving multiple application instances.

* You may need to test applications that have different user interfaces and that communicate as peers.

If you are already a Silk Test Classic user, you will find that your testing program can evolve in any of these
directions while preserving large portions of your existing tests. This topic and related topics help you to
evolve your testing strategy by showing the incremental steps you can take to move into remote testing.

Incremental Functional Test Design

Silk Test Classic simplifies and automates the classic QA testing methodology in which testing proceeds
from the simplest cases to the most complex. This incremental functional testing methodology applies
equally well in the client/ server environment, where testing scenarios typically proceed from the simplest
functional testing of one instance of a client application, to functional and performance testing of a heavily

Testing in Your Environment with the Open Agent | 235

loaded, multi-client configuration. Therefore, we recommend the following incremental progression for
client/server testing:

» Perform functional testing on a single client application that is running on the same system as Silk Test
Classic, with the server application on the same system (if possible).

« Perform functional testing on a single remote client application, with the server application on a
separate system.

« Perform functional and concurrency testing on two remote client applications.

« Perform stress testing on a single client application running locally or remotely.

» Perform volume load testing on a configuration large enough to stress the server application.

« Perform peak load testing on a large configuration, up to the limits of the server, if possible.

« Perform performance testing on several sets of loads until you can predict performance.

Network Testing Types

Software testing can be categorized according to the various broad testing goals that are the focus of the
individual tests. At a conceptual level, the kinds of automated application testing you can perform using Silk
Test Classic in a networked environment are:

* Functional
« Configuration
¢ Concurrency

The ordering of this list conforms to the incremental functional testing methodology supported by Silk Test
Classic. Each stage of testing depends for its effectiveness on the successful completion of the previous
stage. Functional, configuration, and concurrency testing are variations of regression testing, which is a
prerequisite for any type of load testing. You can use Silk Performer for load testing, stress testing, and
performance testing.

You can perform functional testing with a single client machine. You can perform the first four types of test
with a testbed containing only two clients. The last two testing types require a heavy multi-user load and so
need a larger testbed.

Concurrency Testing

Concurrency testing tests two clients using the same server. This is a variation of functional testing that
verifies that the server can properly handle simultaneous requests from two clients. The simplest form of
concurrency testing verifies that two clients can make multiple non-conflicting server requests during the
same period of time. This is a very basic sanity test for a client/server application.

To test for problems with concurrent access to the same database record, you need to write specific scripts
that synchronize two clients to make requests of the same records in your server's databases at the same
time. Your goal is to encounter faulty read/write locks, software deadlocks, or other concurrency problems.

Once the application passes the functional tests, you can test the boundary conditions that might be
reached by large numbers of transactions.

Configuration Testing

A client/server application typically runs on multiple different platforms and utilizes a server that runs on
one or more different platforms. A complete testing program needs to verify that every possible client
platform can operate with every possible server platform. This implies the following combinations of tests:

» Test the client application and the server application when they are running on the same machine—if
that is a valid operational mode for the application. This testing must be repeated for each platform that
can execute in that mode.

» Test with the client and server on separate machines. This testing should be repeated for all different
platform combinations of server and client.

236 | Testing in Your Environment with the Open Agent

Functional Testing

Before you test the multi-user aspects of a client/server application, you should verify the functional
operation of a single instance of the application. This is the same kind of testing that you would do for a
non-distributed application.

Once you have written scripts to test all the operations of the application as it runs on one platform, you
can modify the scripts as needed for all other platforms on which the application runs. Testing multiple
platforms thus becomes almost trivial. Moreover, many of the tests you script for functional testing can
become the basis of your other types of testing. For example, you can easily modify the functional tests (or
a subset of them) to use in load testing.

Peak Load Testing

Peak load testing is placing a load on the server for a short time to emulate the heaviest demand that
would be generated at peak user times—for example, credit card verification between noon and 1 PM on
Christmas Eve. This type of test requires a significant number of client systems. If you submit complex
transactions to the server from each client in your test network, using minimal user setup, you can emulate
the typical load of a much larger number of clients.

Your testbed may not have sufficient machines to place a heavy load on your server system — even if your
clients are submitting requests at top speed. In this case it may be worthwhile to reconfigure your
equipment so that your server is less powerful. An inadequate server configuration should enable you to
test the server's management of peak server conditions.

Volume Testing

Volume testing is placing a heavy load on the server, with a high volume of data transfers, for 24 to 48
hours. One way to implement this is to use one set of clients to generate large amounts of new data and
another set to verify the data, and to delete data to keep the size of the database at an appropriate level. In
such a case, you need to synchronize the verification scripts to wait for the generation scripts. The 4Test
script language makes this easy. Usually, you would need a very large test set to drive this type of server
load, but if you under-configure your server you will be able to test the sections of the software that handle
the outer limits of data capacity.

How 4Test Handles Script Deadlock

It is possible for a multi-threaded 4Test script to reach a state in which competing threads block one
another, so that the script cannot continue. This is called a script deadlock. When the 4Test runtime
environment detects a deadlock, it raises an exception and halts the deadlocked script.

Example

The following script will never exit successfully.

share INTEGER ilndexl = O
share INTEGER ilndex2 = O

main
parallel
access ilndexl
Sleep (1)

access ilndex2
Print ('Accessed i1lndex1l and ilndex2™)
access ilndex2
Sleep (1)
access ilndexl
Print ("Accessed i1lndex2 and ilndex1'™)

Testing in Your Environment with the Open Agent | 237

Troubleshooting Configuration Test Failures

The test of your application may have failed for one of the reasons below. If the following suggestions do
not address the problem, you can enable your extension manually.

Note: Unsupported and embedded browsers, other than AOL, are recognized as client/server
applications.
The application may not have been ready to test

1. Click Enable Extensions on the Basic workflow bar.
2. On the Enable Extensions dialog box, select the application for which you want to enable extensions.
3. Close and restart your application. Make sure the application has finished loading, and then click Test.

Embedded browsers, other than AOL, are recognized as Client/Server applications

If you want to work with a web browser control embedded within an application, you must enable the
extension manually.

Testing .NET Applications with the Open Agent

Silk Test Classic provides built-in support for testing .NET applications with the Open Agent.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Windows Forms Applications

Silk Test Classic provides built-in support for testing .NET Windows Forms (Win Forms) applications using
the Open Agent as well as built-in support for testing .NET standalone and No-Touch Windows Forms (Win
Forms) applications using the Classic Agent. However, side-by-side execution is supported only on
standalone applications.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Locator Attributes for Windows Forms Applications
This functionality is supported only if you are using the Open Agent.

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

The attributes that Silk Test Classic supports for Windows Forms include:

e automationld

e caption. Supports wildcards ? and * .

» windowid

« priorlabel. For controls that do not have a caption, the priorlabel is used as the caption automatically.
For controls with a caption, it may be easier to use the caption.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Windows Forms Methods

This functionality is supported only if you are using the Open Agent.

238 | Testing in Your Environment with the Open Agent

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the Dynami cInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamiclnvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control .Dynamiclnvoke("'SetTitle", {"my new title"})

f Note: Typically, most properties are read-only and cannot be set.

y Note: Reflection is used in most technology domains to call methods and retrieve properties.

The Dynamiclnvoke Method

For a Windows Forms or a WPF control, you can use the Dynamiclnvoke method to call the following
methods:

* Public methods that the MSDN defines for the control.
¢ Public static methods that the MSDN defines.
« User-defined public static methods of any type.

First Example for the Dynamiclnvoke Method

For an object of the Silk Test Classic type DataGrid, you can call all methods that
MSDN defines for the type System.Windows.Forms.DataGrid.

To call the method 1sExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//4Test code
BOOLEAN isExpanded = (BOOLEAN)
dataGrid.Dynamiclnvoke (" IsExpanded, {3})

Second Example for the Dynamiclnvoke Method

To invoke the static method String.Compare(String sl1, String s2) inside the
AUT, use the following code:
//4Test code

INTEGER result =
mainWindow.Dynamiclnvoke(*'System.String.Compare', {"a", "b"});

The DynamiclnvokeMethods Method

For a Windows Forms or a WPF control, you can use the DynamiclInvokeMethods method to invoke a
sequence of nested methods. You can call the following methods:

Testing in Your Environment with the Open Agent | 239

¢ Public methods that the MSDN defines for the control.
* Public static methods that the MSDN defines.
» User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid
To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowlndex]-Cells[columnlndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:
string cellText = dataGrid.-Rows[0]-Cells[2];

Scripting the same example by using the DynamiclnvokeMethods method generates
a relatively complex script, because you have to pass five methods with their
corresponding parameters to the DynamiclInvokeMethods method:

INTEGER rowlndex = O
INTEGER columnlndex = 2

LIST OF STRING names = { ... }
"Rows"" // Get the list of rows from the grid.
"get_ ltem" // Get a specific row from the list of rows by
using the indexer method.
"Cells” // Get the list of cells from the the row.
"get_ltem"” // Get a specific cell from the list of cells
by using the indexer method.
"Text" // Get the text of the cell.
LIST OF LIST parameters = { ... }
{ // Parameters for the Rows property.
{rowlndex} // Parameters for the get_Item method.

// Parameters for the Cells property.
{columnindex} // Parameters for the get Iltem method.
{} // Parameters for the Text property.

dataGrid.DynamiclnvokeMethods(names, parameters)

Supported Methods and Properties
The following methods and properties can be called:

« Methods and properties that Silk Test Classic supports for the control.
* All public methods and properties that the MSDN defines for the control.

« If the control is a custom control that is derived from a standard control, all methods and properties from
the standard control can be called.

Supported Parameter Types
The following parameter types are supported:
e All built-in Silk Test Classic types

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and other types (such
as Point and Rect).
¢ Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System._Windows.Visiblity
you can use the string values of Visible, Hidden, or Col lapsed.

240 | Testing in Your Environment with the Open Agent

« .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System_Windows.Vector type has a constructor with two integer arguments.

Returned Values
The following values are returned for properties and methods that have a return value:

* The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

* All methods that have no return value return NULL.

Suppressing Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

* Win32.
e Java AWT/Swing.
e Java SWT/Eclipse.

For example, you might want to ignore container classes to streamline your test cases.

To suppress specific controls:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. Type the name of the class that you want to ignore during recording and playback into the text box.
If the text box already contains classes, add the new classes to the end of the list. Separate the classes
with a comma. For example, to ignore both the AOL Toolbar and the _AOL_Toolbar class, type AOL
Toolbar, _AOL_ Toolbar into the text box.
The OPT_TRANSPARENT_CLASSES option is set to true for these classes.

4. Click OK. The OPT_TRANSPARENT_CLASSES option is set to true for these classes, which means
the classes are added to the list of the classes that are ignored during recording and playback.

WPF Applications

This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides built-in support for testing Windows Presentation Foundation (WPF) applications
using the Open Agent. Silk Test Classic supports standalone WPF applications and can record and play
back controls in .NET version 3.5 or later.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

WPF applications support hierarchical object recognition and dynamic object recognition. You can create
tests for both dynamic and hierarchical object recognition in your test environment. You can use both
recognition methods within a single test case if necessary. Use the method best suited to meet your test
requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Testing in Your Environment with the Open Agent | 241

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

When you create a new WPF project, Silk Test Classic uses the Open Agent by default.

Supported Controls for WPF

Silk Test Classic includes record and replay support for WPF controls. In Silk Test 2009, WPF replay
support was provided. However, with the release of Silk Test 2010, the earlier WPF controls, which were
prefixed with MSUIA, are deprecated and users should use the new WPF technology domain instead.
When you record new test cases, Silk Test Classic automatically uses the new WPF technology domain.

Note: If you have an existing project that includes scripts that use the earlier MSUIA technology
domain, the test cases will no longer work.

For a complete list of the controls available for WPF testing, see the WPF Class Reference.

Locator Attributes for Windows Presentation Foundation (WPF)
Controls

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for WPF controls:

e automationid
e caption

e className

e name

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamic Object Recognition

To identify components within WPF scripts, you can specify the automationld, caption, className, or
name. The name that is given to an element in the application is used as the automationld attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationld might look like: //
WPFButton[@automationld="okButton"]".

If you define an automationld and any other attribute, only the automationld is used during replay. If there is
no automationld defined, the name is used to resolve the component. If neither a name nor an
automationld are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationld because it is the most useful property.

Attribute Type Description Example

automationld An ID that was provided by //WPFButton[@automationld="okButton®]"
the developer of the test
application.

name The name of a control. The //WPFButton[@name="okButton®]"

Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify

242 | Testing in Your Environment with the Open Agent

Attribute Type Description Example

the control in the application
code.

Caption The text that the control //\WPFButton [@automation |d='0k']"

displays. When testing a
localized application in
multiple languages, use the
automationld or name
attribute instead of the
caption.

className The simple .NET class //WPFButton[@className="MyCustomButton®]"

name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk Test Classic recognizes.

During recording, Silk Test Classic creates a locator for a WPF control by using the automationld, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has a automationld and a name, Silk Test Classic uses the automationld when creating the locator.

The following example shows how an application developer can define a name and an automationld for a
WPF button in the XAML code of the application:

<Button Name="okButton' AutomationProperties.Automationld="okButton"
Click="okButton_Click">0k</Button>

Classes that Derive from the WPFIltemsControl Class

Silk Test Classic can interact with classes that derive from WPFItemsControl, such as WPFListBox,
WPFTreeView, and WPFMenu, in two ways:

Working with Most controls contain methods and properties for typical use cases. The items are
the control identified by text or index.
For example:

listBox.Select("'Banana')
listBox.Select(2)
tree.Expand(*'/Fruit/Banana'™)

Working with For example WPFListBox1tem, WPFTreeViewltem, or WPFMenu I tem. For

individual items advanced use cases, use individual items. For example, use individual items for
opening the context menu on a specific item in a list box, or clicking a certain position
relative to an item.

Custom WPF Controls

Generally, Silk Test Classic provides record and playback support for all standard WPF controls.

Silk Test Classic handles custom controls based on the way the custom control is implemented. You can
implement custom controls by using the following approaches:

Deriving classes from This is a typical way to create compound controls. Silk Test Classic
UserControl recognizes these user controls as WPFUserControl and provides full
support for the contained controls.

Testing in Your Environment with the Open Agent | 243

Deriving classes from Silk Test Classic treats these controls as an instance of the standard WPF

standard WPF controls, control that they derive from. Record, playback, and recognition of children

such as ListBox may not work if the user control behavior differs significantly from its base
class implementation.

Using standard controls Low-level replay might not work in certain cases. Switch to high-level

that use templates to replay in such cases.

change their visual

appearance

Silk Test Classic filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Setting WPF Classes to Expose During Recording and Playback

Silk Test Classic filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.
Separate class names with a comma.

4. Click OK.

Dynamically Invoking WPF Methods

Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the Dynami cInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodL ist method.

Call multiple dynamic methods on objects with the DynamiclnvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control .Dynamiclnvoke("'SetTitle", {"my new title"})

244 | Testing in Your Environment with the Open Agent

i Note: Typically, most properties are read-only and cannot be set.

f Note: Reflection is used in most technology domains to call methods and retrieve properties.

The Dynamiclnvoke Method

For a Windows Forms or a WPF control, you can use the Dynamiclnvoke method to call the following
methods:

* Public methods that the MSDN defines for the control.
¢ Public static methods that the MSDN defines.
» User-defined public static methods of any type.

First Example for the Dynamiclnvoke Method

For an object of the Silk Test Classic type DataGrid, you can call all methods that
MSDN defines for the type System._Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//4Test code
BOOLEAN isExpanded = (BOOLEAN)
dataGrid.Dynamiclnvoke ("' IsExpanded™, {3})

Second Example for the Dynamiclnvoke Method

To invoke the static method String.Compare(String sl1, String s2) inside the
AUT, use the following code:

//4Test code
INTEGER result =
mainWindow.Dynamiclnvoke(*'System._String.Compare'™, {"a", "b"});

The DynamiclnvokeMethods Method

For a Windows Forms or a WPF control, you can use the DynamiclnvokeMethods method to invoke a
sequence of nested methods. You can call the following methods:

* Public methods that the MSDN defines for the control.
* Public static methods that the MSDN defines.
» User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowlndex].Cells[columnlndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:
string cellText = dataGrid.Rows[0]-Cells[2];

Scripting the same example by using the DynamiclnvokeMethods method generates
a relatively complex script, because you have to pass five methods with their
corresponding parameters to the DynamiclnvokeMethods method:

INTEGER rowlndex = 0O
INTEGER columnlndex = 2

Testing in Your Enviro