
Silk Test 16.0

Silk4J User Guide

Borland Software Corporation
700 King Farm Blvd, Suite 400
Rockville, MD 20850

Copyright © Micro Focus 2015. All rights reserved. Portions Copyright © 2015 Borland
Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom, and other countries.

BORLAND, the Borland logo, and Borland product names are trademarks or registered
trademarks of Borland Software Corporation or its subsidiaries or affiliated companies in the
United States, United Kingdom, and other countries.

All other marks are the property of their respective owners.

2015-02-17

ii

Contents

Welcome to Silk4J 16.0 ..8
Licensing Information ..10
Silk4J .. 11

Best Practices for Using Silk4J .. 11
Automation Under Special Conditions (Missing Peripherals) ..11
Silk Test Product Suite .. 13

What's New in Silk4J ..14
Keyword-Driven Tests ..14
Future-Proof Google Chrome Support ..14
Oracle Forms Support ...15
Testing in Multiple UI Sessions on a Single Machine ..15
Usability Enhancements ..15
Technology Updates ..15

Mozilla Firefox Support ...15
Google Chrome Support .. 15
Android Support ... 15
iOS Support ..16

API Enhancements ... 16
Silk Test Open Agent ... 17

Starting the Silk Test Open Agent ... 17
Open Agent Port Numbers ..17

Configuring the Port that Clients Use to Connect to the Information Service17
Configuring the Port that the Silk Test Client or the Test Application Uses to Connect to the Open Agent

... 18
Configuring the Port that the Silk Test Client Uses to Connect to Silk Test Recorder

... 19
Configuring the Open Agent to Run Remotely in a Network Address Translation (NAT) Environment

.. 19
Base State ... 20

Modifying the Base State .. 20
Running the Base State .. 21

Application Configuration ... 22
Modifying an Application Configuration ...22
Select Application Dialog Box ... 23
Application Configuration Errors ... 23
Configuring Silk4J to Launch an Application that Uses the Java Network Launching Protocol (JNLP)

.. 24
Creating a Test that Tests Multiple Applications ..24

Silk4J Quick Start Tutorial ...26
Creating a Silk4J Project ...26
Recording a Test for the Insurance Company Web Application .. 27
Replaying the Test for the Insurance Company Web Application28

Working with Silk4J Projects .. 29
Creating a Silk4J Project ...29
Importing a Silk4J Project ... 30

Creating Tests ...31
Creating a Test .. 31

Creating a Test for a Web Application .. 31
Creating a Test for a Standard Application ...31

Contents | 3

Creating a Test for a Mobile Web Application ...32
Creating a Test Case Manually .. 32
Actions Available During Recording ... 33

Adding a Verification to a Script while Recording ..33
Adding a Locator or an Object Map Item to a Test Method Using the Locator Spy34
Including Custom Attributes in a Test ..35
Characters Excluded from Recording and Replaying ... 35

Replaying Tests .. 36
Replaying Tests from Eclipse .. 36
Replaying a Test from the Command Line .. 36
Replaying Tests from a Continuous Integration Server ... 37
Replaying Silk4J Tests from Silk Central ...37
Triggering Tests on Silk Central from a Continuous Integration Server38
Troubleshooting when Replaying Test Methods from Ant ... 39
Replaying Tests in a Specific Order .. 39
Visual Execution Logs with TrueLog ... 40

Enabling TrueLog ... 40
Why is TrueLog Not Displaying Non-ASCII Characters Correctly? 41

Setting Script Options ... 42
Setting TrueLog Options ..42
Setting Recording Preferences ... 42
Setting Browser Recording Options .. 43
Setting Custom Attributes ... 44
Setting Classes to Ignore .. 45
Setting WPF Classes to Expose During Recording and Playback45
Setting Synchronization Options ... 46
Setting Replay Options ... 47
Setting Advanced Options ...47

Setting Silk4J Preferences .. 49
Converting Projects to and from Silk4J .. 50

Converting a Java Project to a Silk4J Project ... 50
Converting a Silk4J Project to a Java Project ... 50

Testing Specific Environments ... 51
Active X/Visual Basic Applications .. 51

Dynamically Invoking ActiveX/Visual Basic Methods ... 51
Apache Flex Support ...52

Configuring Flex Applications to Run in Adobe Flash Player 52
Launching the Component Explorer ...53
Testing Apache Flex Applications ...53
Testing Apache Flex Custom Controls ... 53
Customizing Apache Flex Scripts ...63
Testing Multiple Flex Applications on the Same Web Page63
Adobe AIR Support .. 64
Overview of the Flex Select Method Using Name or Index 64
Selecting an Item in the FlexDataGrid Control ... 65
Enabling Your Flex Application for Testing ..65
Styles in Apache Flex Applications ...76
Configuring Flex Applications for Adobe Flash Player Security Restrictions77
Attributes for Apache Flex Applications ..77
Why Cannot Silk4J Recognize Apache Flex Controls? ..77

Java AWT/Swing Support .. 78
Attributes for Java AWT/Swing Applications ...78
Dynamically Invoking Java Methods ...79
Configuring Silk4J to Launch an Application that Uses the Java Network Launching Protocol (JNLP)

... 80

4 | Contents

Determining the priorLabel in the Java AWT/Swing Technology Domain80
Oracle Forms Support ..81

Java SWT and Eclipse RCP Support ...81
Java SWT Custom Attributes ... 82
Attributes for Java SWT Applications ... 82
Dynamically Invoking Java Methods ...82

Testing Mobile Web Applications ...84
Testing Mobile Web Applications on Android ... 84
Testing Mobile Web Applications on iOS ..89
Recording Mobile Applications ... 91
Interacting with a Mobile Device ...92
Troubleshooting when Testing Mobile Web Applications ..92
Limitations for Testing Mobile Web Applications .. 95
Clicking on Objects in a Mobile Website .. 96

.NET Support .. 97
Windows Forms Support ..97
Windows Presentation Foundation (WPF) Support ..102
Silverlight Application Support ... 109

Rumba Support ...113
Enabling and Disabling Rumba .. 113
Locator Attributes for Identifying Rumba Controls ..114
Using Screen Verifications with Rumba ... 114
Testing a Unix Display .. 114

SAP Support ... 115
Attributes for SAP Applications ...115
Dynamically Invoking SAP Methods ...115
Dynamically Invoking Methods on SAP Controls ... 116
Configuring Automation Security Settings for SAP ...117

Windows API-Based Application Support ... 117
Attributes for Windows API-based Client/Server Applications117
Determining the priorLabel in the Win32 Technology Domain 118

xBrowser Support ... 118
Selecting the Browser for Test Replay ..118
Test Objects for xBrowser ...119
Object Recognition for xBrowser Objects ...119
Page Synchronization for xBrowser ..120
Comparing API Playback and Native Playback for xBrowser 121
Setting Browser Recording Options ... 122
Setting Mouse Move Preferences .. 123
Browser Configuration Settings for xBrowser ...123
Configuring the Locator Generator for xBrowser ..125
Prerequisites for Replaying Tests with Google Chrome 126
Limitations for Testing with Google Chrome ...127
xBrowser Frequently Asked Questions .. 127
Attributes for Web Applications .. 131
Custom Attributes for Web Applications ... 132

64-bit Application Support ...133
Supported Attribute Types ...133

Attributes for Apache Flex Applications ..133
Attributes for Java AWT/Swing Applications ...133
Attributes for Java SWT Applications ... 134
Attributes for SAP Applications ...134
Locator Attributes for Identifying Silverlight Controls ..134
Locator Attributes for Identifying Rumba Controls ..135
Attributes for Web Applications .. 136
Attributes for Windows Forms Applications .. 136

Contents | 5

Attributes for Windows Presentation Foundation (WPF) Applications137
Attributes for Windows API-based Client/Server Applications138
Dynamic Locator Attributes .. 138

Keyword-Driven Tests ..140
Advantages of Keyword-Driven Testing ...140
Keywords ...140
Creating a Keyword-Driven Test in Silk4J ... 141
Recording a Keyword-Driven Test in Silk4J ...142
Setting the Base State for a Keyword-Driven Test in Silk4J .. 143
Implementing a Keyword in Silk4J .. 143
Recording a Keyword in Silk4J ..144
Marking a Test Method in a Script as a Keyword .. 144
Editing a Keyword-Driven Test .. 145
Combining Keywords into Keyword Sequences ..145
Replaying Keyword-Driven Tests ...146
Replaying Keyword-Driven Tests Which Are Stored in Silk Central 146
Replaying Keyword-Driven Tests from the Command Line ... 146
Replaying a Keyword-Driven Test with Specific Variables ..147
Integrating Silk4J with Silk Central ..148
Uploading a Keyword Library to Silk Central ...148
Searching for a Keyword ... 150
Filtering Keywords ...151
Finding All References of a Keyword ... 151
Grouping Keywords ...151
Troubleshooting for Keyword-Driven Testing ... 152

Object Recognition .. 153
Locator Basic Concepts .. 153

Object Type and Search Scope ..153
Using Attributes to Identify an Object ... 154

Locator Syntax .. 154
Using Locators .. 156
Using Locators to Check if an Object Exists ... 156
Identifying Multiple Objects with One Locator ... 157
Locator Customization .. 157

Stable Identifiers ...157
Custom Attributes ...159

Troubleshooting Performance Issues for XPath .. 162
Locator Spy ... 163

Object Maps .. 164
Advantages of Using Object Maps ..165
Turning Object Maps Off and On ...165
Using Assets in Multiple Projects .. 165
Merging Object Maps During Action Recording ..166
Using Object Maps with Web Applications ..167
Renaming an Object Map Item ... 168
Modifying Object Maps ..168
Modifying a Locator in an Object Map ...169
Updating Object Maps from the Test Application .. 170
Copying an Object Map Item ...171
Adding an Object Map Item ...171
Opening an Object Map from a Script ...172
Highlighting an Object Map Item in the Test Application ... 172
Navigating from a Locator to an Object Map Entry in a Script .. 173
Finding Errors in an Object Map ... 173
Deleting an Object Map Item ...174

6 | Contents

Initially Filling Object Maps ..174
Grouping Elements in Object Maps .. 174

Image Recognition Support .. 176
Image Click Recording .. 176
Image Recognition Methods ... 176
Image Assets .. 177

Creating an Image Asset ..177
Adding Multiple Images to the Same Image Asset ...178
Opening an Asset from a Script ... 178

Image Verifications ..179
Creating an Image Verification ... 179
Adding an Image Verification During Recording ...180

Using Assets in Multiple Projects .. 180
Enhancing Tests ..182

Recording Additional Actions Into an Existing Test ... 182
Calling Windows DLLs .. 182

Calling a Windows DLL from Within a Script ..182
DLL Function Declaration Syntax ...183
DLL Calling Example ..183
Passing Arguments to DLL Functions .. 184
Passing Arguments that Can Be Modified by the DLL Function185
Passing String Arguments to DLL Functions ..185
Aliasing a DLL Name ..186
Conventions for Calling DLL Functions .. 186

Custom Controls ... 187
Dynamic Invoke .. 187
Adding Code to the Application Under Test to Test Custom Controls 188
Testing Apache Flex Custom Controls ... 191
Managing Custom Controls ..191

Improving Object Recognition with Microsoft Accessibility ... 195
Using Accessibility ..195
Enabling Accessibility ...195

Overview of Silk4J Support of Unicode Content ... 196
Text Recognition Support .. 196
Grouping Silk4J Tests ... 198

Why Do I Get the Error: Category cannot be resolved to a type? 199
Inserting a Result Comment in a Script .. 199
Consuming Parameters from Silk Central ... 199
Configuration Testing with Silk Central Connect ... 199
Measuring Execution Time ..200
Slowing Down Tests .. 200
Testing Applications in Multiple UI Sessions on a Single Machine 200

Contacting Micro Focus .. 202
Information Needed by Micro Focus SupportLine ...202

Contents | 7

Welcome to Silk4J 16.0

Welcome to Silk4J 16.0

About Silk4J
Product Suite

What's new

Release Notes

Featured sections

Best Practices for Using Silk4J
Creating Tests
Testing Specific Environments

Tutorials and demonstrations

Quick Start Tutorial

Code samples

Enhancing Tests

Online resources

Borland Home Page
Borland Learning Center
Borland Channel on YouTube
Online Documentation
Micro Focus SupportLine
Micro Focus Product Updates
Silk Test Knowledge Base
Silk Test Forum
Micro Focus Training Store

Provide feedback

Contacting Micro Focus on page 202

8 | Welcome to Silk4J 16.0

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://www.borland.com
http://www.borland.com/resources/learningcenter/
http://www.youtube.com/user/TheBorlandSoftware
http://documentation.microfocus.com/help/index.jsp
http://productlink.microfocus.com/index.asp?mode=support&prod=NE01
http://productlink.microfocus.com/index.asp?mode=updates&prod=NE01
http://community.microfocus.com/borland/test/silk_test/w/knowledge_base/
http://community.microfocus.com/borland/test/silk_test/f/29.aspx
http://trainingstore.microfocus.com/

Email us feedback regarding this Help

Welcome to Silk4J 16.0 | 9

mailto:DocsTeam@microfocus.com?subject=PRODUCT NAME Documentation Feedback

Licensing Information
Unless you are using a trial version, Silk Test requires a license.

The licensing model is based on the client that you are using and the applications that you want to be able
to test. The available licensing modes support the following application types:

Licensing Mode Application Type

Full • Web applications, including the following:

• Apache Flex
• Java-Applets

• Mobile Web applications.

• Android
• iOS

• Apache Flex
• Java AWT/Swing, including Oracle Forms
• Java SWT and Eclipse RCP
• .NET, including Windows Forms and Windows

Presentation Foundation (WPF)
• Rumba
• Windows API-Based

Note: To upgrade your license to a Full license,
visit www.borland.com.

Premium All application types that are supported with a Full
license, plus SAP applications.

Note: To upgrade your license to a Premium
license, visit www.borland.com.

Note: A Silk Test license is bound to a specific version of Silk Test.

10 | Licensing Information

http://www.borland.com/contact/
http://www.borland.com/contact/

Silk4J
Silk4J enables you to create functional tests using the Java programming language. Silk4J provides a Java
runtime library that includes test classes for all the classes that Silk4J supports for testing. This runtime
library is compatible with JUnit, which means you can leverage the JUnit infrastructure and run Silk4J tests.
You can also use all available Java libraries in your test cases.

The testing environments that Silk4J supports include:

• Mobile Web applications

• Android
• iOS

• Apache Flex
• Java AWT/Swing
• Java SWT
• Rumba
• SAP
• Microsoft Silverlight
• Windows API-based client/server (Win32)
• Windows Forms
• Windows Presentation Foundation (WPF)
• xBrowser (Web applications)

You can find sample scripts for Web application testing in the public Documents folder, under %PUBLIC%
\Documents\SilkTest\samples\Silk4J.

Note: If you have opted not to display the start screen when you start Silk4J, you can check for
available updates by clicking Help > Check for Product Update.

Best Practices for Using Silk4J
Depending on the application under test and the testing environment, you might face different challenges
while trying to perform functional or regression tests against your application. Micro Focus recommends
the following best practices:

• To optimally use the functionality that Silk4J provides, create an individual project for each application
that you want to test, except when testing multiple applications in the same test.

• If you have a large test framework in place, consider using the keyword-driven testing approach.

Automation Under Special Conditions (Missing
Peripherals)

Basic product orientation

Silk4J is a GUI testing product that tries to act like a human user in order to achieve meaningful test results
under automation conditions. A test performed by Silk4J should be as valuable as a test performed by a
human user while executing much faster. This means that Silk4J requires a testing environment that is as
similar as possible to the testing environment that a human user would require in order to perform the
same test.

Silk4J | 11

Physical peripherals

Manually testing the UI of a real application requires physical input and output devices like a keyboard, a
mouse, and a display. Silk4J does not necessarily require physical input devices during test replay. What
Silk4J requires is the ability of the operating system to perform keystrokes and mouse clicks. The Silk4J
replay usually works as expected without any input devices connected. However, some device drivers
might block the Silk4J replay mechanisms if the physical input device is not available.

The same applies to physical output devices. A physical display does not necessarily need to be
connected, but a working video device driver must be installed and the operating system must be in a
condition to render things to the screen. For example, rendering is not possible in screen saver mode or if a
session is locked. If rendering is not possible, low-level replay will not work and high-level replay might also
not work as expected, depend on the technology that is used in the application under test (AUT).

Virtual machines

Silk4J does not directly support virtualization vendors, but can operate with any type of virtualization
solution as long as the virtual guest machine behaves like a physical machine. Standard peripherals are
usually provided as virtual devices, regardless of which physical devices are used with the machine that
runs the virtual machine.

Cloud instances

From an automation point of view, a cloud instance is not different to a virtual machine. However, a cloud
instance might run some special video rendering optimization, which might lead to situations where screen
rendering is temporarily turned off to save hardware resources. This might happen when the cloud instance
detects that no client is actively viewing the display. In such a case, you could open a VNC window as a
workaround.

Special cases

Application
launched
without any
window
(headless)

Such an application cannot be tested with Silk4J. Silk4J needs to hook to a target
application process in order to interact with it. Hooking is not possible for processes
that do not have a visible window. In such a case you can only run system commands.

Remote
desktops,
terminal
services, and
remote
applications (all
vendors)

If Silk4J resides and operates within a remote desktop session, it will fully operate as
expected.

Note: You require a full user session and the remote viewing window needs to
be maximized. If the remote viewing window is not displayed for some reason,
for example network issues, Silk4J will continue to replay but might produce
unexpected results, depending on what remote viewing technology is used. For
example, a lost remote desktop session will negatively impact video rendering,
whereas other remote viewing solutions might show no impact at all once the
viewing window was lost.

If Silk4J is used to interact with the remote desktop, remote view, or remote app
window, only low-level techniques can be used, because Silk4J sees only a
screenshot of the remote machine. For some remote viewing solutions even low-level
operations may not be possible because of security restrictions. For example, it might
not be possible to send keystrokes to a remote application window.

Known
automation
obstacles

Silk4J requires an interactively-logged-on full-user session. Disable anything that
could lock the session, for example screen savers, hibernation, or sleep mode. If this
is not possible because of organizational policies you could workaround such issues
by adding keep alive actions, for example moving the mouse, in regular intervals or at
the end of each test case.

12 | Silk4J

Note: Depending on the configuration of the actual testing environment and the
technologies that are used for the AUT, the virtualization, and the terminal
services, you may face additional challenges and limitations during the test
automation process.

Silk Test Product Suite
Silk Test is an automated testing tool for fast and reliable functional and regression testing. Silk Test helps
development teams, quality teams, and business analysts to deliver software faster, and with high quality.
With Silk Test you can record and replay tests across multiple platforms and devices to ensure that your
applications work exactly as intended.

The Silk Test product suite includes the following components:

• Silk Test Workbench – Silk Test Workbench is the quality testing environment that offers .NET scripting
for power users and easy to use visual tests to make testing more accessible to a broader audience.

• Silk4NET – The Silk4NET Visual Studio plug-in enables you to create Visual Basic or C# test scripts
directly in Visual Studio.

• Silk4J – The Silk4J Eclipse plug-in enables you to create Java-based test scripts directly in your Eclipse
environment.

• Silk Test Classic – Silk Test Classic is the traditional, 4Test Silk Test product.
• Silk Test Agents – The Silk Test Agent is the software process that translates the commands in your

tests into GUI-specific commands. In other words, the Agent drives and monitors the application you are
testing. One Agent can run locally on the host machine. In a networked environment, any number of
Agents can run on remote machines.

The product suite that you install determines which components are available. To install all components,
choose the complete install option. To install all components with the exception of Silk Test Classic, choose
the standard install option.

Silk4J | 13

What's New in Silk4J
Silk4J supports the following new features:

Keyword-Driven Tests
You can now use the keyword-driven testing methodology to separate test design from test development in
Silk4J. Users can now simply design tests by defining keywords, without having to worry about
implementation details. In a second step, the keywords defined for these new tests can be implemented by
automation engineers. These keywords can then be used by other users to create new keyword-driven
tests.

Silk Central, the test management solution of the Silk product suite, now also supports the keyword-driven
testing methodology. By using Silk Central in combination with Silk4J, you can enable your automation
engineers to seamlessly automate your manual test cases in Silk Central and to develop a maintainable
automation framework, consisting of keywords in Silk Test.

The advantages of using the keyword-driven testing methodology are the following:

• Keyword-driven testing separates test automation from test case design, which allows for better division
of labor and collaboration between test engineers implementing keywords and subject matter experts
designing test cases.

• Tests can be developed early, without requiring access to the application under test, and the keywords
can be implemented later.

• Tests can be developed without programming knowledge.
• Keyword-driven tests require less maintenance in the long run. You need to maintain the keywords, and

all keyword-driven tests using these keywords are automatically updated.
• Test cases are concise.
• Test cases are easier to read and to understand for a non-technical audience.
• Test cases are easy to modify.
• New test cases can reuse existing keywords, which amongst else makes it easier to achieve a greater

test coverage.
• The internal complexity of the keyword implementation is not visible to a user that needs to create or

execute a keyword-driven test.

Keyword-driven tests are now supported in the following Silk Test clients:

• Silk Test Workbench
• Silk4J
• Silk4NET

Note: Silk4NET does not support keyword-driven testing in Visual Studio 2010.

Future-Proof Google Chrome Support
The improved Google Chrome support now enables you to test against a web application in new versions
of Google Chrome without updating Silk Test.

14 | What's New in Silk4J

Oracle Forms Support
You can now use Silk4J to test applications which are based on Oracle Forms.

Testing in Multiple UI Sessions on a Single Machine
From Silk4J or Silk4NET, you can now connect to Open Agent instances in multiple UI sessions on a single
machine. This new feature enables you to perform multi-session or multi-agent testing with Silk4J or
Silk4NET.

Usability Enhancements
This section lists usability enhancements that have been made in Silk Test 16.0.

Recording enhancements

• The Recording window now displays the recorded actions.
• You can now change the order of the recorded actions in the Recording window.
• You can now delete falsely recorded actions during recording.
• You can now pause recording.
• For keyword-driven testing, you can add new keywords during recording.

Technology Updates
This section lists the significant technology updates for Silk Test 16.0.

Mozilla Firefox Support
Silk Test now includes playback support for applications running in:

• Mozilla Firefox 30
• Mozilla Firefox 31
• Mozilla Firefox 32
• Mozilla Firefox 33
• Mozilla Firefox 34

Google Chrome Support
Silk Test now includes playback support for applications running in:

• Google Chrome 36
• Google Chrome 37
• Google Chrome 38
• Google Chrome 39
• Google Chrome 40

Android Support
Silk Test now includes support for mobile Web applications running in:

What's New in Silk4J | 15

• Android 5

Note: Because of a known issue with the proxy settings of the Android emulator, you can currently not
use Silk Test to test a Web application on an Android emulator with an Android version later than
Android 4.4.

iOS Support
Silk Test now includes support for mobile Web applications running in:

• iOS 8.0
• iOS 8.1
• iOS 8.1.1
• iOS 8.1.2
• iOS 8.1.3

API Enhancements
Lists API enhancements that have been made in Silk Test 16.0.

New Timer Class

The new Timer class now enables you to accurately measure elapsed times for test executions. Among
other usages, the methods and properties in the new Timer class can be used for the timing of test
executions that are triggered from Silk Performer.

16 | What's New in Silk4J

Silk Test Open Agent
The Silk Test Open Agent is the software process that translates the commands in your scripts into GUI-
specific commands. In other words, the Open Agent drives and monitors the application that you are
testing.

One Agent can run locally on the host machine. In a networked environment, any number of Agents can
replay tests on remote machines. However, you can record only on a local machine.

Starting the Silk Test Open Agent
Before you can create a test or run a sample script, the Silk Test Open Agent must be running. Typically,
the Agent starts when you launch the product. If you must manually start the Open Agent, perform this
step.

Click Start > Programs > Silk > Silk Test > Tools > Silk Test Open Agent . The Silk Test Open Agent
icon displays in the system tray.

Open Agent Port Numbers
When the Open Agent starts, a random available port is assigned to Silk4J and to the application that you
are testing. The port numbers are registered on the information service. Silk4J contacts the information
service to determine the port to use to connect to the Open Agent. The information service communicates
the appropriate port, and Silk4J connects to that port. Communication runs directly between Silk4J and the
agent.

By default, the Open Agent communicates with the information service on port 22901. You can configure
additional ports for the information service as alternate ports that work when the default port is not
available. By default, the information service uses ports 2966, 11998, and 11999 as alternate ports.

Typically, you do not have to configure port numbers manually. However, if you have a port number conflict
or an issue with a firewall, you must configure the port number for that machine or for the information
service. You can use a different port number for a single machine or you can use the same available port
number for all your machines.

Configuring the Port that Clients Use to Connect to the
Information Service
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Agent. Then,
the information service forwards communication to the port that the Agent uses.

The default port of the information service is 22901. When you can use the default port, you can type
hostname without the port number for ease of use. If you do specify a port number, ensure that it matches
the value for the default port of the information service or one of the additional information service ports.
Otherwise, communication will fail.

If necessary, you can change the port number that all clients use to connect to the information service.

1. Navigate to the infoservice.properties.sample file and open it.

Silk Test Open Agent | 17

This file is located in C:\Documents and Settings\All Users\Application Data\Silk
\SilkTest\conf, where “C:\Documents and Settings\All Users” is equivalent to the content
of the ALLUSERSPROFILE environment variable, which is set by default on Windows systems.

This file contains commented text and sample alternate port settings.

2. Change the value for the appropriate port.

Typically, you configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

Port numbers can be any number from 1 to 65535.

• infoservice.default.port – The default port where the information service runs. By default,
this port is set to 22901.

• infoservice.additional.ports – A comma separated list of ports on which the information
service runs if the default port is not available. By default, ports 2966, 11998, and 11999 are set as
alternate ports.

3. Save the file as infoservice.properties.

4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Configuring the Port that the Silk Test Client or the Test
Application Uses to Connect to the Open Agent
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Agent. Then,
the information service forwards communication to the port that the Agent uses.

If necessary, change the port number that the Silk Test client or the application that you want to test uses to
connect to the Open Agent.

1. Navigate to the agent.properties.sample file and open it.

By default, this file is located at: %APPDATA%\Silk\SilkTest\conf, which is typically C:\Users
\<user name>\AppData\Silk\SilkTest\conf where <user name> equals the current user
name.

2. Change the value for the appropriate port.

Typically, you configure port settings to resolve a port conflict.

Note: Each port number must be unique. Ensure that the port numbers for the Agent differ from
the information service port settings.

Port numbers can be any number from 1 to 65535.

Port settings include:

• agent.vtadapter.port – Controls communication between Silk Test Workbench and the Open
Agent when running tests.

• agent.xpmodule.port – Controls communication between Silk Test Classic and the Agent when
running tests.

• agent.autcommunication.port – Controls communication between the Open Agent and the
application that you are testing.

• agent.rmi.port – Controls communication with the Open Agent and Silk4J.
• agent.ntfadapter.port – Controls communication with the Open Agent and Silk4NET.

Note: The ports for Apache Flex testing are not controlled by this configuration file. The assigned
port for Flex application testing is 6000 and increases by 1 for each Flex application that is tested.
You cannot configure the starting port for Flex testing.

18 | Silk Test Open Agent

3. Save the file as agent.properties.

4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Configuring the Port that the Silk Test Client Uses to
Connect to Silk Test Recorder
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Agent. Then,
the information service forwards communication to the port that the Agent uses.

If necessary, change the port number that Silk Test Classic, Silk4J, or Silk4NET uses to connect to Silk
Test Recorder.

1. Navigate to the recorder.properties.sample file and open it.

By default, this file is located at: %APPDATA%\Silk\Silk Test\conf, which is typically C:
\Documents and Settings\<user name>\AppData\Silk\SilkTest\conf where <user
name> equals the current user name.

2. Change the recorder.api.rmi.port to the port that you want to use.

Port numbers can be any number from 1 to 65535.

Note: Each port number must be unique. Ensure that the port numbers for the Agent settings differ
from the recorder and the information service port settings.

3. Save the file as recorder.properties.

4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Configuring the Open Agent to Run Remotely in a
Network Address Translation (NAT) Environment

To remotely run the Open Agent in a network address translation (NAT) environment, such as on a Lab
Manager virtual machine (VM), configure the Agent to include a VM argument.

1. Navigate to the agent.properties.sample file and open it.

By default, this file is located at: %APPDATA%\Silk\SilkTest\conf, which is typically C:
\Documents and Settings\<user name>\Application Data\Silk\SilkTest\conf.

2. Add the following property:

java.rmi.server.hostname=<external IP of VM>

3. Save the file as agent.properties .

Silk Test Open Agent | 19

Base State
An application’s base state is the known, stable state that you expect the application to be in before each
test case begins execution, and the state the application can be returned to after each test case has ended
execution. This state may be the state of an application when it is first started.

When you create a class for an application, Silk4J automatically creates a base state.

Base states are important because they ensure the integrity of your tests. By guaranteeing that each test
case can start from a stable base state, you can be assured that an error in one test case does not cause
subsequent test cases to fail.

Silk4J automatically ensures that your application is at its base state during the following stages:

• Before a test runs
• During the execution of a test
• After a test completes successfully

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

Modifying the Base State
You can change the executable location, working directory, locator, or URL of the base state if necessary.
For example, if you want to launch tests from a production Web site that were previously tested on a testing
Web site, change the base state URL and the tests will run in the new environment.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

2. Click Edit to the right of the application configuration that you want to change.

3. If you are testing a desktop application, type the executable name and file path of the desktop
application that you want to test into the Executable Pattern text box.
For example, you might type *\calc.exe to specify the Calculator.

4. If you are testing a desktop application and you want to use a command line pattern in combination with
the executable file, type the command line pattern into the Command Line Pattern text box.

Using the command line is especially useful for Java applications because most Java programs run by
using javaw.exe. This means that when you create an application configuration for a typical Java
application, the executable pattern, *\javaw.exe is used, which matches any Java process. Use the
command line pattern in such cases to ensure that only the application that you want is enabled for
testing. For example, if the command line of the application ends with com.example.MyMainClass you
might want to use *com.example.MyMainClass as the command line pattern.

5. If you are testing a Web site, in the Url to navigate text box, type the Web address for the Web page to
launch when a test begins.

6. Click OK.

7. If the application under test usually takes a long time to start, increase the application ready timeout in
the replay options.

20 | Base State

Running the Base State
Before starting to record a test against an application, you can execute the base state to bring all
applications, against which you want to record, to the appropriate state for recording.

Depending on the type of the application, the following actions are performed:

• The application configurations of all applications, for which an application configuration is defined in the
current project, are executed.

• For Web applications, the Web application is opened in the default browser and to the default URL.

To run the base state:

Click Silk4J > Run Base State.

The base state is executed.

Base State | 21

Application Configuration
An application configuration defines how Silk4J connects to the application that you want to test. Silk4J
automatically creates an application configuration when you create the base state. However, at times, you
might need to modify, remove, or add an additional application configuration. For example, if you are testing
an application that modifies a database and you use a database viewer tool to verify the database
contents, you must add an additional application configuration for the database viewer tool.

• For a Windows application, an application configuration includes the following:

• Executable pattern

All processes that match this pattern are enabled for testing. For example, the executable pattern for
Internet Explorer is *\IEXPLORE.EXE. All processes whose executable is named IEXPLORE.EXE
and that are located in any arbitrary directory are enabled.

• Command line pattern

The command line pattern is an additional pattern that is used to constrain the process that is
enabled for testing by matching parts of the command line arguments (the part after the executable
name). An application configuration that contains a command line pattern enables only processes for
testing that match both the executable pattern and the command line pattern. If no command-line
pattern is defined, all processes with the specified executable pattern are enabled. Using the
command line is especially useful for Java applications because most Java programs run by using
javaw.exe. This means that when you create an application configuration for a typical Java
application, the executable pattern, *\javaw.exe is used, which matches any Java process. Use
the command line pattern in such cases to ensure that only the application that you want is enabled
for testing. For example, if the command line of the application ends with
com.example.MyMainClass you might want to use *com.example.MyMainClass as the command
line pattern.

• For a Web application in a desktop browser, an application configuration includes only the browser type.
• For a Web application in a mobile browser, an application configuration includes the following:

• Browser type.
• Mobile Device Name.

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

Modifying an Application Configuration
An application configuration defines how Silk4J connects to the application that you want to test. Silk4J
automatically creates an application configuration when you create the base state. However, at times, you
might need to modify, remove, or add an additional application configuration. For example, if you are testing
an application that modifies a database and you use a database viewer tool to verify the database
contents, you must add an additional application configuration for the database viewer tool.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

2. To add an additional application configuration, click Add application configuration.

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

22 | Application Configuration

The Select Application dialog box opens. Select the tab and then the application that you want to test
and click OK.

3. To remove an application configuration, click Remove next to the appropriate application configuration.

4. To edit an application configuration, click Edit.

5. Click OK.

Select Application Dialog Box
Use the Select Application dialog box to select the application that you want to test, to associate an
application with an object map, or to add an application configuration to a test. Application types are listed
in tabs on the dialog box. Select the tab for the application type you want to use.

Windows Lists all Microsoft Windows applications that are running on the system. Select an item from
the list and click OK.

Use the Hide processes without caption check box to filter out applications that have no
caption.

Web Lists all available browsers, including mobile browsers on any connected mobile devices.
Specify the Web page to open in the Enter URL to navigate text box. If an instance of the
selected browser is already running, you can click Use URL from running browser to record
against the URL currently displayed in the running browser instance.

Restriction: If you are recording a test for a Web application, you can only record with
Internet Explorer. However, you can play back Web tests with other supported browsers
and you can record mobile Web applications on any supported mobile browser.

Note: Do not add more than one browser application configuration when testing a Web
application with a defined base state.

Application Configuration Errors
When the program cannot attach to an application, the following error message opens:
Failed to attach to application <Application Name>. For additional information, refer to the Help.

In this case, one or more of the issues listed in the following table may have caused the failure:

Issue Reason Solution

Time out • The system is too slow.

• The size of the memory of the
system is too small.

Use a faster system or try to reduce
the memory usage on your current
system.

User Account Control (UAC) fails You have no administrator rights on
the system.

Log in with a user account that has
administrator rights.

Command-line pattern The command-line pattern is too
specific. This issue occurs especially
for Java. The replay may not work as
intended.

Remove ambiguous commands from
the pattern.

• The Select Browser dialog box
does not display when running a
test against a Web application.

A base state and multiple browser
application configurations are defined
for the test case.

Remove all browser application
configurations except one from the
test case.

Application Configuration | 23

Issue Reason Solution

• Multiple browser instances are
started when running a test
against a Web application.

• When running a test against a
Web application with a browser
instance open, Silk4J might stop
working.

Configuring Silk4J to Launch an Application that Uses the
Java Network Launching Protocol (JNLP)

Applications that start using the Java Network Launching Protocol (JNLP) require additional configuration
in Silk4J. Because these applications are started from the Web, you must manually configure the
application configuration to start the actual application and launch the "Web Start". Otherwise, the test will
fail on playback unless the application is already running.

1. If the test fails, because Silk4J cannot start the application, edit the application configuration.

2. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

3. Edit the base state to ensure that the Web Start launches during playback.

a) Click Edit.
b) In the Executable Pattern text box, type the absolute path for the javaws.exe.

For example, you might type:

%ProgramFiles%\Java\jre6\bin\javaws.exe

c) In the Command Line Pattern text box, type the command line pattern that includes the URL to the
Web Start.

"<url-to-jnlp-file>"

For example, for the SwingSet3 application, type:

"http://download.java.net/javadesktop/swingset3/SwingSet3.jnlp"

d) Click OK.

4. Click OK. The test uses the base state to start the web-start application and the application
configuration executable pattern to attach to javaw.exe to execute the test.

When you run the test, a warning states that the application configuration EXE file does not match the base
state EXE file. You can disregard the message because the test executes as expected.

Creating a Test that Tests Multiple Applications
You can test multiple applications with a single test script. To create such a test script, you need to add an
application configuration for each application that you want to test to the project in which the script resides.

1. Record or manually script a test for the primary application that you want to test.

2. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

24 | Application Configuration

3. To add an additional application configuration, click Add application configuration.

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

The Select Application dialog box opens. Select the tab and then the application that you want to test
and click OK.

4. Click OK.

5. Record or manually script additional actions into the script using the new application configuration.

Note: Do not add more than one browser application configuration when testing a Web application
with a defined base state.

Application Configuration | 25

Silk4J Quick Start Tutorial
This tutorial provides a step-by-step introduction to using Silk4J to test a Web application using dynamic
object recognition. Dynamic object recognition enables you to write test cases that use XPath queries to
find and identify objects.

Important: To successfully complete this tutorial you need basic knowledge of Java and JUnit.

For the sake of simplicity, this guide assumes that you have installed Silk4J and are using the sample
Insurance Company Web application, available from http://demo.borland.com/InsuranceWebExtJS/.

Note: You must have local administrator privileges to run Silk4J.

Creating a Silk4J Project
When you create a Silk4J project using the New Silk4J Project wizard, the wizard contains the same
options that are available when you create a Java project using the New Java Project wizard. Additionally,
the Silk4J wizard automatically makes the Java project a Silk4J project.

1. In the Eclipse workspace, perform one of the following steps:

• Click the drop-down arrow next to the Silk Test toolbar icon and choose New Silk4J Project.
• Right click in the Package Explorer and select New > Other. Expand the Silk4J folder and double-

click Silk4J Project.
• If you installed or updated Silk4J to an existing Eclipse location, choose File > New > Other .

Expand the Silk4J folder and double-click Silk4J Project.

The New Silk4J Project wizard opens.

2. In the Project Name text box, type a name for your project.
For example, type Tutorial.

3. If you want to perform keyword-driven testing or configuration testing with Silk Central and you have a
valid Silk Central license, check the Connect to Silk Central check box to configure the connection to
Silk Central for keyword-driven testing.

The Silk Central server is configured for all your projects, not only for the new project.

a) To use the project for configuration testing with Silk Central Connect, check the Store project in Silk
Central Connect check box.

For additional information about Silk Central Connect, refer to the Silk Central Connect User Guide.

4. Click Next. The Select an application page opens.

5. If you have not set an application configuration for the current project, select the tab that corresponds to
the type of application that you are testing:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a Web application or a mobile Web application, select the Web tab.

6. To test a standard application, if you have not set an application configuration for the current project,
select the application from the list.

7. To test a Web application or a mobile Web application, if you have not set an application configuration
for the current project, select one of the installed browsers or mobile browsers from the list.

Specify the Web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the URL

26 | Silk4J Quick Start Tutorial

http://demo.borland.com/InsuranceWebExtJS/
http://supportline.microfocus.com/Documentation/books/ASQ/SCTM/160/en/silkcentralconnect-160-userguide-en.pdf

currently displayed in the running browser instance. For the tutorial, select Internet Explorer and
specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

8. Click Finish. A new Silk4J project is created that includes the JRE system library and the
required .jar files, silktest-jtf-nodeps.jar and the junit.jar. The Project Created dialog
box opens.

9. Optional: Expand the Test Type Selection list to select the type of test that you want to record:

• To bundle the recorded actions into one or more keywords, select Keyword-Driven Test. This is the
default setting.

• To record the test without creating keywords, select Silk Test JUnit Test.

10.Click Yes to start recording a new Silk4J test or click No to return to the Eclipse workspace.

For the tutorial, click No.

Recording a Test for the Insurance Company Web
Application

Before you can create a Silk4J test, you must have created a Silk4J project.

Record a new test that navigates to the Agent Lookup page in the Insurance Company Web application.
For a detailed version of how to record a test and how to configure test applications for each technology
type, see the Creating Tests section of the Silk4J User Guide.

1. In the toolbar, click Record Actions. The application under test and the Recording window open.
Silk4J creates a base state and starts recording.

2. In the Insurance Company Web site, perform the following steps:

a) From the Select a Service or login list box, select Auto Quote. The Automobile Instant Quote
page opens.

b) Type a zip code and email address in the appropriate text boxes, click an automobile type, and then
click Next.
For example, type 92121 as the zip code, jsmith@gmail.com as the email address and specify
Car as the automobile type.

c) Specify an age, click a gender and driving record type, and then click Next.
For example, type 42 as the age, specify the gender as Male and Good as the driving record type.

d) Specify a year, make, and model, click the financial info type, and then click Next.
For example, type 2010 as the year, specify Lexus and RX400 as the make and model, and Lease
as the financial info type.
A summary of the information you specified appears.

e) Point to the Zip Code that you specified and press Ctrl+Alt to add a verification to the script.

You can add a verification for any of the information that appears.

The Select Verification Type dialog box opens.
f) Select whether you want to create a verification of a property or an image verification.

For the tutorial, select Verify properties of the TestObject.
The Verify Properties dialog box opens.

g) Check the TextContents check box and then click OK. A verification action is added to the script for
the zip code text.

h) Click Home.

An action that corresponds with each step is recorded.

3. Click Stop. The Record Complete dialog box opens.

4. The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

Silk4J Quick Start Tutorial | 27

http://demo.borland.com/InsuranceWebExtJS/

5. Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

6. In the Test class text box, specify the name for the test class.
For example, type: AutoQuoteInput.

To use an existing class, click Select and select the class that you want to use.

7. In the Test method text box, specify a name for the test method.
For example, type autoQuote.

8. Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Replaying the Test for the Insurance Company Web
Application

1. Expand the Tutorial project in the Package Explorer.

2. Right-click the AutoQuoteInput class and choose Run As > Silk4J Test . If multiple browsers that are
supported for replay are installed on the machine, the Select Browser dialog box opens.

3. Select the browser and click Run. When the test execution is complete, the Playback Complete dialog
box opens.

4. Click Explore Results to review the TrueLog for the completed test. In this example, the verification will
fail, because the Zip Code field in the test application is not cleaned.

28 | Silk4J Quick Start Tutorial

Working with Silk4J Projects
This section describes how you can use Silk4J projects.

A Silk4J project contains all the resources needed to test the functionality of your applications by using
Silk4J.

Note: To optimally use the functionality that Silk4J provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.

Creating a Silk4J Project
When you create a Silk4J project using the New Silk4J Project wizard, the wizard contains the same
options that are available when you create a Java project using the New Java Project wizard. Additionally,
the Silk4J wizard automatically makes the Java project a Silk4J project.

1. In the Eclipse workspace, perform one of the following steps:

• Click the drop-down arrow next to the Silk Test toolbar icon and choose New Silk4J Project.
• Right click in the Package Explorer and select New > Other. Expand the Silk4J folder and double-

click Silk4J Project.
• If you installed or updated Silk4J to an existing Eclipse location, choose File > New > Other .

Expand the Silk4J folder and double-click Silk4J Project.

The New Silk4J Project wizard opens.

2. In the Project Name text box, type a name for your project.
For example, type Tutorial.

3. If you want to perform keyword-driven testing or configuration testing with Silk Central and you have a
valid Silk Central license, check the Connect to Silk Central check box to configure the connection to
Silk Central for keyword-driven testing.

The Silk Central server is configured for all your projects, not only for the new project.

a) To use the project for configuration testing with Silk Central Connect, check the Store project in Silk
Central Connect check box.

For additional information about Silk Central Connect, refer to the Silk Central Connect User Guide.

4. Click Next. The Select an application page opens.

5. If you have not set an application configuration for the current project, select the tab that corresponds to
the type of application that you are testing:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a Web application or a mobile Web application, select the Web tab.

6. To test a standard application, if you have not set an application configuration for the current project,
select the application from the list.

7. To test a Web application or a mobile Web application, if you have not set an application configuration
for the current project, select one of the installed browsers or mobile browsers from the list.

Specify the Web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the URL
currently displayed in the running browser instance. For the tutorial, select Internet Explorer and
specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

Working with Silk4J Projects | 29

http://supportline.microfocus.com/Documentation/books/ASQ/SCTM/160/en/silkcentralconnect-160-userguide-en.pdf
http://demo.borland.com/InsuranceWebExtJS/

8. Click Finish. A new Silk4J project is created that includes the JRE system library and the
required .jar files, silktest-jtf-nodeps.jar and the junit.jar. The Project Created dialog
box opens.

9. Optional: Expand the Test Type Selection list to select the type of test that you want to record:

• To bundle the recorded actions into one or more keywords, select Keyword-Driven Test. This is the
default setting.

• To record the test without creating keywords, select Silk Test JUnit Test.

10.Click Yes to start recording a new Silk4J test or click No to return to the Eclipse workspace.

For the tutorial, click No.

Importing a Silk4J Project
If you need to access Silk4J projects in a central repository, or from another machine, you can import the
projects into your Eclipse workspace.

1. In Eclipse, create a new workspace. For additional information, refer to the Eclipse documentation.

2. In the Eclipse menu, click File > Import. The Import dialog box opens.

3. In the tree, expand the General node.

4. Select Existing Projects into Workspace.

5. Click Next. The Import Projects dialog box opens.

6. Click Select root directory.

7. Click Browse to browse to the location of the project.

8. Click OK in the Browse For Folder dialog box.

9. In the Projects list box, check the projects that you want to import.

10.In the Import Projects dialog box, Click Finish.

The selected projects are imported into the Eclipse workspace.

30 | Working with Silk4J Projects

Creating Tests
Use Silk4J to create a test that uses XPath queries to find and identify objects. Typically, you use the New
Silk4J Test wizard to create a test. After you create the initial test method, you can add additional test
methods to an existing test class.

Creating a Test
When you create a test, Silk4J automatically creates a base state for the application. An application's base
state is the known, stable state that you expect the application to be in before each test begins execution,
and the state the application can be returned to after each test has ended execution.

Silk4J has slightly different procedures depending on whether you are configuring a Web application, a
mobile application, or an application that does not use a Web browser, such as a Windows application.

Creating a Test for a Web Application
Before you can create a Silk4J test, you must have created a Silk4J project.

To record a test for a Web application:

1. In the Package Explorer, select the project to which you want to add the new test.

2. In the toolbar, click Record Actions. The application under test and the Recording window open.
Silk4J creates a base state and starts recording.

3. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

4. Click Stop. The Record Complete dialog box opens.

5. The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

6. Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

7. In the Test class text box, specify the name for the test class.
For example, type: AutoQuoteInput.

To use an existing class, click Select and select the class that you want to use.

8. In the Test method text box, specify a name for the test method.
For example, type autoQuote.

9. Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Creating a Test for a Standard Application
Before you can create a Silk4J test, you must have created a Silk4J project.

To record a test for a standard application:

1. In the Package Explorer, select the project to which you want to add the new test.

2. In the toolbar, click Record Actions. The application under test and the Recording window open.
Silk4J creates a base state and starts recording.

Creating Tests | 31

3. In the application under test, perform the actions that you want to test.
For example, you can choose menu commands such as File > New to test menu the menu command in
your application. For information about the actions available during recording, see Actions Available
During Recording.

4. Click Stop. The Record Complete dialog box opens.

5. The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

6. Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

7. In the Test class text box, specify the name for the test class.

8. In the Test method text box, specify a name for the test method.

9. Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Creating a Test for a Mobile Web Application
Before you can create a Silk4J test, you must have created a Silk4J project.

To record a new test for a mobile Web application on a mobile device:

1. In the Package Explorer, select the project to which you want to add the new test.

2. In the toolbar, click Record Actions.

3. The Mobile Recording window opens and displays the screen of the mobile device. In the screen,
perform the actions that you want to record.

a) Click on the object with which you want to interact. The Choose Action dialog box opens.
b) From the list, select the action that you want to perform against the object.
c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk4J automatically validates the parameters.
d) Click OK. Silk4J adds the action to the recorded actions and replays it on the mobile device or

emulator.

To interact with a control of the mobile device and to perform an action like a swipe in the application
under test, see Interacting with a Mobile Device.

4. Click Stop. The Record Complete dialog box opens.

5. The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

6. Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

7. In the Test class text box, specify the name for the test class.

To use an existing class, click Select and select the class that you want to use.

8. In the Test method text box, specify a name for the test method.

9. Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Creating a Test Case Manually
Typically, you use the Base State wizard to create a test case for Silk4J. Use this procedure if you want to
manually create a test case.

32 | Creating Tests

1. Choose File > New > JUnit Test Case . The New JUnit Test Case dialog box opens.

2. Ensure the New JUnit 4 test option is selected. This option is selected by default.

3. In the Package text box, specify the package name.

By default, this text box lists the most recently used package. If you do not want to use the default
package, choose one of the following:

• If you have not created the package yet, type the package name into the text box.
• If you have created the package already, click Browse to navigate to the package location and then

select it.

4. In the Name text box, specify the name for the test case.

5. Click Finish. The new class file opens with code similar to the following:

package com.borland.demo;

public class DynamicObjectRecognitionDemo {

}

where com.borland.demo is the package that you specified and
DynamicObjectRecognitionDemo is the class that you specified.

Connect to the test application by creating a base state or using an attach method.

Actions Available During Recording
During recording, you can perform the following actions in the Recording window:

Action Steps

Pause recording. Click Pause to bring the AUT into a specific state without recording the actions,
and then click Record to resume recording.

Change the sequence of the
recorded actions.

To change the sequence of the recorded actions in the Recording window,
select the actions that you want to move and drag them to the new location. To
select multiple actions press Ctrl and click on the actions.

Remove a recorded action. To remove a falsely recorded action from the Recording window, hover the
mouse cursor over the action and click Delete this entry.

Verify an image or a property of a
control.

Move the mouse cursor over the object that you want to verify and press Ctrl
+Alt. For additional information, see Adding a Verification to a Script while
Recording.

Adding a Verification to a Script while Recording
Do the following to add a verification to a script during recording:

1. Begin recording.

2. Move the mouse cursor over the object that you want to verify and press Ctrl+Alt.

When you are recording a mobile Web application, you can also click on the object and click Add
Verification.

This option temporarily suspends recording and displays the Select Verification Type dialog box.

3. Select Verify properties of the TestObject.

For information about adding an image verification to a script, see Adding an Image Verification During
Recording.

Creating Tests | 33

4. Click OK. The Verify Properties dialog box opens.

5. To select the property that you want to verify, check the corresponding check box.

6. Click OK. Silk4J adds the verification to the recorded script and you can continue recording.

Adding a Locator or an Object Map Item to a Test Method
Using the Locator Spy

Manually capture a locator or an object map item using the Locator Spy and copy the locator or the object
map item to the test method. For instance, you can identify the caption or the XPath locator string for GUI
objects using the Locator Spy. Then, copy the relevant locator strings and attributes into the test methods
in your scripts.

1. Open the test class that you want to modify.

2. In the Silk4J tool bar, click Locator Spy. The Locator Spy and the application under test open. If you
are testing a mobile application, a recording window opens, representing the screen of the mobile
device. You cannot perform actions in the recording window, but you can perform actions on the mobile
device or emulator and then refresh the recording window.

3. Optional: To display locators in the Locator column instead of object map items, uncheck the Show
object map identifiers check box.

Object map item names associate a logical name (an alias) with a control or a window, rather than the
control or window's locator. By default, object map item names are displayed.

Note: When you check or uncheck the check box, the change is not automatically reflected in the
locator details. To update an entry in the Locator Details table, you have to click on the entry.

4. Position the mouse over the object that you want to record. The related locator string or object map item
shows in the Selected Locator text box.

5. Press Ctrl+Alt to capture the object.

Note: Press Ctrl+Shift to capture the object if you specified the alternative record break key
sequence on the General Recording Options page of the Script Options dialog box.

6. Optional: Click Show additional locator attributes to display any related attributes in the Locator
Attribute table.

7. Optional: You can replace a recorded locator attribute with another locator attribute from the Locator
Attribute table.

For example, your recorded locator might look like the following:

/BrowserApplication//BrowserWindow//input[@id='loginButton']

If you have a textContents Login listed in the Locator Attribute table, you can manually change
the locator to the following:

/BrowserApplication//BrowserWindow//input[@textContents='Login']

The new locator displays in the Selected Locator text box.

8. To copy the locator, click Copy Locator to Clipboard.

In the Selected Locator text box, you can also mark the portion of the locator string that you want to
copy, and then you can right-click the marked text and click Copy.

9. In the script, position your cursor to the location to which you want to paste the recorded locator.

For example, position your cursor in the appropriate parameter of a Find method in the script.

The test method, into which you want to paste the locator, must use a method that can take a locator as
a parameter. Using the Locator Spy ensures that the locator is valid.

10.Copy the locator or the object map item to the test case or to the Clipboard.

11.Click Close.

34 | Creating Tests

Including Custom Attributes in a Test
You can include custom attributes in a test to make a test more stable. For example, in Java SWT, the
developer implementing the GUI can define an attribute, such as silkTestAutomationId, for a widget
that uniquely identifies the widget in the application. A tester using Silk4J can then add that attribute to the
list of custom attributes (in this case, silkTestAutomationId), and can identify controls by that unique
ID.

Using a unique ID is more reliable than other attributes like caption or index, since a caption will change
when you translate the application into another language, and the index will change whenever another
widget is added before the one you have defined already.

Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.

To include custom attributes in a test, include the custom attributes directly in the test that you create.
For example, to find the first text box with the unique ID 'loginName' in your application, you can use
the following query:

myWindow.find(".//TextField[@silkTestAutomationId='loginName']")

Note: Attribute names are case sensitive, except for mobile applications, where the attribute
names are case insensitive. Attribute values are by default case insensitive, but you can change
the default setting like any other option. The locator attributes support the wildcards ? and *.

For example in a Web application, to add an attribute called "bcauid" type:

 <input type='button' bcauid='abc'
value='click me' />

Note: Attribute names are case sensitive, except for mobile applications, where the attribute
names are case insensitive. Attribute values are by default case insensitive, but you can change
the default setting like any other option. The locator attributes support the wildcards ? and *.

Characters Excluded from Recording and Replaying
The following characters are ignored by Silk Test during recording and replay:

Characters Control

... MenuItem

tab MenuItem

& All controls. The ampersand (&) is used as an accelerator
and therefore not recorded.

Creating Tests | 35

Replaying Tests
Run tests from within Eclipse or using the command line.

Replaying Tests from Eclipse
1. Navigate to the test method or keyword-driven test that you want to replay.

2. Perform one of the following steps:

• Right-click a package name in the Package Explorer to replay all test methods or keyword-driven
tests in the package.

• Right-click a class name in the Package Explorer to replay all test methods in the class . Or,
alternatively, open the class in the source editor and right-click in the source editor.

• Right-click a keyword-driven test name in the Package Explorer to replay the keyword-driven test.
• Right-click a method name in the Package Explorer to replay a test for only that method. Or,

alternatively, open the class in the source editor and select a test method by clicking its name.

3. Choose Run As > Silk4J Test .
4. If you are testing a Web application, the Select Browser dialog box opens. Select the browser and click

Run.

Note: If multiple applications are configured for the current project, the Select Browser dialog box
is not displayed.

5. Optional: If necessary, you can click both Shift keys at the same time to stop the execution of the test.

6. When the test execution is complete, the Playback Complete dialog box opens. Click Explore Results
to review the TrueLog for the completed test.

Replaying a Test from the Command Line
You must update the PATH variable to reference your JDK location before performing this task. For details,
reference the Sun documentation at: http://java.sun.com/j2se/1.5.0/install-windows.html.

1. Set the CLASSPATH to:

set CLASSPATH=<eclipse_install_directory>\plugins
\org.junit4_4.3.1\junit.jar;<eclipse_install_directory>\plugins
\org.hamcrest.core_1.3.0.v201303031735.jar;%OPEN_AGENT_HOME%\JTF\silktest-
jtf-nodeps.jar;C:\myTests.jar

2. Run the JUnit test method by typing:

java org.junit.runner.JUnitCore <test class name>

Note: For troubleshooting information, reference the JUnit documentation at: http://
junit.sourceforge.net/doc/faq/faq.htm#running_1.

3. To run several test classes with Silk4J and to create a TrueLog, use the SilkTestSuite class to run
the Silk4J tests.
For example, to run the two classes MyTestClass1 and MyTestClass2 with TrueLog enabled, type the
following code into your script:

package demo;
import org.junit.runner.RunWith;
import org.junit.runners.Suite.SuiteClasses;
import com.borland.silktest.jtf.SilkTestSuite;

36 | Replaying Tests

http://java.sun.com/j2se/1.5.0/install-windows.html
http://junit.sourceforge.net/doc/faq/faq.htm#running_1
http://junit.sourceforge.net/doc/faq/faq.htm#running_1

@RunWith(SilkTestSuite.class)
@SuiteClasses({ MyTestClass1.class, MyTestClass2.class })
public class MyTestSuite {}

To run these test classes from the command line, type the following:

java org.junit.runner.JUnitCore demo.MyTestSuite

Replaying Tests from a Continuous Integration Server
To run Silk4J tests from a continuous integration (CI) server, a CI server needs to be configured. This topic
uses Jenkins as an example.

1. Add a new job to the CI server to compile the Silk4J tests.

For additional information, refer to the documentation of the CI server.

2. Add a new job to the CI server to execute the Silk4J tests.

3. Replay the tests from the CI server by using an Apache Ant file. Running the tests with an Ant file
creates JUnit results, while running the tests from the command line does not.

Whenever your CI job is executed, it also triggers the execution of the specified Silk4J tests. On Jenkins,
the Ant output is displayed in the JUnit plug-in and the TrueLog file is saved.

Replaying Silk4J Tests from Silk Central
To access Silk4J tests from Silk Central, you need to store the Silk4J tests in a JAR file in a repository that
Silk Central can access through a source control profile.

To replay functional tests in Silk4J from Silk Central, for example keyword-driven tests:

1. In Silk Central, create a project from which the Silk4J tests will be executed.

2. Under Tests > Details View, create a new test container for the new project.

For additional information about Silk Central, refer to the Silk Central Help.

The test container is required to specify the source control profile for the Silk4J tests.

a) In the Tests tree, right-click on the node below which you want to add the new test container.
b) Click New Test Container. The New Test Container dialog box opens.
c) Type a name for the new test container into the Name field.

For example, type Keyword-Driven Tests
d) In the Source control profile field, select the source control profile in which the JAR file, which

contains the Silk4J tests, is located.
e) Click OK.

3. Create a new JUnit test in the new test container.

For additional information about Silk Central, refer to the Silk Central Help.

a) In the Test class field of the JUnit Test Properties dialog box, type the name of the test class.

Specify the fully-qualified name of the test suite class. For additional information, see Replaying
Keyword-Driven Tests from the Command Line.

b) In the Classpath field, specify the name of the JAR file that contains the tests.
c) For keyword-driven testing, also specify the paths to the following files, separated by semicolons.

• com.borland.silk.keyworddriven.engine.jar

• com.borland.silk.keyworddriven.jar

• silktest-jtf-nodeps.jar

Replaying Tests | 37

http://documentation.microfocus.com:8080/help/nav/5_0
http://documentation.microfocus.com:8080/help/nav/5_0

These files are located in the Silk Test installation directory. For example, the Classpath field for the
keyword-driven tests in the JAR file tests.jar might look like the following:

tests.jar;C:\Program Files
(x86)\Silk\SilkTest\ng\KeywordDrivenTesting
\com.borland.silk.keyworddriven.engine.jar;C:\Program Files
(x86)\Silk\SilkTest\ng\KeywordDrivenTesting
\com.borland.silk.keyworddriven.jar;C:\Program Files
(x86)\Silk\SilkTest\ng\JTF\silktest-jtf-nodeps.jar

4. Click Finish.

5. Execute the tests.

For additional information about executing tests in Silk Central, refer to the Silk Central Help.

Triggering Tests on Silk Central from a Continuous
Integration Server

To run Silk4J tests from a continuous integration server, the following infrastructure is required:

• A Silk Central server with the appropriate execution definitions.

Note: This topic focuses on the integration with Silk Central, but you could also use another test-
scheduling tool.

• A continuous integration (CI) server, for example Hudson or Jenkins. This topic uses Jenkins as an
example.

To replay functional tests from a CI server:

1. In Silk Central, retrieve the project ID and the execution plan ID of any execution plan that you want to
run from the CI server.

a) Select Execution Planning > Details View.
b) In the Execution Plans tree, select the project that contains the execution. The Project ID is

displayed in the Properties pane of the project.
c) In the Execution Plans tree, select the execution plan. The Execution Plan ID is displayed in the

Properties pane of the execution plan.

2. Install the SCTMExecutor plugin on the CI server. This plugin connects the CI server to your Silk
Central server.

3. Configure the SCTMExecutor plugin:

a) On Jenkins, navigate to the Silk Central Test Manager Configuration configuration in the global
Jenkins configuration page.

b) Type the address of the Silk Central service into the Service URL field.
For example, if the server name is sctm-server, type http://sctm-server:19120/services.

4. Extend your CI build job.

a) On Jenkins, select Silk Central Test Manager Execution from the Add build step list.
b) Type the ID of the execution plan into the Execution Plan ID field.

You can execute an arbitrary number of execution plans by separating the IDs with a comma.
c) Type the project ID of the Silk Central project into the SCTM Project ID field.

Whenever your CI build job is executed, it also triggers the execution of the specified Silk Central execution
plans.

38 | Replaying Tests

http://documentation.microfocus.com:8080/help/nav/5_0

Troubleshooting when Replaying Test Methods from Ant
When using Apache Ant to run Silk4J tests, using the JUnit task with fork="yes" causes tests to hang.
This is a known issue of Apache Ant (https://issues.apache.org/bugzilla/show_bug.cgi?id=27614). Two
workarounds exist. Choose one of the following:

• Do not use fork="yes".
• To use fork="yes", ensure that the Open Agent is launched before the tests are executed. This can

be done either manually or with the following Ant target:

<property environment="env" />
<target name="launchOpenAgent">
<echo message="OpenAgent launch as spawned process" />
<exec spawn="true" executable="${env.OPEN_AGENT_HOME}/agent/
openAgent.exe" />
<!-- give the agent time to start -->
<sleep seconds="30" />
</target>

Replaying Tests in a Specific Order
With Java 1.6 or prior, JUnit tests are executed in the order in which they are declared in the source file.

Note: With Java 1.7 or later, you cannot specify the order in which the JUnit tests are executed. This
is a JUnit limitation for test execution.

JUnit tests are executed differently, depending on the JUnit version. With a JUnit version prior to 4.11 the
tests are executed in no particular order, which may differ between test runs. With JUnit 4.11 or higher the
tests are executed in the same order for each test run, but the order is unpredictable.

Depending on your testing environment you might be able to workaround this limitation.

Examples for a workaround

If your test set does not include modules and suites, you could add the following lines to
the start of the source file:

import org.junit.FixMethodOrder;
import org.junit.runners.MethodSorters;
@FixMethodOrder(MethodSorters.JVM)

There are three possible values you can specify for the FixMethodOrder:

MethodSorters.JVM The order in which the
methods are returned by
the JVM, potentially a
different order for each test
run. Might break your test
set.

MethodSorters.DEFAULT Deterministic ordering
based upon the hashCode
of the method name.
Changing the order is
difficult because you have
to define method names
that lead to an appropriate
hashCode.

Replaying Tests | 39

https://issues.apache.org/bugzilla/show_bug.cgi?id=27614

MethodSorters.NAME_ASCENDING The order is based upon the
lexicographic ordering of
the names of the tests. You
would have to rename your
tests so that the
alphabetical order of the
test names matches the
order in which you want the
tests to be executed.

You could also use a Java version prior to 1.7.

Visual Execution Logs with TrueLog
TrueLog is a powerful technology that simplifies root cause analysis of test case failures through visual
verification. The results of test runs can be examined in TrueLog Explorer. When an error occurs during a
test run, TrueLog enables you to easily locate the line in your script that generated the error so that the
issue can be resolved.

Note: TrueLog is supported only for one local or remote agent in a script. When you use multiple
agents, for example when testing an application on one machine, and that application writes data to a
database on another machine, a TrueLog is written only for the first agent that was used in the script.
When you are using a remote agent, the TrueLog file is also written on the remote machine.

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer User Guide, located in
Start > Programs > Silk > Silk Test > Documentation.

You can enable TrueLog in Silk4J to create visual execution logs during the execution of Silk4J tests. The
TrueLog file is created in the working directory of the process that executed the Silk4J tests.

Note: To create a TrueLog during the execution of a Silk4J test, JUnit version 4.6 or later must be
used. If the JUnit version is lower than 4.6 and you try to create a TrueLog, Silk4J writes an error
message to the console, stating that the TrueLog could not be written.

The default setting is that screenshots are only created when an error occurs in the script, and only test
cases with errors are logged.

Enabling TrueLog
To enable TrueLog:

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the TrueLog tab.

3. In the Logging area, check the Enable TrueLog check box.

• Click All testcases to log activity for all test cases, both successful and failed. This is the default
setting.

• Click Testcases with errors to log activity for only those test cases with errors.

The TrueLog file is created in the working directory of the process that executed the Silk4J tests. When the
Silk4J test execution is complete, the Playback Complete dialog box opens, and you can choose to review
the TrueLog for the completed test.

40 | Replaying Tests

Why is TrueLog Not Displaying Non-ASCII Characters
Correctly?
TrueLog Explorer is a MBCS-based application, meaning that to be displayed correctly, every string must
be encoded in MBCS format. When TrueLog Explorer visualizes and customizes data, many string
conversion operations may be involved before the data is displayed.

Sometimes when testing UTF-8 encoded Web sites, data containing characters cannot be converted to the
active Windows system code page. In such cases, TrueLog Explorer will replace the non-convertible
characters, which are the non-ASCII characters, with a configurable replacement character, which usually
is '?'.

To enable TrueLog Explorer to accurately display non-ASCII characters, set the system code page to the
appropriate language, for example Japanese.

Replaying Tests | 41

Setting Script Options
Specify script options for recording, browser and custom attributes, classes to ignore, synchronization, and
the replay mode.

Setting TrueLog Options
Enable TrueLogs to capture bitmaps and to log information for Silk4J.

Logging bitmaps and controls in TrueLogs may adversely affect the performance of Silk4J. Because
capturing bitmaps and logging information can result in large TrueLog files, you may want to log test cases
with errors only and then adjust the TrueLog options for test cases where more information is needed.

The results of test runs can be examined in TrueLog Explorer. For additional information about TrueLog
Explorer, refer to the Silk TrueLog Explorer User Guide, located in Start > Programs > Silk > Silk Test >
Documentation.

To enable TrueLog and customize the information that the TrueLog collects for Silk4J, perform the following
steps:

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the TrueLog tab.

3. In the Logging area, check the Enable TrueLog check box.

• Click All testcases to log activity for all test cases, both successful and failed. This is the default
setting.

• Click Testcases with errors to log activity for only those test cases with errors.

4. In the TrueLog file field, type the path to and name of the TrueLog file, or click Browse and select the
file.

This path is relative to the machine on which the agent is running. The default path is the path of the
Silk4J project folder, and the default name is the name of the suite class, with a .xlg suffix.

Note: If you provide a local or remote path in this field, the path cannot be validated until script
execution time.

5. Select the Screenshot mode.

Default is None.

6. Optional: Set the Delay.

This delay gives Windows time to draw the application window before a bitmap is taken. You can try to
add a delay if your application is not drawn properly in the captured bitmaps.

7. Click OK.

Setting Recording Preferences
Set the shortcut key combination to pause recording and specify whether absolute values and mouse move
actions are recorded.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

42 | Setting Script Options

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the Recording tab.

3. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the
OPT_ALTERNATE_RECORD_BREAK check box.

By default, Ctrl+Alt is the shortcut key combination.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination.

4. To record absolute values for scroll events, check the OPT_RECORD_SCROLLBAR_ABSOLUT check
box.

5. To record mouse move actions for Web applications, Win32 applications, and Windows forms
applications, check the OPT_RECORD_MOUSEMOVES check box. You cannot record mouse move
actions for child technology domains of the xBrowser technology domain, for example Apache Flex and
Swing.

6. If you record mouse move actions, in the OPT_RECORD_MOUSEMOVE_DELAY text box, specify how
many milliseconds the mouse has to be motionless before a MouseMove is recorded.

By default this value is set to 200.

7. To record text clicks instead of Click actions on objects where TextClick actions usually are
preferable to Click actions, check the OPT_RECORD_TEXT_CLICK check box.

8. To record image clicks instead of Click actions on objects where ImageClick actions usually are
preferable to Click actions, check the OPT_RECORD_IMAGE_CLICK check box.

9. To define whether you want to record object map entries or XPath locators, select the appropriate
recording mode from the OPT_RECORD_OBJECTMAPS_MODE list:

• Object map entries for new and existing objects. This is the default mode.
• XPath locators for new and existing objects.
• XPath locators for new objects only. For objects that already exist in an object map, the object

map entry is reused. Choosing this setting enables you to create object maps for the main controls
of an AUT, and to persist these object maps while creating additional tests against the AUT.

10.To use additional attributes of the element when merging object maps during locator recording, check
the OPT_OBJECTMAPS_SMART_MERGE check box.

If the check box is unchecked, only the XPath is used for merging and any additional attributes, which
might lead to ambiguous usage of object map IDs in a recorded script, are not used to map locators to
existing object map entries.

11.Click OK.

Setting Browser Recording Options
Specify browser attributes to ignore while recording and whether to record native user input instead of
DOM functions.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the Browser tab.

3. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you do not want to record attributes named height, add the height attribute name to
the grid.

Separate attribute names with a comma.

Setting Script Options | 43

4. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.
For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to the
grid.

Separate attribute values with a comma.

5. To record native user input instead of DOM functions, check the
OPT_XBROWSER_RECORD_LOWLEVEL check box.

For example, to record Click instead of DomClick and TypeKeys instead of SetText, check this
check box.

If your application uses a plug-in or AJAX, use native user input. If your application does not use a plug-
in or AJAX, we recommend using high-level DOM functions, which do not require the browser to be
focused or active during playback. As a result, tests that use DOM functions are faster and more
reliable.

6. To set the maximum length for locator attribute values, type the length into the field in the Maximum
attribute value length section.

If the actual length exceeds that limit the value is truncated and a wild card (*) is appended. By default
this value is set to 20 characters.

7. To automatically search for an unobstructed click spot on the specified target element, check the
OPT_XBROWSER_ENABLE_SMART_CLICK_POSITION check box.

8. Click OK.

Setting Custom Attributes
Silk4J includes a sophisticated locator generator mechanism that guarantees locators are unique at the
time of recording and are easy to maintain. Depending on your application and the frameworks that you
use, you might want to modify the default settings to achieve the best results. You can use any property
that is available in the respective technology as a custom attribute given that they are either numbers
(integers, doubles), strings, item identifiers, or enumeration values.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

For the technology domains listed in the list box on the Custom Attributes tab, you can also retrieve
arbitrary properties (such as a WPFButton that defines myCustomProperty) and then use those properties
as custom attributes. To achieve optimal results, add a custom automation ID to the elements that you want
to interact with in your test. In Web applications, you can add an attribute to the element that you want to
interact with, such as <div myAutomationId= "my unique element name" />. Or, in Java SWT,
the developer implementing the GUI can define an attribute (for example testAutomationId) for a
widget that uniquely identifies the widget in the application. A tester can then add that attribute to the list of
custom attributes (in this case, testAutomationId), and can identify controls by that unique ID. This
approach can eliminate the maintenance associated with locator changes.

If multiple objects share the same attribute value, such as a caption, Silk4J tries to make the locator unique
by combining multiple available attributes with the "and" operation and thus further narrowing down the list
of matching objects to a single object. Should that fail, an index is appended. Meaning the locator looks for
the nth control with the caption xyz.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, loginName to two
different text fields, both fields will return when you call the loginName attribute.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

44 | Setting Script Options

2. Click the Custom Attributes tab.

3. From the Select a tech domain list box, select the technology domain for the application that you are
testing.

Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.

4. Add the attributes that you want to use to the list.

If custom attributes are available, the locator generator uses these attributes before any other attribute.
The order of the list also represents the priority in which the attributes are used by the locator generator.
If the attributes that you specify are not available for the objects that you select, Silk4J uses the default
attributes for the application that you are testing.

Separate attribute names with a comma.

Note: To include custom attributes in a Web application, add them to the html tag. For example
type, <input type='button' bcauid='abc' value='click me' /> to add an attribute
called bcauid.

Note: To include custom attributes in a Java SWT control, use the
org.swt.widgets.Widget.setData(String key, Object value) method.

Note: To include custom attributes in a Swing control, use the
SetClientProperty("propertyName", "propertyValue") method.

5. Click OK.

Setting Classes to Ignore
To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the Transparent Classes tab.

3. In the Transparent classes grid, type the name of the class that you want to ignore during recording
and playback.

Separate class names with a comma.

4. Click OK.

Setting WPF Classes to Expose During Recording and
Playback

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

Setting Script Options | 45

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the WPF tab.

3. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.

Separate class names with a comma.

4. Click OK.

Setting Synchronization Options
Specify the synchronization and timeout values for Web applications.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the Synchronization tab.

3. To specify the synchronization algorithm for the ready state of a web application, from the
OPT_XBROWSER_SYNC_MODE list box, choose an option.

The synchronization algorithm configures the waiting period for the ready state of an invoke call. By
default, this value is set to AJAX.

4. In the Synchronization exclude list text box, type the entire URL or a fragment of the URL for any
service or Web page that you want to exclude.

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently
open in order to retrieve asynchronous data from the server. These requests may let the
synchronization hang until the specified synchronization timeout expires. To prevent this situation, either
use the HTML synchronization mode or specify the URL of the problematic request in the
Synchronization exclude list setting.

For example, if your Web application uses a widget that displays the server time by polling data from the
client, permanent traffic is sent to the server for this widget. To exclude this service from the
synchronization, determine what the service URL is and enter it in the exclusion list.

For example, you might type:

• http://example.com/syncsample/timeService
• timeService
• UICallBackServiceHandler

Separate multiple entries with a comma.

Note: If your application uses only one service, and you want to disable that service for testing,
you must use the HTML synchronization mode rather than adding the service URL to the exclusion
list.

5. To specify the maximum time, in milliseconds, to wait for an object to be ready, type a value in the
OPT_SYNC_TIMEOUT text box.

By default, this value is set to 300000.

6. To specify the time, in milliseconds, to wait for an object to be resolved during replay, type a value in the
OPT_WAIT_RESOLVE_OBJDEF text box.

By default, this value is set to 5000.

7. To specify the time, in milliseconds, to wait before the agent attempts to resolve an object again, type a
value in the OPT_WAIT_RESOLVE_OBJDEF_RETRY text box.

By default, this value is set to 500.

46 | Setting Script Options

8. Click OK.

Setting Replay Options
Specify whether you want to ensure that the object that you want to test is active and whether to override
the default replay mode. The replay mode defines whether controls are replayed with the mouse and
keyboard or with the API. Use the default mode to deliver the most reliable results. When you select
another mode, all controls use the selected mode.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the Replay tab. The Replay Options page displays.

3. If the application under test usually takes a long time to start, increase the time to wait for the
application by increasing the value in the OPT_APPREADY_TIMEOUT text box.

4. From the OPT_REPLAY_MODE list box, select one of the following options:

• Default – Use this mode for the most reliable results. By default, each control uses either the mouse
and keyboard (low level) or API (high level) modes. With the default mode, each control uses the
best method for the control type.

• High level – Use this mode to replay each control using the API of the target technology. For
example for Rumba controls, the Rumba RDE API is used to replay the controls.

• Low level – Use this mode to replay each control using the mouse and keyboard.

5. To ensure that the object that you want to test is active, check the OPT_ENSURE_ACTIVE_OBJDEF
check box.

6. To change the time to wait for an object to become enabled during playback, type the new time into the
field in the Object enabled timeout section.

The time is specified in milliseconds. The default value is 1000.

7. To edit the prefix that specifies that an asset is located in the current project, edit the text for the Asset
namespace option in the OPT_ASSET_NAMESPACE text box.

8. Click OK.

Setting Advanced Options
Specify whether you want to enable Windows Accessibility, whether the focus should be removed from the
window during text capture, and whether locator attribute names should be case sensitive.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Options. The Script
Options dialog box opens.

2. Click the Advanced tab. The Advanced Options page displays.

3. Check the OPT_ENABLE_ACCESSIBILITY check box to enable Microsoft Accessibility in addition to
the normal Win32 control recognition.

4. Check the OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT check box to remove the focus from the
window before capturing a text.

A text capture is performed during recording and replay by the following methods:

• TextClick

• TextCapture

• TextExists

• TextRect

Setting Script Options | 47

5. Check the OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE check box to set locator attribute
names to be case sensitive. The names of locator attributes for mobile Web applications are always
case insensitive, and this option is ignored when recording or replaying mobile Web applications.

6. Set the default accuracy level for new image assets by selecting a value from 1 (low accuracy) to 10
(high accuracy) from the OPT_IMAGE_ASSET_DEFAULT_ACCURACY list box.

7. Set the default accuracy level for new image verification assets by selecting a value from 1 (low
accuracy) to 10 (high accuracy) from the OPT_IMAGE_VERIFICATION_DEFAULT_ACCURACY list
box.

8. Click OK.

48 | Setting Script Options

Setting Silk4J Preferences
Silk4J requires Java Runtime Environment (JRE) version 1.6 or higher.

By default Silk4J checks the JRE version each time you start Silk4J, and displays an error message if the
JRE version is incompatible with Silk4J.

1. To turn off the error message, choose Window > Preferences > Silk4J .

2. Select the Silk4J branch and uncheck the Show error message if the JRE version is incompatible
check box.

3. Click OK.

Setting Silk4J Preferences | 49

Converting Projects to and from Silk4J
A Silk4J project has the following additional characteristic as compared to a standard Java project:

• A dependency to the Silk4J library and the JUnit library.

Converting a Java Project to a Silk4J Project
If you have an existing Java project that you want to use with Silk4J, follow this procedure.

1. In the Package Explorer, right-click the Java project that you want to convert to a Silk4J project. The
project context menu appears.

2. Choose Silk4J Tools > Make Silk4J Project .

The Silk4J library is added to the project. If the project does not contain a dependency to the JUnit
library, this library is also added to the project.

Converting a Silk4J Project to a Java Project
1. In the Package Explorer, right-click the Silk4J project that you want to convert to a Java project. The

project context menu appears.

2. Choose Silk4J Tools > Remove Silk4J Capability .

The Silk4J library is removed from the project.

Note: The dependency to the JUnit library remains in place since it is likely that this project will
continue to use JUnit.

50 | Converting Projects to and from Silk4J

Testing Specific Environments
Silk4J supports testing several types of environments.

Active X/Visual Basic Applications
Silk4J provides support for testing ActiveX/Visual Basic applications.

Check the Release Notes for the most up-to-date information about supported versions, any known issues,
and workarounds.

Dynamically Invoking ActiveX/Visual Basic Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point)

Testing Specific Environments | 51

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Apache Flex Support
Silk4J provides built-in support for testing Apache Flex applications using Internet Explorer, Mozilla Firefox,
and the Standalone Flash Player, and Adobe AIR applications built with Apache Flex 4 or later.

Silk4J also supports multiple application domains in Apache Flex 3.x and 4.x applications, which enables
you to test sub-applications. Silk4J recognizes each sub-application in the locator hierarchy tree as an
application tree with the relevant application domain context. At the root level in the locator attribute table,
Apache Flex 4.x sub-applications use the SparkApplication class. Apache Flex 3.x sub-applications
use the FlexApplication class.

Supported Controls

For a complete list of the record and playback controls available for Apache Flex testing, view a list of the
supported Flex classes in the com.borland.silktest.jtf.flex package in the API Reference.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Apache Flex. The Silk
Test Automation SDK supports the same components in the same manner that the Automation API
for Apache Flex supports them. For instance, the typekey statement in the Flex Automation API
does not support all keys. You can use the input text statement to resolve this issue. For more
information about using the Flex Automation API, see the Apache Flex Release Notes.

Configuring Flex Applications to Run in Adobe Flash
Player
To run an Apache Flex application in Flash Player, one or both of the following must be true:

• The developer who creates the Flex application must compile the application as an EXE file. When a
user launches the application, it will open in Flash Player. Install Windows Flash Player from http://
www.adobe.com/support/flashplayer/downloads.html.

• The user must have Windows Flash Player Projector installed. When a user opens a Flex .SWF file, he
can configure it to open in Flash Player. Windows Flash Projector is not installed when Flash Player is
installed unless you install the Apache Flex developer suite. Install Windows Flash Projector from http://
www.adobe.com/support/flashplayer/downloads.html.

1. For Microsoft Windows 7 and Microsoft Windows Server 2008 R2, configure Flash Player to run as
administrator. Perform the following steps:

a) Right-click the Adobe Flash Player program shortcut or the FlashPlayer.exe file, then click
Properties.

b) In the Properties dialog box, click the Compatibility tab.
c) Check the Run this program as an administrator check box and then click OK.

2. Start the .SWF file in Flash Player from the command prompt (cmd.exe) by typing:
"<Application_Install_Directory>\ApplicationName.swf"

By default, the <SilkTest_Install_Directory> is located at Program Files\Silk\Silk Test.

52 | Testing Specific Environments

http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html

Launching the Component Explorer
Silk Test provides a sample Apache Flex application, the Component Explorer. Compiled with the Adobe
Automation SDK and the Silk Test specific automation implementation, the Component Explorer is pre-
configured for testing.

In Internet Explorer, open http://demo.borland.com/flex/SilkTest16.0/index.html. The application
launches in your default browser.

Testing Apache Flex Applications
Silk Test provides built-in support for testing Apache Flex applications. Silk Test also provides several
sample Apache Flex applications. You can access the sample applications at http://demo.borland.com/flex/
SilkTest16.0/index.html.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Before you can test your own Apache Flex application, your Apache Flex developers must perform the
following steps:

• Enabling your Apache Flex application for testing
• Creating testable Apache Flex applications
• Coding Apache Flex containers
• Implementing automation support for custom controls

To test your own Apache Flex application, follow these steps:

• Configuring security settings for your local Flash Player
• Recording a test
• Playing back a test
• Customizing Apache Flex scripts
• Testing a custom Apache Flex control

Note: Loading an Apache Flex application and initializing the Flex automation framework may take
some time depending on the machine on which you are testing and the complexity of your Apache
Flex application. Set the Window timeout value to a higher value to enable your application to fully
load.

Testing Apache Flex Custom Controls
Silk4J supports testing Apache Flex custom controls. However, by default, Silk4J cannot record and
playback the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

• Basic support

With basic support, you use dynamic invoke to interact with the custom control during replay. Use this
low-effort approach when you want to access properties and methods of the custom control in the test
application that Silk4J does not expose. The developer of the custom control can also add methods and
properties to the custom control specifically for making the control easier to test. A user can then call
those methods or properties using the dynamic invoke feature.

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

Testing Specific Environments | 53

http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

• No specific class name is included in the locator, for example Silk4J records //FlexBox rather
than //FlexSpinner.

• Only limited recording support.
• Silk4J cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking Apache Flex
Methods.

• Advanced support

With advanced support, you create specific automation support for the custom control. This additional
automation support provides recording support and more powerful play-back support. The advantages
of advanced support include:

• High-level recording and playback support, including the recording and replaying of events.
• Silk4J treats the custom control exactly the same as any other built-in Apache Flex control.
• Seamless integration into Silk4J API
• Silk4J uses the specific class name in the locator, for example Silk4J records //FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open Agent must be
extended.

Dynamically Invoking Flex Methods
You can call methods, retrieve properties, and set properties on controls that Silk4J does not expose by
using the dynamic invoke feature. This feature is useful for working with custom controls and for working
with controls that Silk4J supports without customization.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

Note: Typically, most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods that the Flex API defines
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point)

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

54 | Testing Specific Environments

• All methods that have no return value return null.

Defining a Custom Control in the Test Application
Typically, the test application already contains custom controls, which were added during development of
the application. If your test application already includes custom controls, you can proceed to Testing a Flex
Custom Control Using Dynamic Invoke or to Testing a Custom Control Using Automation Support.

This procedure shows how a Flex application developer can create a spinner custom control in Flex. The
spinner custom control that we create in this topic is used in several topics to illustrate the process of
implementing and testing a custom control.

The spinner custom control includes two buttons and a textfield, as shown in the following graphic.

The user can click Down to decrement the value that is displayed in the textfield and click Up to increment
the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.

1. In the test application, define the layout of the control.
For example, for the spinner control type:

<?xml version="1.0" encoding="utf-8"?>
<customcontrols:SpinnerClass xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:controls="mx.controls.*" xmlns:customcontrols="customcontrols.*">
 <controls:Button id="downButton" label="Down" />
 <controls:TextInput id="text" enabled="false" />
 <controls:Button id="upButton" label="Up"/>
</customcontrols:SpinnerClass>

2. Define the implementation of the custom control.
For example, for the spinner control type:

package customcontrols
{
 import flash.events.MouseEvent;

 import mx.containers.HBox;
 import mx.controls.Button;
 import mx.controls.TextInput;
 import mx.core.UIComponent;
 import mx.events.FlexEvent;

 [Event(name="increment", type="customcontrols.SpinnerEvent")]
 [Event(name="decrement", type="customcontrols.SpinnerEvent")]

 public class SpinnerClass extends HBox
 {
 public var downButton : Button;
 public var upButton : Button;
 public var text : TextInput;
 public var ssss: SpinnerAutomationDelegate;
 private var _lowerBound : int = 0;
 private var _upperBound : int = 5;

 private var _value : int = 0;
 private var _stepSize : int = 1;

 public function SpinnerClass() {
 addEventListener(FlexEvent.CREATION_COMPLETE,

Testing Specific Environments | 55

creationCompleteHandler);
 }

 private function creationCompleteHandler(event:FlexEvent) : void {
 downButton.addEventListener(MouseEvent.CLICK,
downButtonClickHandler);
 upButton.addEventListener(MouseEvent.CLICK,
upButtonClickHandler);
 updateText();
 }

 private function downButtonClickHandler(event : MouseEvent) : void {
 if(Value - stepSize >= lowerBound) {
 Value = Value - stepSize;
 }
 else {
 Value = upperBound - stepSize + Value - lowerBound + 1;
 }

 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.DECREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function upButtonClickHandler(event : MouseEvent) : void {
 if(cValue <= upperBound - stepSize) {
 Value = Value + stepSize;
 }
 else {
 Value = lowerBound + Value + stepSize - upperBound - 1;
 }

 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.INCREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function updateText() : void {
 if(text != null) {
 text.text = _value.toString();
 }
 }

 public function get Value() : int {
 return _value;
 }

 public function set Value(v : int) : void {
 _value = v;
 if(v < lowerBound) {
 _value = lowerBound;
 }
 else if(v > upperBound) {
 _value = upperBound;
 }
 updateText();

 }

 public function get stepSize() : int {
 return _stepSize;
 }

56 | Testing Specific Environments

 public function set stepSize(v : int) : void {
 _stepSize = v;
 }

 public function get lowerBound() : int {
 return _lowerBound;
 }

 public function set lowerBound(v : int) : void {
 _lowerBound = v;
 if(Value < lowerBound) {
 Value = lowerBound;
 }
 }

 public function get upperBound() : int {
 return _upperBound;
 }

 public function set upperBound(v : int) : void {
 _upperBound = v;
 if(Value > upperBound) {
 Value = upperBound;
 }
 }
 }
}

3. Define the events that the control uses.
For example, for the spinner control type:

package customcontrols
{
 import flash.events.Event;

 public class SpinnerEvent extends Event
 {
 public static const INCREMENT : String = "increment";
 public static const DECREMENT : String = "decrement";

 private var _steps : int;

 public function SpinnerEvent(eventName : String) {
 super(eventName);
 }

 public function set steps(value:int) : void {
 _steps = value;
 }

 public function get steps() : int {
 return _steps;
 }

 }
}

The next step is to implement automation support for the test application.

Testing a Flex Custom Control Using Dynamic Invoke
Silk4J provides record and playback support for custom controls using dynamic invoke to interact with the
custom control during replay. Use this low-effort approach when you want to access properties and
methods of the custom control in the test application that Silk4J does not expose. The developer of the

Testing Specific Environments | 57

custom control can also add methods and properties to the custom control specifically for making the
control easier to test.

1. To retrieve a list of supported dynamic methods for a control, use the getDynamicMethodList
method.

2. Call dynamic methods on objects with the invoke method.

3. To retrieve a list of supported dynamic properties for a control, use the getPropertyList method.

4. Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method.

Example

The following example tests a spinner custom control that includes two buttons and a
textfield, as shown in the following graphic.

The user can click Down to decrement the value that is displayed in the textfield and
click Up to increment the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.

To set the spinner's value to 4, type the following:

FlexBox spinner = _desktop.<FlexBox>find("//
FlexBox[@className=customcontrols.Spinner]");
spinner.setProperty("Value", 4);

Testing a Custom Control Using Automation Support
You can create specific automation support for the custom control. This additional automation support
provides recording support and more powerful play-back support. To create automation support, the test
application must be modified and the Open Agent must be extended.

Before you can test a custom control in Silk4J, perform the following steps:

• Define the custom control in the test application
• Implement automation support

After the test application has been modified and includes automation support, perform the following steps:

1. Create a Java class for the custom control in order to test the custom control in your tests.

For example, the spinner control class must have the following content:

package customcontrols;

import com.borland.silktest.jtf.Desktop;
import com.borland.silktest.jtf.common.JtfObjectHandle;
import com.borland.silktest.jtf.flex.FlexBox;

/**
 * Implementation of the FlexSpinner Custom Control.
 */
public class FlexSpinner extends FlexBox {

 protected FlexSpinner(JtfObjectHandle handle, Desktop desktop) {
 super(handle, desktop);
 }

58 | Testing Specific Environments

 @Override
 protected String getCustomTypeName() {
 return "FlexSpinner";
 }

 public Integer getLowerBound() {
 return (Integer) getProperty("lowerBound");
 }

 public Integer getUpperBound() {
 return (Integer) getProperty("upperBound");
 }

 public Integer getValue() {
 return (Integer) getProperty("Value");
 }

 public void setValue(Integer Value) {
 setProperty("Value", Value);
 }

 public Integer getStepSize() {
 return (Integer) getProperty("stepSize");
 }

 public void increment(Integer steps) {
 invoke("Increment", steps);
 }

 public void decrement(Integer steps) {
 invoke("Decrement", steps);
 }

}

2. Add this Java class to the Silk4J test project that contains your tests.

Tip: To use the same custom control in multiple Silk4J projects, we recommend that you create a
separate project that contains the custom control and reference it from your Silk4J test projects.

3. Add the following line to the <Silk Test installation directory>\ng\agent\plugins
\com.borland.silktest.jtf.agent.customcontrols_<version>\config
\classMapping.properties file:

FlexSpinner=customcontrols.FlexSpinner

The code to the left of the equals sign must be the name of custom control as defined in the XML file.
The code to the right of the equals sign must be the fully qualified name of the Java class for the custom
control.

Now you have full record and playback support when using the custom control in Silk4J.

Examples

The following example shows how increment the spinner's value by 3 by using the
"Increment" method that has been implemented in the automation delegate:

desktop.<FlexSpinner>find("//FlexSpinner[@caption='index:
1']").increment(3);

This example shows how to set the value of the spinner to 3.

desktop.<FlexSpinner>find("//FlexSpinner[@caption='index:
1']").setValue(3);

Testing Specific Environments | 59

Implementing Automation Support for a Custom Control

Before you can test a custom control, implement automation support (the automation delegate) in
ActionScript for the custom control and compile that into the test application.

The following procedure uses a custom Flex spinner control to demonstrate how to implement automation
support for a custom control. The spinner custom control includes two buttons and a textfield, as shown in
the following graphic.

The user can click Down to decrement the value that is displayed in the textfield and click Up to increment
the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.

1. Implement automation support (the automation delegate) in ActionScript for the custom control.
For further information about implementing an automation delegate, see the Adobe Live Documentation
at http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html.
In this example, the automation delegate adds support for the methods "increment", "decrement". The
example code for the automation delegate looks like this:

package customcontrols
{
 import flash.display.DisplayObject;
 import mx.automation.Automation;
 import customcontrols.SpinnerEvent;
 import mx.automation.delegates.containers.BoxAutomationImpl;
 import flash.events.Event;
 import mx.automation.IAutomationObjectHelper;
 import mx.events.FlexEvent;
 import flash.events.IEventDispatcher;
 import mx.preloaders.DownloadProgressBar;
 import flash.events.MouseEvent;
 import mx.core.EventPriority;

 [Mixin]
 public class SpinnerAutomationDelegate extends BoxAutomationImpl
 {

 public static function init(root:DisplayObject) : void {
 // register delegate for the automation
 Automation.registerDelegateClass(Spinner,
SpinnerAutomationDelegate);
 }

 public function SpinnerAutomationDelegate(obj:Spinner) {
 super(obj);
 // listen to the events of interest (for recording)
 obj.addEventListener(SpinnerEvent.DECREMENT, decrementHandler);
 obj.addEventListener(SpinnerEvent.INCREMENT, incrementHandler);
 }

 protected function decrementHandler(event : SpinnerEvent) : void {
 recordAutomatableEvent(event);
 }

 protected function incrementHandler(event : SpinnerEvent) : void {
 recordAutomatableEvent(event);
 }

 protected function get spinner() : Spinner {

60 | Testing Specific Environments

http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html

 return uiComponent as Spinner;
 }

 //----------------------------------
 // override functions
 //----------------------------------

 override public function get automationValue():Array {
 return [spinner.Value.toString()];
 }

 private function replayClicks(button : IEventDispatcher, steps :
int) : Boolean {
 var helper : IAutomationObjectHelper =
Automation.automationObjectHelper;
 var result : Boolean;
 for(var i:int; i < steps; i++) {
 helper.replayClick(button);
 }
 return result;
 }

 override public function
replayAutomatableEvent(event:Event):Boolean {

 if(event is SpinnerEvent) {
 var spinnerEvent : SpinnerEvent = event as SpinnerEvent;
 if(event.type == SpinnerEvent.INCREMENT) {
 return replayClicks(spinner.upButton,
spinnerEvent.steps);
 }
 else if(event.type == SpinnerEvent.DECREMENT) {
 return replayClicks(spinner.downButton,
spinnerEvent.steps);
 }
 else {
 return false;
 }

 }
 else {
 return super.replayAutomatableEvent(event);
 }
 }

 // do not expose the child controls (i.e the buttons and the
textfield) as individual controls
 override public function get numAutomationChildren():int {
 return 0;
 }

 }
}

2. To introduce the automation delegate to the Open Agent, create an XML file that describes the custom
control.

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

The XML file for the spinner custom control looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<TypeInformation>
 <ClassInfo Name="FlexSpinner" Extends="FlexBox">

Testing Specific Environments | 61

 <Implementation
 Class="customcontrols.Spinner" />
 <Events>
 <Event Name="Decrement">
 <Implementation
 Class="customcontrols.SpinnerEvent"
 Type="decrement" />
 <Property Name="steps">
 <PropertyType Type="integer" />
 </Property>
 </Event>
 <Event Name="Increment">
 <Implementation
 Class="customcontrols.SpinnerEvent"
 Type="increment" />
 <Property Name="steps">
 <PropertyType Type="integer" />
 </Property>
 </Event>
 </Events>
 <Properties>
 <Property Name="lowerBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="upperBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <!-- expose read and write access for the Value property -->
 <Property Name="Value" accessType="both">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="stepSize" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 </Properties>
 </ClassInfo>
</TypeInformation>

3. Include the XML file for the custom control in the folder that includes all the XML files that describe all
classes and their methods and properties for the supported Flex controls.

Silk Test contains several XML files that describe all classes and their methods and properties for the
supported Flex controls. Those XML files are located in the <<Silk Test_install_directory>
\ng\agent\plugins\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Open Agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

To test the Flex Spinner sample control, you must copy the CustomControls.xml file into this folder. If the
Open Agent is currently running, restart it after you copy the file into the folder.

Flex Class Definition File

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test contains several XML files that describe all classes/events/properties for the common Flex
common and specialized controls. Those XML files are located in the <Silk
Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

62 | Testing Specific Environments

If you provide your own XML file, you must copy your XML file into this folder. When the Silk Test agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

<TypeInformation>

<ClassInfo>

<Implementation />

<Events>

<Event />

…

</Events>

<Properties>

<Property />

…

</Properties>

</ClassInfo>

</TypeInformation>

Customizing Apache Flex Scripts
You can manually customize your Flex scripts. You can insert verifications manually using the Verify
function on Flex object properties. Each Flex object has a list of properties that you can verify. For a list of
the properties available for verification, view a list of the supported Flex classes in the
com.borland.silktest.jtf.flex package in the API Reference.

1. Record a test for your Flex application.

2. Open the script file that you want to customize.

3. Manually type the code that you want to add.

Testing Multiple Flex Applications on the Same Web
Page
When multiple Flex applications exist on the same Web page, Silk4J uses the Flex application ID or the
application size property to determine which application to test. If multiple applications exist on the same
page, but they are different sizes, Silk4J uses the size property to determine on which application to
perform any actions and no additional steps are necessary.

Silk4J uses JavaScript to find the Flex application ID to determine on which application to perform any
actions if:

• Multiple Flex applications exist on a single Web page
• Those applications are the same size

Note: In this situation, if JavaScript is not enabled on the browser machine, an error occurs when a
script runs.

Testing Specific Environments | 63

1. Enable JavaScript.

2. In Internet Explorer, perform the following steps:

a) Choose Tools > Internet Options.
b) Click the Security tab.
c) Click Custom level.
d) In the Scripting section, under Active Scripting, click Enable and click OK.

3. Follow the steps in Testing Apache Flex Applications.

Note: If a frame exists on the Web page and the applications are the same size, this method will
not work.

Adobe AIR Support
Silk4J supports testing with Adobe AIR for applications that are compiled with the Flex 4 compiler. For
details about supported versions, check the Release Notes for the latest information.

Silk Test provides a sample Adobe AIR application. You can access the sample application at http://
demo.borland.com/flex/SilkTest16.0/index.html and then click the Adobe AIR application that you want to
use. You can select the application with or without automation. In order to execute the AIR application, you
must install the Adobe AIR Runtime.

Overview of the Flex Select Method Using Name or
Index
You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk4J records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexAdvancedDataGrid

• FlexOLAPDataGrid

• FlexComboBox

The default setting is ItemBasedSelection (Select event), which uses the name control. To use the index,
you must adapt the AutomationEnvironment to use the IndexBasedSelection (SelectIndex event). To
change the behavior for one of these classes, you must modify the FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml file using the following code. Those XML files are located in
the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_< version>\config
\automationEnvironment folder. Make the following adaptations in the corresponding xml file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.
Setting the EnableIndexBasedSelection= to false in the code or removing the Boolean returns
recording to using the name (FlexList::Select events).

64 | Testing Specific Environments

http://demo.borland.com/flex/SilkTest16.0/index.html
http://demo.borland.com/flex/SilkTest16.0/index.html

Note: You must re-start your application, which automatically re-starts the Silk Test Agent, in order for
these changes to become active.

Selecting an Item in the FlexDataGrid Control
Select an item in the FlexDataGrid control using the index value or the content value.

1. To select an item in the FlexDataGrid control using the index value, use the SelectIndex method.
For example, type FlexDataGrid.SelectIndex(1).

2. To select an item in the FlexDataGrid control using the content value, use the Select method.

Identify the row that you want to select with the required formatted string. Items must be separated by a
pipe (" | "). At least one Item must be enclosed by two stars ("*"). This identifies the item where the click
will be performed.

The syntax is: FlexDataGrid.Select("*Item1* | Item2 | Item3")

Enabling Your Flex Application for Testing
To enable your Flex application for testing, your Apache Flex developers must include the following
components in the Flex application:

• Apache Flex Automation Package
• Silk Test Automation Package

Apache Flex Automation Package

The Flex automation package provides developers with the ability to create Flex applications that use the
Automation API. You can download the Flex automation package from Adobe's website, http://
www.adobe.com. The package includes:

• Automation libraries – the automation.swc and automation_agent.swc libraries are the implementations
of the delegates for the Flex framework components. The automation_agent.swc file and its associated
resource bundle are the generic agent mechanism. An agent, such as the Silk Test Agent, builds on top
of these libraries.

• Samples

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, the typekey statement in the Flex Automation API does not
support all keys. You can use the input text statement to resolve this issue. For more information
about using the Flex Automation API, see the Apache Flex Release Notes.

Silk Test Automation Package

Silk Test's Open Agent uses the Apache Flex automation agent libraries. The FlexTechDomain.swc file
contains the Silk Test specific implementation.

You can enable your application for testing using either of the following methods:

• Linking automation packages to your Flex application
• Run-time loading

Linking Automation Packages to Your Flex Application
You must precompile Flex applications that you plan to test. The functional testing classes are embedded
in the application at compile time, and the application has no external dependencies for automated testing
at run time.

When you embed functional testing classes in your application SWF file at compile time, the size of the
SWF file increases. If the size of the SWF file is not important, use the same SWF file for functional testing

Testing Specific Environments | 65

http://www.adobe.com
http://www.adobe.com

and deployment. If the size of the SWF file is important, generate two SWF files, one with functional testing
classes embedded and one without. Use the SWF file that does not include the embedded testing classes
for deployment.

When you precompile the Flex application for testing, in the include-libraries compiler option, reference the
following files:

• automation.swc
• automation_agent.swc
• FlexTechDomain.swc
• automation_charts.swc (include only if your application uses charts and Flex 2.0)
• automation_dmv.swc (include if your application uses charts and Flex > 3.x)
• automation_flasflexkit.swc (include if your application uses embedded flash content)
• automation_spark.swc (include if your application uses the new Flex 4.x controls)
• automation_air.swc (include if your application is an AIR application)
• automation_airspark.swc (include if your application is an AIR application and uses new Flex 4.x

controls)

When you create the final release version of your Flex application, you recompile the application without
the references to these SWC files. For more information about using the automation SWC files, see the
Apache Flex Release Notes.

If you do not deploy your application to a server, but instead request it by using the file protocol or run it
from within Apache Flex Builder, you must include each SWF file in the local-trusted sandbox. This requires
additional configuration information. Add the additional configuration information by modifying the
compiler's configuration file or using a command-line option.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache FlexRelease Notes.

Precompiling the Flex Application for Testing
You can enable your application for testing by precompiling your application for testing or by using run-time
loading.

1. Include the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries in the compiler’s
configuration file by adding the following code to the configuration file:

<include-libraries>

...

<library>/libs/automation.swc</library>

<library>/libs/automation_agent.swc</library>

<library>pathinfo/FlexTechDomain.swc</library>

</include-libraries>

Note: If your application uses charts, you must also add the automation_charts.swc file.

66 | Testing Specific Environments

2. Specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the include-libraries compiler option with the command-line compiler.
The configuration files are located at:

Apache Flex 2 SDK – <flex_installation_directory>/frameworks/flex-config.xml

Apache Flex Data Services – <flex_installation_directory>/flex/WEB-INF/flex/flex-config.xml

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: Explicitly setting the include-libraries option on the command line overwrites, rather than
appends, the existing libraries. If you add the automation.swc and automation_agent.swc files
using the include-libraries option on the command line, ensure that you use the += operator. This
appends rather than overwrites the existing libraries that are included.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround
is to not compile the application SWF files that Explorer loads with automation libraries. For
example, compile only the Explorer main application with automation libraries. Another alternative
is to use the module loader instead of swfloader. For more information about using the Flex
Automation API, see the Apache FlexRelease Notes.

Run-Time Loading
You can load Flex automation support at run time using the Silk Test Flex Automation Launcher. This
application is compiled with the automation libraries and loads your application with the SWFLoader class.
This automatically enables your application for testing without compiling automation libraries into your SWF
file. The Silk Test Flex Automation Launcher is available in HTML and SWF file formats.

Limitations

• The Flex Automation Launcher Application automatically becomes the root application. If your
application must be the root application, you cannot load automation support with the Silk Test Flex
Automation Launcher.

• Testing applications that load external libraries – Applications that load other SWF file libraries require a
special setting for automated testing. A library that is loaded at run time (including run-time shared
libraries (RSLs) must be loaded into the ApplicationDomain of the loading application. If the SWF file
used in the application is loaded in a different application domain, automated testing record and
playback will not function properly. The following example shows a library that is loaded into the same
ApplicationDomain:

import flash.display.*;

import flash.net.URLRequest;

import flash.system.ApplicationDomain;

import flash.system.LoaderContext;

var ldr:Loader = new Loader();

var urlReq:URLRequest = new URLRequest("RuntimeClasses.swf");

Testing Specific Environments | 67

var context:LoaderContext = new LoaderContext();

context.applicationDomain = ApplicationDomain.currentDomain;

loader.load(request, context);

Run-Time Loading

1. Copy the content of the Silk\Silk Test\ng\AutomationSDK\Flex\<version>
\FlexAutomationLauncher directory into the directory of the Flex application that you are testing.

2. Open FlexAutomationLauncher.html in Windows Explorer and add the following parameter as a
suffix to the file path:

?automationurl=YourApplication.swf

where YourApplication.swf is the name of the SWF file for your Flex application.

3. Add file:/// as a prefix to the file path.
For example, if your file URL includes a parameter, such as: ?automationurl=explorer.swf,
type: .

file:///C:/Program%20Files/Silk/Silk Test/ng/sampleapplications/Flex/3.2/
FlexControlExplorer32/FlexAutomationLauncher.html?automationurl=explorer.swf

Using the Command Line to Add Configuration Information
To specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the command-line compiler, use the include-libraries compiler option.

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: If your application uses charts, you must also add the automation_charts.swc file to the
include-libraries compiler option.

Explicitly setting the include-libraries option on the command line overwrites, rather than appends, the
existing libraries. If you add the automation.swc and automation_agent.swc files using the include-
libraries option on the command line, ensure that you use the += operator. This appends rather than
overwrites the existing libraries that are included.

To add automated testing support to a Flex Builder project, you must also add the automation.swc and
automation_agent.swc files to the include-libraries compiler option.

Passing Parameters into a Flex Application
You can pass parameters into a Flex application using the following procedures.

Passing Parameters into a Flex Application Before Runtime

You can pass parameters into a Flex application before runtime using automation libraries.

1. Compile your application with the appropriate automation libraries.

2. Use the standard Flex mechanism for the parameter as you typically would.

Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

Before you begin this task, prepare your application for run-time loading.

68 | Testing Specific Environments

1. Open the FlexAutomationLauncher.html file or create a file using
FlexAutomationLauncher.html as an example.

2. Navigate to the following section:

<script language="JavaScript" type="text/javascript">

 AC_FL_RunContent(eef

 "src", "FlexAutomationLauncher",

 "width", "100%",

 "height", "100%",

 "align", "middle",

 "id", "FlexAutomationLauncher",

 "quality", "high",

 "bgcolor", "white",

 "name", "FlexAutomationLauncher",

 "allowScriptAccess","sameDomain",

 "type", "application/x-shockwave-flash",

 "pluginspage", "http://www.adobe.com/go/getflashplayer",

 "flashvars", "yourParameter=yourParameterValue"+
"&automationurl=YourApplication.swf"

);

 </script>

Note: Do not change the "FlexAutomationLauncher" value for "src", "id", or "name."

3. Add your own parameter to "yourParameter=yourParameterValue".

4. Pass the name of the Flex application that you want to test as value for the "&
automationurl=YourApplication.swf" value.

5. Save the file.

Creating Testable Flex Applications
As a Flex developer, you can employ techniques to make Flex applications as "test friendly" as possible.
These include:

• Providing Meaningful Identification of Objects
• Avoiding Duplication of Objects

Providing Meaningful Identification of Objects

To create "test friendly" applications, ensure that objects are identifiable in scripts. You can set the value of
the ID property for all controls that are tested, and ensure that you use a meaningful string for that ID
property.

To provide meaningful identification of objects:

Testing Specific Environments | 69

• Give all testable MXML components an ID to ensure that the test script has a unique identifier to use
when referring to that Flex control.

• Make these identifiers as human-readable as possible to make it easier for the user to identify that
object in the testing script. For example, set the id property of a Panel container inside a TabNavigator
to submit_panel rather than panel1 or p1.

When working with Silk4J, an object is automatically given a name depending on certain tags, for instance,
id, childIndex. If there is no value for the id property, Silk4J uses other properties, such as the childIndex
property. Assigning a value to the id property makes the testing scripts easier to read.

Avoiding Duplication of Objects

Automation agents rely on the fact that some properties of object instances will not be changed during run
time. If you change the Flex component property that is used by Silk4J as the object name at run time,
unexpected results can occur. For example, if you create a Button control without an automationName
property, and you do not initially set the value of its label property, and then later set the value of the label
property, problems might occur. In this case, Silk4J uses the value of the label property of Button controls
to identify an object if the automationName property is not set. If you later set the value of the label
property, or change the value of an existing label, Silk4J identifies the object as a new object and does not
reference the existing object.

To avoid duplicating objects:

• Understand what properties are used to identify objects in the agent and avoid changing those
properties at run time.

• Set unique, human-readable id or automationName properties for all objects that are included in the
recorded script.

Custom Attributes for Apache Flex Applications

Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding="utf-8"?>
 <s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <fx:Script>
 …
 </fx:Script>
 <s:Button x="247" y="81" label="Button" id="button1" enabled="true"
click="button1_clickHandler(event)"
 automationName="AID_buttonRepeat"/>
 <s:Label x="128" y="123" width="315" height="18" id="label1"
verticalAlign="middle"
 text="awaiting your click" textAlign="center"/>
 </s:Group>

Apache Flex application locators look like the following:

…//SparkApplication//SparkButton[@caption='AID_buttonRepeat'

Attention: For Apache Flex applications, the automationName is always mapped to the locator
attribute caption in Silk4J. If the automationName attribute is not specified, Silk4J maps the
property ID to the locator attribute caption.

Flex AutomationName and AutomationIndex Properties

The Flex Automation API introduces the automationName and automationIndex properties. If you
provide the automationName, Silk4J uses this value for the recorded window declaration's name.
Providing a meaningful name makes it easier for Silk4J to identify that object. As a best practice, set the
value of the automationName property for all objects that are part of the application's test.

70 | Testing Specific Environments

Use the automationIndex property to assign a unique index value to an object. For instance, if two
objects share the same name, assign an index value to distinguish between the two objects.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache Flex Release Notes.

Flex Class Definition File

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test contains several XML files that describe all classes/events/properties for the common Flex
common and specialized controls. Those XML files are located in the <Silk
Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Silk Test agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

<TypeInformation>

<ClassInfo>

<Implementation />

<Events>

<Event />

…

</Events>

<Properties>

<Property />

…

</Properties>

</ClassInfo>

</TypeInformation>

Setting the Flex automationName Property

The automationName property defines the name of a component as it appears in tests. The default value
of this property varies depending on the type of component. For example, the automationName for a
Button control is the label of the Button control. Sometimes, the automationName is the same as the id
property for the control, but this is not always the case.

Testing Specific Environments | 71

For some components, Flex sets the value of the automationName property to a recognizable attribute of
that component. This helps testers recognize the component in their tests. Because testers typically do not
have access to the underlying source code of the application, having a control's visible property define that
control can be useful. For example, a Button labeled "Process Form Now" appears in the test as
FlexButton("Process Form Now").

If you implement a new component, or derive from an existing component, you might want to override the
default value of the automationName property. For example, UIComponent sets the value of the
automationName to the component's id property by default. However, some components use their own
methods for setting the value. For example, in the Flex Store sample application, containers are used to
create the product thumbnails. A container's default automationName would not be very useful because it
is the same as the container's id property. So, in Flex Store, the custom component that generates a
product thumbnail explicitly sets the automationName to the product name to make testing the
application easier.

Example

The following example from the CatalogPanel.mxml custom component sets the value
of the automationName property to the name of the item as it appears in the catalog.
This is more recognizable than the default automation name.

thumbs[i].automationName = catalog[i].name;

Example

The following example sets the automationName property of the ComboBox control to
"Credit Card List"; rather than using the id property, the testing tool typically uses
"Credit Card List" to identify the ComboBox in its scripts:

<?xml version="1.0"?>
<!-- at/SimpleComboBox.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 [Bindable]
 public var cards: Array = [
 {label:"Visa", data:1},
 {label:"MasterCard", data:2},
 {label:"American Express", data:3}
];

 [Bindable]
 public var selectedItem:Object;
]
]>
 </mx:Script>
 <mx:Panel title="ComboBox Control Example">
 <mx:ComboBox id="cb1" dataProvider="{cards}"
 width="150"
 close="selectedItem=ComboBox(event.target).selectedItem"
 automationName="Credit Card List"
 />
 <mx:VBox width="250">
 <mx:Text width="200" color="blue" text="Select a type of
credit card." />
 <mx:Label text="You selected: {selectedItem.label}"/>
 <mx:Label text="Data: {selectedItem.data}"/>
 </mx:VBox>
 </mx:Panel>
</mx:Application>

72 | Testing Specific Environments

Setting the value of the automationName property ensures that the object name will
not change at run time. This helps to eliminate unexpected results.

If you set the value of the automationName property, tests use that value rather than
the default value. For example, by default, Silk4J uses a Button control's label property
as the name of the Button in the script. If the label changes, the script can break. You
can prevent this from happening by explicitly setting the value of the automationName
property.

Buttons that have no label, but have an icon, are recorded by their index number. In this
case, ensure that you set the automationName property to something meaningful so
that the tester can recognize the Button in the script. After the value of the
automationName property is set, do not change the value during the component's life
cycle. For item renderers, use the automationValue property rather than the
automationName property. To use the automationValue property, override the
createAutomationIDPart() method and return a new value that you assign to the
automationName property, as the following example shows:

<mx:List xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 import mx.automation.IAutomationObject;
 override public function
 createAutomationIDPart(item:IAutomationObject):Object {
 var id:Object = super.createAutomationIDPart(item);
 id["automationName"] = id["automationIndex"];
 return id;
 }
]]>
 </mx:Script>
</mx:List>

Use this technique to add index values to the children of any container or list-like
control. There is no method for a child to specify an index for itself.

Setting the Flex Select Method to Use Name or Index

You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

1. Determine which class you want to modify to use the Index.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexOLAPDataGrid

• FlexComboBox

• FlexAdvancedDataGrid

2. Determine which XML file is related to the class that you want to modify.

The XML files related to the preceding controls include: FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml.

3. Navigate to the XML files that are related to the class that you want to modify.

The XML files are located in the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

Testing Specific Environments | 73

4. Make the following adaptations in the corresponding XML file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

For instance, you might use "FlexList" as the " FlexControlName" and modify the
FlexCommonControls.xml file.

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.

Note: Setting the EnableIndexBasedSelection= to false in the code or removing the
boolean returns recording to using the name (FlexList::Select events).

5. Re-start your Flex application and the Open Agent in order for these changes to become active.

Coding Flex Containers
Containers differ from other kinds of controls because they are used both to record user interactions (such
as when a user moves to the next pane in an Accordion container) and to provide unique locations for
controls in the testing scripts.

Adding and Removing Containers from the Automation Hierarchy

In general, the automated testing feature reduces the amount of detail about nested containers in its
scripts. It removes containers that have no impact on the results of the test or on the identification of the
controls from the script. This applies to containers that are used exclusively for layout, such as the HBox,
VBox, and Canvas containers, except when they are being used in multiple-view navigator containers, such
as the ViewStack, TabNavigator, or Accordion containers. In these cases, they are added to the automation
hierarchy to provide navigation.

Many composite components use containers, such as Canvas or VBox, to organize their children. These
containers do not have any visible impact on the application. As a result, you typically exclude these
containers from testing because there is no user interaction and no visual need for their operations to be
recordable. By excluding a container from testing, the related test script is less cluttered and easier to read.

To exclude a container from being recorded (but not exclude its children), set the container's
showInAutomationHierarchy property to false. This property is defined by the UIComponent class,
so all containers that are a subclass of UIComponent have this property. Children of containers that are
not visible in the hierarchy appear as children of the next highest visible parent.

The default value of the showInAutomationHierarchy property depends on the type of container. For
containers such as Panel, Accordion, Application, DividedBox, and Form, the default value is true; for
other containers, such as Canvas, HBox, VBox, and FormItem, the default value is false.

The following example forces the VBox containers to be included in the test script's hierarchy:

<?xml version="1.0"?>
<!-- at/NestedButton.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Panel title="ComboBox Control Example">
<mx:HBox id="hb">
<mx:VBox id="vb1" showInAutomationHierarchy="true">
<mx:Canvas id="c1">
<mx:Button id="b1" automationName="Nested Button 1" label="Click Me" />
</mx:Canvas>
</mx:VBox>
<mx:VBox id="vb2" showInAutomationHierarchy="true">
<mx:Canvas id="c2">
<mx:Button id="b2" automationName="Nested Button 2" label="Click Me 2" />
</mx:Canvas>
</mx:VBox>

74 | Testing Specific Environments

</mx:HBox>
</mx:Panel>
</mx:Application>

Multiview Containers

Avoid using the same label on multiple tabs in multiview containers, such as the TabNavigator and
Accordion containers. Although it is possible to use the same labels, this is generally not an acceptable UI
design practice and can cause problems with control identification in your testing environment.

Flex Automation Testing Workflow
The Silk4J workflow for testing Flex applications includes:

• Automated Testing Initialization
• Automated Testing Recording
• Automated Testing Playback

Flex Automated Testing Initialization

When the user launches the Flex application, the following initialization events occur:

1. The automation initialization code associates component delegate classes with component classes.
2. The component delegate classes implement the IAutomationObject interface.
3. An instance for the AutomationManager is created in the mixin init() method. (The

AutomationManager is a mixin.)
4. The SystemManager initializes the application. Component instances and their corresponding delegate

instances are created. Delegate instances add event listeners for events of interest.
5. The Silk4J FlexTechDomain is a mixin. In the FlexTechDomain init() method, the FlexTechDomain

registers for the SystemManager.APPLICATION_COMPLETE event. When the event is received, it
creates a FlexTechDomain instance.

6. The FlexTechDomain instance connects via a TCP/IP socket to the Silk Test Agent on the same
machine that registers for record/playback functionality.

7. The FlexTechDomain requests information about the automation environment. This information is stored
in XML files and is forwarded from the Silk Test Agent to the FlexTechDomain.

Flex Automated Testing Recording

When the user records a new test in Silk4J for a Flex application, the following events occur:

1. Silk4J calls the Silk Test Agent to start recording. The Agent forwards this command to the
FlexTechDomain instance.

2. FlexTechDomain notifies AutomationManager to start recording by calling beginRecording(). The
AutomationManager adds a listener for the AutomationRecordEvent.RECORD event from the
SystemManager.

3. The user interacts with the application. For example, suppose the user clicks a Button control.
4. The ButtonDelegate.clickEventHandler() method dispatches an AutomationRecordEvent

event with the click event and Button instance as properties.
5. The AutomationManager record event handler determines which properties of the click event to store

based on the XML environment information. It converts the values into proper type or format. It
dispatches the record event.

6. The FlexTechDomain event handler receives the event. It calls the
AutomationManager.createID() method to create the AutomationID object of the button. This
object provides a structure for object identification. The AutomationID structure is an array of
AutomationIDParts. An AutomationIDPart is created by using IAutomationObject. (The UIComponent.id,
automationName, automationValue, childIndex, and label properties of the Button control are read and
stored in the object. The label property is used because the XML information specifies that this property
can be used for identification for the Button.)

Testing Specific Environments | 75

7. FlexTechDomain uses the AutomationManager.getParent() method to get the logical parent of
Button. The AutomationIDPart objects of parent controls are collected at each level up to the application
level.

8. All the AutomationIDParts are included as part of the AutomationID object.
9. The FlexTechDomain sends the information in a call to Silk4J.
10.When the user stops recording, the FlexTechDomain.endRecording() method is called.

Flex Automated Testing Playback

When the user clicks the Playback button in Silk4J, the following events occur:

1. For each script call, Silk4J contacts the Silk Test Agent and sends the information for the script call to
be executed. This information includes the complete window declaration, the event name, and
parameters.

2. The Silk Test Agent forwards that information to the FlexTechDomain.
3. The FlexTechDomain uses AutomaionManager.resolveIDToSingleObject with the window

declaration information. The AutomationManager returns the resolved object based on the descriptive
information (automationName, automationIndex, id, and so on).

4. Once the Flex control is resolved, FlexTechDomain calls
AutomationManager.replayAutomatableEvent() to replay the event.

5. The AutomationManager.replayAutomatableEvent() method invokes the
IAutomationObject.replayAutomatableEvent() method on the delegate class. The delegate
uses the IAutomationObjectHelper.replayMouseEvent() method (or one of the other replay
methods, such as replayKeyboardEvent()) to play back the event.

6. If there are verifications in your script, FlexTechDomain invokes
AutomationManager.getProperties() to access the values that must be verified.

Styles in Apache Flex Applications
For applications developed in Apache Flex 3.x, Silk4J does not distinguish between styles and properties.
As a result, styles are exposed as properties. However, with Apache Flex 4.x, all new Flex controls, which
are prefixed with Spark, such as SparkButton, do not expose styles as properties. As a result, the
GetProperty() and GetPropertyList() methods for Flex 4.x controls do not return styles, such as
color or fontSize, but only properties, such as text and name.

The GetStyle(string styleName) method returns values of styles as a string. To find out which
styles exist, refer to the Adobe help located at: http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/package-detail.html.

If the style is not set, a StyleNotSetException occurs during playback.

For the Flex 3.x controls, such as FlexTree, you can use GetProperty() to retrieve styles. Or, you can
use GetStyle(). Both the GetProperty() and GetStyle() methods work with Flex 3.x controls.

Calculating the Color Style

In Flex, the color is represented as number. It can be calculated using the following formula:

red*65536 + green*256 + blue

Example

In the following example, the script verifies whether the font size is 12. The number
16711680 calculates as 255*65536 + 0*256 + 0. This represents the color red, which
the script verifies for the background color.

Assert.That(control.GetStyle("fontSize"), [Is].EqualTo("12"))
Assert.That(label.GetStyle("backgroundColor"),
[Is].EqualTo("16711680"))

76 | Testing Specific Environments

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html

Configuring Flex Applications for Adobe Flash Player
Security Restrictions
The security model in Adobe Flash Player 10 has changed from earlier versions. When you record tests
that use Flash Player, recording works as expected. However, when you play back tests, unexpected
results occur when high-level clicks are used in certain situations. For instance, a File Reference dialog
box cannot be opened programmatically and when you attempt to play back this scenario, the test fails
because of security restrictions.

To work around the security restrictions, you can perform a low-level click on the button that opens the
dialog box. To create a low-level click, add a parameter to the click method.

For example, instead of using SparkButton.click(), use
SparkButton.click(MouseButton.LEFT). A click() without parameters is a high-level click and a
click with parameters (such as the button) is replayed as a low-level click.

1. Record the steps that use Flash Player.

2. Navigate to the click method and add a parameter.
For example, to open the Open File dialog box, specify:

SparkButton("@caption='Open File Dialog…'").click(MouseButton.LEFT)

When you play back the test, it works as expected.

Attributes for Apache Flex Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Flex applications include:

• automationName
• caption (similar to automationName)
• automationClassName (e.g. FlexButton)
• className (the full qualified name of the implementation class, e.g. mx.controls.Button)
• automationIndex (the index of the control in the view of the FlexAutomation, e.g. index:1)
• index (similar to automationIndex but without the prefix, e.g. 1)
• id (the id of the control)
• windowId (similar to id)
• label (the label of the control)
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Why Cannot Silk4J Recognize Apache Flex Controls?
If Silk4J cannot recognize the controls of an Apache Flex application, which you are accessing through a
Web server, you can try the following things:

• Compile your Apache Flex application with the Adobe automation libraries and the appropriate
FlexTechDomain.swc for the Apache Flex version.

Testing Specific Environments | 77

• Use runtime loading.
• Apache Flex controls are not recognized when embedding an Apache Flex application with an empty id

attribute.

Java AWT/Swing Support
Silk4J provides built-in support for testing applications or applets that use the Java AWT/Swing controls.
When you configure an application or applet that uses Java AWT/Swing, Silk4J automatically provides
support for testing standard AWT/Swing controls.

Note: You can also test Java SWT controls embedded in Java AWT/Swing applications or applets as
well as Java AWT/Swing controls embedded in Java SWT applications.

Note: Image click recording is not supported for applications or applets that use the Java AWT/Swing
controls.

Sample Applications

Silk Test provides a sample Swing test application. Download and install the sample applications from
http://supportline.microfocus.com/websync/SilkTest.aspx. After you have installed the sample applications,
click Start > Programs > Silk > Silk Test > Sample Applications > Java Swing > Swing Test
Application.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Supported Controls

For a complete list of the controls available for Java AWT/Swing testing, view a list of the supported Swing
classes in the API Reference:

• com.borland.silktest.jtf.swing - contains Java Swing specific classes
• com.borland.silktest.jtf.common.types - contains data types

Attributes for Java AWT/Swing Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java AWT/Swing include:

• caption
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName
• Swing only: All custom object definition attributes set in the widget with

SetClientProperty("propertyName", "propertyValue")

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

78 | Testing Specific Environments

http://supportline.microfocus.com/websync/SilkTest.aspx
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Dynamically Invoking Java Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods of the SWT, AWT, or Swing widget
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum type, java.sql.ClientInfoStatus you
can use the string values of REASON_UNKNOWN, REASON_UNKNOWN_PROPERTY,
REASON_VALUE_INVALID, or REASON_VALUE_TRUNCATED

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

• Other controls

Control parameters can be passed or returned as TestObject.

Testing Specific Environments | 79

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Configuring Silk4J to Launch an Application that Uses
the Java Network Launching Protocol (JNLP)
Applications that start using the Java Network Launching Protocol (JNLP) require additional configuration
in Silk4J. Because these applications are started from the Web, you must manually configure the
application configuration to start the actual application and launch the "Web Start". Otherwise, the test will
fail on playback unless the application is already running.

1. If the test fails, because Silk4J cannot start the application, edit the application configuration.

2. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

3. Edit the base state to ensure that the Web Start launches during playback.

a) Click Edit.
b) In the Executable Pattern text box, type the absolute path for the javaws.exe.

For example, you might type:

%ProgramFiles%\Java\jre6\bin\javaws.exe

c) In the Command Line Pattern text box, type the command line pattern that includes the URL to the
Web Start.

"<url-to-jnlp-file>"

For example, for the SwingSet3 application, type:

"http://download.java.net/javadesktop/swingset3/SwingSet3.jnlp"

d) Click OK.

4. Click OK. The test uses the base state to start the web-start application and the application
configuration executable pattern to attach to javaw.exe to execute the test.

When you run the test, a warning states that the application configuration EXE file does not match the base
state EXE file. You can disregard the message because the test executes as expected.

Determining the priorLabel in the Java AWT/Swing
Technology Domain
To determine the priorLabel in the Java AWT/Swing technology domain, all labels and groups in the same
window as the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• If a parent of the control is a JViewPort or a ScrollPane, the algorithm works as if the parent is the
window that contains the control, and nothing outside is considered relevant.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, and one is to the left and the other above the

control, the left one is preferred.
• If no label is eligible, the caption of the closest group is used.

80 | Testing Specific Environments

Oracle Forms Support
Silk4J provides built-in support for testing applications that are based on Oracle Forms.

Note: For some controls, Silk4J provides only low-level recording support.

For information on the supported versions and browsers for Oracle Forms, refer to the Release Notes. For
a complete list of the controls available for Oracle Forms, view a list of the supported Oracle Forms classes
in the API Reference.

Prerequisites for Testing Oracle Forms
To test an application that is built with Oracle Forms, the following prerequisites need to be fulfilled:

• The next-generation Java Plug-In needs to be enabled. This setting is enabled by default. You can
change the setting in the Java Control Panel. For additional information on the next-generation Java
Plug-In, refer to the Java documentation.

• To prevent Java security dialogs from displaying during a test run, the Applet needs to be signed.
• Micro Focus recommends enabling the Names property. When this property is enabled, the Oracle

Forms runtime exposes the internal name, which is the name that the developer of the control has
specified for the control, as the Name property of the control. Otherwise, the Name property will hold a
calculated value, which usually consists of the class name of the control plus an index. This enables
Silk4J to generate stable locators for controls.

Attributes for Oracle Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Oracle Forms include:

• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a
form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Java SWT and Eclipse RCP Support
Silk Test provides built-in support for testing applications that use widgets from the Standard Widget Toolkit
(SWT) controls. When you configure a Java SWT/RCP application, Silk Test automatically provides support
for testing standard Java SWT/RCP controls.

Silk Test supports:

• Testing Java SWT controls embedded in Java AWT/Swing applications as well as Java AWT/Swing
controls embedded in Java SWT applications.

• Testing Java SWT applications.
• Any Eclipse-based application that uses SWT widgets for rendering. Silk Test supports both Eclipse

IDE-based applications and RCP-based applications.

Testing Specific Environments | 81

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Supported Controls

For a complete list of the widgets available for SWT testing, see Java SWT Class Reference.

Java SWT Custom Attributes
You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, 'silkTestAutomationId')
for a widget that uniquely identifies the widget in the application. A tester using Silk4J can then add that
attribute to the list of custom attributes (in this case, 'silkTestAutomationId'), and can identify
controls by that unique ID. Using a custom attribute is more reliable than other attributes like caption or
index, since a caption will change when you translate the application into another language, and the index
will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different text fields, both fields will return when you call the 'loginName' attribute.

Java SWT Example

If you create a button in the application that you want to test using the following code:

Button myButton = Button(parent, SWT.NONE);

myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton("@SilkTestAutomationId='myButton'")

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Attributes for Java SWT Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java SWT include:

• caption
• all custom object definition attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

82 | Testing Specific Environments

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods of the SWT, AWT, or Swing widget
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum type, java.sql.ClientInfoStatus you
can use the string values of REASON_UNKNOWN, REASON_UNKNOWN_PROPERTY,
REASON_VALUE_INVALID, or REASON_VALUE_TRUNCATED

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

• Other controls

Control parameters can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Testing Specific Environments | 83

Testing Mobile Web Applications
Silk4J enables you to automatically test your mobile applications (apps). Automated testing with Silk4J
provides the following benefits:

• It can significantly reduce the testing time of your mobile applications.
• You can create your tests once and then test your mobile applications on a large number of different

devices and platforms.
• You can ensure the reliability and performance that is required for enterprise mobile applications.
• It can increase the efficiency of QA team members and mobile application developers.
• Manual testing might not be efficient enough for an agile-focused development environment, given the

large number of mobile devices and platforms on which a mobile application needs to function.

Note: Silk4J provides support for testing mobile Web apps and hybrid mobile apps on both Android
and iOS devices.

For information on the supported operating system versions and the supported browsers for testing mobile
applications, refer to the Release Notes.

Testing Mobile Web Applications on Android
Silk4J enables you to test a mobile application on an Android device or an Android emulator.

Testing Mobile Web Applications on a Physical Android device
To test a mobile application on a physical Android device, perform the following tasks:

1. Connect the device to the machine on which Silk4J is installed.

2. If you are testing this Android device for the first time on this machine, install the appropriate Android
USB Driver on the machine.

For additional information, see Installing a USB Driver.

3. Enable USB-debugging on the Android device.

For additional information, see Enabling USB-Debugging.

4. Ensure that the Open Agent is running on the machine to which the Android device is connected.

When testing a mobile Web application, the Open Agent is automatically used as a proxy for the
Android device.

Note: A network connection needs to be active on the Android device.

5. If the Silk Test Web Tunneler app is not installed on the Android device, Silk4J installs the app to
enable the USB connection between the Open Agent and the device.

6. To test a secure mobile Web application over HTTPS, Silk4J copies a root certificate to the device or
emulator during hooking. If the certificate is not installed, the Silk Test Web Tunneler app displays a
message box, stating that the root certificate is not installed. Click on the message box to install the
certificate.

Note: If the certificate is not installed automatically during hooking, see Troubleshooting when
Testing Mobile Web Applications or Manually Adding a Root Certificate to Test a Secure Web
Application.

7. Close all browsers on the device or emulator, to enable Silk4J to check whether all required certificates
for the web application are properly installed and used.

8. Create a Silk4J project for your mobile application.

9. Create a test for your mobile application.

84 | Testing Specific Environments

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

10.Use the Mobile Recording feature to record the test against the mobile application.

11.When the Mobile Recording feature starts, the Select Application dialog box opens. Select the
mobile browser that you want to use and start recording.

12.If the selected browser cannot connect to the Web, check if the Silk Test Web Tunneler app displays a
message stating that the proxy settings are not correct. To manually change the proxy settings:

a) Locate the proxy settings of the wireless connection that you are using for the Android device. For
additional information on locating the proxy settings, refer to the documentation of your Android
device.

b) Type localhost into the Proxy or Proxy hostname field.
c) Type 9999 into the Port field.
d) Click OK.

13.Replay the test.

An Android device or emulator must not be screen-locked during testing. To keep the device awake
while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

14.Analyze the test results.

Testing Mobile Web Applications on an Android Emulator
To test a mobile Web application on an Android emulator, perform the following tasks:

1. Configure the emulator settings for Silk4J.

For additional information, see Configuring the Android Emulator for Silk4J.

2. Start the Android emulator.

3. To test a mobile application, set the Open Agent as a proxy for the Android emulator.

Note: Ensure that the Open Agent is running on the machine on which the emulator is installed.

For additional information, see Manually Setting the Open Agent as a Proxy for an Android Device or
Emulator.

4. To test a secure mobile Web application over HTTPS, install the root certificate of the Web application
on the emulator.

For additional information, see Installing the Root Certificate to Test a Secure Web Application.

Note: Install the root certificate directly after setting the Open Agent as the proxy, because an
issue with the Android emulator will not allow you to install a root certificate when you have
otherwise used the Android emulator.

5. Close all browsers on the device or emulator, to enable Silk4J to check whether all required certificates
for the web application are properly installed and used.

6. Create a Silk4J project for your mobile application.

7. Create a test for your mobile application.

8. Use the Mobile Recording feature to record the test against the mobile application.

9. Replay the test.

An Android device or emulator must not be screen-locked during testing. To keep the device awake
while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

10.Analyze the test results.

Installing a USB Driver
To connect an Android device for the first time to your local machine to test your mobile applications, you
need to install the appropriate USB driver.

Testing Specific Environments | 85

The device manufacturer might provide an EXE with all the necessary drivers for the device. In this case
you can just install the EXE on your local machine. If the manufacturer does not provide such an EXE, you
can install a single USB driver for the device on the machine.

To install the Android USB driver on Microsoft Windows 7:

1. Find the appropriate driver for your device.

For information on finding and installing a USB driver, see http://developer.android.com/tools/extras/
oem-usb.html.

2. Connect your Android device to a USB port on your local machine.

3. From your desktop or Windows Explorer, right-click Computer and select Manage.

4. In the left pane, select Device Manager.

5. In the right pane, locate and expand Other device.

6. Right-click the device name, for example Nexus S, and select Update Driver Software. The Hardware
Update Wizard opens.

7. Select Browse my computer for driver software and click Next.

8. Click Browse and locate the USB driver folder.

By default, the Google USB Driver is located in <sdk>\extras\google\usb_driver\.

9. Click Next to install the driver.

For information on upgrading an existing USB driver or installing a USB driver on another operating
system, see http://developer.android.com/tools/extras/oem-usb.html.

Enabling USB-Debugging
To communicate with an Android device over the Android Debug Bridge (adb), enable USB debugging on
the device.

1. On the Android device, open the settings.

2. Tap Developer Settings.

The developer settings are hidden by default. If the developer settings are not included in the settings
menu of the device:

a) Depending on whether the device is a phone or a pad, scroll down and tap About phone or About
Pad.

b) Scroll down again and tap Build Number seven times.

3. In the Developer settings window, check USB-Debugging.

4. Set the USB mode of the device to Media device (MTP), which is the default setting.

For additional information, refer to the documentation of the device.

Manually Setting the Open Agent as a Proxy for an Android Emulator
To set the Open Agent as a proxy for your Android emulator, install the Open Agent on the machine from
which you want to test the emulator and enable USB debugging on the emulator.

1. Start the Android emulator.

2. On the Android emulator, open the settings.

3. In the WIRELESS & MORE section, click More.

4. Select Mobile Networks > Access Point Names.

5. Select an existing access point to edit it or create a new access point.

6. Type the IP-address of the machine on which the Open Agent is installed into the Proxy or Proxy
hostname field.

7. Click Port.

86 | Testing Specific Environments

http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/extras/oem-usb.html

8. Type the port for the Open Agent into the Port field. By default, the port number is dynamic, so first you
need to set a permanent port number. To change the port number, use the configuration setting
ext.http.proxy.port in the file AppData\Roaming\Silk\SilkTest\conf
\silkproxy.properties.sample to set a permanent port number. For example, to set the port
number to 9999, set ext.http.proxy.port=9999. Then type the port number into the Port field and
rename the file silkproxy.properties.sample to silkproxy.properties.

9. Click OK.

The Open Agent is now set as a proxy for your Android device or Android emulator. For additional
information on configuring a proxy for your Android device or Android emulator, refer to the documentation
of the device or the emulator.

Note: As long as the Open Agent is running, you can use the Internet connection on the mobile
device that uses the Open Agent as a proxy. If the Open Agent is not running, the connection will no
longer work, and you have to use another connection to connect to the Internet from your mobile
device. If you remove the wireless network connection while the device or emulator is still running, the
connection to the Open Agent persists until you shut down the device or emulator.

Recommended Settings for Android Devices
To optimize testing with Silk4J, configure the following settings on the Android device that you want to test:

• Enable USB-debugging on the Android device. For additional information, see Enabling USB-Debugging
• Set a pattern or a PIN to lock the screen of the Android device.
• An Android device must be connected as a media device to the machine on which the Open Agent is

running. The USB mode of the Android device must be set to Media device (MTP).
• An Android device or emulator must not be screen-locked during testing. To keep the device awake

while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

• To persist your changes for the Android emulator, for example the proxy settings, uncheck the Wipe
user data check box in the Launch Options dialog box of the emulator.

Configuring the Android Emulator for Silk4J
When you want to test mobile applications on an Android emulator with Silk4J, you have to configure the
emulator for testing:

1. Install the Android SDK.

For information on how to install and configure the Android SDK, see Get the Android SDK.

2. From Eclipse, click Window > Android SDK Manager to start the Android SDK Manager.

3. For all Android versions that you want to test with the emulator, expand the version node and check the
check box next to Intel x86 Atom System Image.

4. Click Install to install the selected packages.

5. Expand the Extras node and check the check box next to Intel x86 Emulator Accelerator (HAXM).

6. Click Install to install the selected packages.

7. Review the Intel Corporation license agreement. If you accept the terms, select Accept and click
Install. The Android SDK Manager will download the installer to the extras directory, under the main
SDK directory. Even though the Android SDK Manager says Installed it actually means that the
Intel HAXM executable was downloaded. You will still need to run the installer from the extras directory
to get it installed.

8. Extract the installer inside the extras directory and follow the installation instructions for your platform.

9. In Eclipse, click Window > Android Virtual Device Manager to add a new Android Virtual Device
(AVD).

10.Select the Android Virtual Devices tab.

Testing Specific Environments | 87

http://developer.android.com/sdk/index.html

11.Click New.

12.Configure the virtual device according to your requirements.

13.Set the RAM size used by the emulator to an amount that is manageable by your machine.

For example, set the RAM size for the emulator to 512.

14.Set a size for the SD card.

Note: If you do not set a size for the SD card, you need to set the value of the internal storage to
50 MB or more, otherwise you cannot copy the certificate file to the emulator.

15.To enhance the speed of the transactions on the emulator, select the Intel Atom (x86) CPU in the
CPU/ABI field.

16.Optional: To enhance the speed of the transactions on the emulator, you can also check the Use Host
GPU check box in the emulation options.

Note: By setting Use Host GPU, you can no longer capture screenshots and would see a black
image in the Mobile Recording dialog box. However, you could still highlight controls within the
Mobile Recording dialog box. For additional information, see https://code.google.com/p/android/
issues/detail?id=58724.

17.Click OK.

18.Optional: To persist your changes for the Android emulator, for example the proxy settings, uncheck the
Wipe user data check box in the Launch Options dialog box of the emulator.

88 | Testing Specific Environments

https://code.google.com/p/android/issues/detail?id=58724
https://code.google.com/p/android/issues/detail?id=58724

Testing Mobile Web Applications on iOS
Silk4J enables you to test a mobile application on an iOS device.

Testing Mobile Web Applications on a Physical iOS Device
To test a mobile application (app) on a physical iOS device, perform the following tasks:

1. If you are testing a hybrid app, make the app accessible. For additional information, see Making Your
iOS App Accessible.

2. If you are testing a mobile application on an iOS device for the first time on this machine, install iTunes
on the machine.

iTunes is required because it contains the device drivers that are needed to test on an iOS device.

3. Install the Silk Test application on the iOS device. For additional information, see Installing the Silk Test
Application on an iOS Device.

4. Set localhost:9999 as a proxy for your iOS device.

For additional information on setting the proxy for an iOS device, see Setting the Proxy for an iOS
Device.

5. Connect the device to the machine on which Silk4J is installed.

6. Run a simple test to ensure that the Open Agent is running on the machine to which the iOS device is
connected.

7. Open the Silk Test application on the iOS device.

8. To test a secure mobile Web application over HTTPS, install a root certificate for the mobile Web
application by using the Silk Test application.

9. Close all browsers on the device or emulator, to enable Silk4J to check whether all required certificates
for the web application are properly installed and used.

10.Create a Silk4J project for your mobile application.

11.Create a test for your mobile application.

12.Use the Mobile Recording feature to record the test against the mobile application.

13.Replay the test.

The iOS device should not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock. In iOS 7, select Settings > Passcode.

14.Analyze the test results.

Installing the Silk Test Application on an iOS Device
Install the Silk Test application on an iOS device to enable the USB connection between the Open Agent
and the iOS device.

Note: To test an iOS device with Silk Test, the UDID of the iOS device must be registered in the Apple
Developer Account of your company.

1. Download Xcode, for example from https://developer.apple.com/xcode/downloads/, and install it on a
Mac.

The Mac is only required to install the Silk Test application on an iOS device, and does not have to be
very fast. For example, a Mac Mini with minimal configuration would be sufficient.

2. Connect the iOS device to the Mac.

3. When a dialog box opens on the iOS device, click Trust. You can now use the device in combination
with Xcode. After you launch an App for the first time, a Provisioning Profile which matches the
developer profile of your company is installed on the device.

Testing Specific Environments | 89

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Making_Application_Accessible/Making_Application_Accessible.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Making_Application_Accessible/Making_Application_Accessible.html
https://developer.apple.com/xcode/downloads/

4. Copy the archive SilkTestiOS.zip, which is located by default under C:\Program Files
(x86)\Silk\SilkTest\ng\iOS on the Windows machine on which the Open Agent is installed, to
the Mac and unpack the archive.

Note: To retrieve the password for unpacking the archive, log in to our SupportLine site and report
an incident with the subject iOS Password.

5. Click File > Open to import the project to Xcode or click the .xcodeproj file to open the project.

6. In Xcode, select your device as the target instead of the iOS Simulator, which is set as the target by
default.

7. In the project settings, select the developer program of your company.

8. Click on the arrow in the upper left corner or select Product > Run.

9. To automatically install the Silk Test application on additional iOS devices used in your company, see
Automatically Installing the Silk Test Application on an iOS Device.

10.The Silk Test application on the iOS device is started for the first time.

Note: As soon as the Silk Test application has been successfully started on the iOS device, you
can simply tap the icon of the application on the iOS device to start the application.

Automatically Installing the Silk Test Application on an iOS Device
Generate an IPA file and distribute it to enable users in your company to install the Silk Test application
automatically on iOS devices.

Note: To test an iOS device with Silk Test, the UDID of the iOS device must be registered in the Apple
Developer Account of your company.

1. Download Xcode, for example from https://developer.apple.com/xcode/downloads/, and install it on a
Mac.

The Mac is only required to install the Silk Test application on an iOS device, and does not have to be
very fast. For example, a Mac Mini with minimal configuration would be sufficient.

2. Connect the iOS device to the Mac.

3. When a dialog box opens on the iOS device, click Trust. You can now use the device in combination
with Xcode. After you launch an App for the first time, a Provisioning Profile which matches the
developer profile of your company is installed on the device.

4. In Xcode, compile the Silk Test application.

5. Click Products > Archive and generate the IPA file for the Silk Test application.

6. Copy the generated IPA file and a developer disk image for every iOS version that you want to test into
the distribution folder that you want to use.

a) The developer disk image is located by default in the Xcode installation folder under xCode/
Contents/Developer/Platforms/IPhoneOS.platform/DeviceSupport/
<iOS_version_number>/, where iOS_version_number is the iOS version of the device that you
want to test.

b) You need to copy two files for the developer disk image, DeveloperDiskImage.dmg and
DeveloperDiskImage.dmg.signature.

7. On every machine from which you want to test an iOS device, open the folder %APPDATA%\Silk
\SilkTest\Conf.

8. Rename the file iosApp.properties.sample to iosApp.properties.

9. Open the iosApp.properties file and change the file locations to the distribution folder to which you
have copied the IPA file and the developer disk image.

When you select an iOS device, with an iOS version for which you have copied a developer disk image,
from the Select Application dialog, the Silk Test application is installed on the iOS device.

90 | Testing Specific Environments

http://supportline.microfocus.com/MF_incident_add.aspx
https://developer.apple.com/xcode/downloads/

Setting the Proxy for an iOS Device
To set the localhost as a proxy for your iOS device, install the Open Agent on the machine from which you
want to test the device.

1. On the iOS device, click Settings > WiFi.

2. Click on the information button (i) of the active wireless network.

3. In the Proxy section, select Manual.

4. Type localhost into the hostname field.

5. Type 9999 into the port field.

For additional information on configuring a proxy for your iOS device, refer to the documentation of the
device.

Note: As long as the Open Agent is running, you can use the Internet connection on the mobile
device. If the Open Agent is not running, the connection will no longer work, and you have to use
another connection to connect to the Internet from your mobile device. If you remove the wireless
network connection while the device is still running, the connection to the Open Agent persists until
you shut down the device.

Recommended Settings for iOS Devices
To optimize testing with Silk4J, configure the following settings on the iOS device that you want to test:

• Ensure that the iOS device is running with Xcode and in developer mode.
• To ensure that Apple Safari starts correctly, tap Settings > Safari and select Clear Cookies and Data.
• To make the testing reflect the actions an actual user would perform, disable AutoFill and remembering

passwords for Apple Safari. Tap Settings > Safari > Passwords & AutoFill and turn off the Names
and Passwords setting.

• The iOS device should not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock. In iOS 7, select Settings > Passcode.

Recording Mobile Applications
Note: Some low-level methods and classes are not supported for mobile Web applications. To be able
to correctly replay a test recorded against a mobile Web application, uncheck the Record native user
input option in the Browser options of Silk4J before recording against the mobile Web application. For
additional information, see Limitations for Testing Mobile Web Applications.

Once you have established the connection between Silk4J and a mobile device or an emulator, you can
record the actions that are performed on a mobile browser on the device to create tests. To record mobile
Web applications, Silk4J uses the Mobile Recording feature, which provides additional functionality
compared to the recorder that is used for standard or Web applications.

The Mobile Recording feature displays the screen of the mobile device or Android emulator which you are
testing.

Note: If no mobile device is connected to the machine and no emulator is started, the Mobile
Recording window displays an error message. Connect your mobile device to the machine or start
the emulator and then click Refresh in the Mobile Recording window.

When you perform an action in the Mobile Recording feature, the same action is performed on the mobile
device.

When you interact with a control on the screen, the Mobile Recording feature preselects the default
action. A list of all the available actions against the control displays, and you can select the action that you
want to perform or simply accept the preselected action by clicking OK. You can type values for the
parameters of the selected action into the parameter fields. Silk4J automatically validates the parameters.

Testing Specific Environments | 91

When you cannot directly interact with a control, for example because other controls are hiding the control,
you can click Toggle Object Hierarchy in the Mobile Recording feature to select the control from the
control hierarchy tree.

When you pause the recording, you can perform actions in the screen which are not recorded to bring the
device into a state from which you want to continue recording.

When you stop recording, a script is generated with your recorded actions, and you can proceed with
replaying the test.

Interacting with a Mobile Device
To interact with a mobile device and to perform an action like a swipe in the application under test:

1. In the Mobile Recording window, click Show Mobile Device Actions. All the actions that you can
perform against the mobile device are listed.

2. Select the action that you want to perform from the list.

3. To record a swipe on an Android device or emulator, move the mouse while clicking the left mouse
button.

4. Continue with the recording of your test.

Troubleshooting when Testing Mobile Web
Applications

Why does the Select Application dialog box not display my mobile browsers?

Silk4J might not recognize a mobile device or emulator for one of the following reasons:

Reason Solution

The mobile device is not connected to the local machine. Connect the mobile device to the local machine.

The emulator is not running. Start the emulator.

The Android Debug Bridge (adb) does not recognize the
mobile device.

To check if the mobile device is recognized by adb:

1. Navigate to C:\Program Files (x86)\Silk
\SilkTest\ng\agent\plugins
\com.microfocus.silktest.adb_15.0.0.
6733\bin.

2. Hold Shift and right-click into the File Explorer
window.

3. Select Open command window here.

4. In the command window, type adb devices to get
a list of all attached devices.

5. If your device is not listed, check if USB-debugging is
enabled on the device.

The version of the operating system of the device is not
supported by Silk4J.

For information on the supported mobile operating
system versions, refer to the Release Notes.

The USB driver for the device is not installed on the local
machine.

Install the USB driver for the device on the local machine.
For additional information, see Installing a USB Driver.

USB-debugging is not enabled on the device. Enable USB-debugging on the device. For additional
information, see Enabling USB-Debugging.

92 | Testing Specific Environments

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Why can my mobile device or emulator no longer connect to the Internet?

If you have configured a proxy for every network connection on your mobile device or emulator, and you are
currently not recording or replaying any tests, the mobile device or emulator cannot connect to the Internet.
For a physical mobile device you can check the connection status in the Silk Test Web Tunneler
application.

If the mobile device is connected and the Open Agent is running, and the mobile device still cannot
connect to the Internet, check if the proxy settings are correct.

To be able to connect to the Internet when the Open Agent is not running, you can temporarily disable the
proxy.

Why does Silk4J search for a URL in Chrome for Android instead of navigating to the URL?

Chrome for Android might in some cases interpret typing an URL into the address bar as a search. As a
workaround you can manually add a command to your script to navigate to the URL.

Why can I not record on an Android emulator with Android 4.3?

To record on an Android emulator with Android version 4.3, uncheck the Use Host GPU check box in the
emulator settings.

Why do mobile applications no longer work when I configure the proxy?

Some mobile applications do not use the global proxy that you can set for the WiFi connection. Browsers
and some applications like Gmail use the proxy settings, but most other mobile applications ignore the
proxy settings and therefore cannot connect to the Internet while the proxy is set.

What do I do if the adb server does not start correctly?

When the Android Debug Bridge (adb) server starts, it binds to local TCP port 5037 and listens for
commands sent from adb clients. All adb clients use port 5037 to communicate with the adb server. The
adb server locates emulator and device instances by scanning odd-numbered ports in the range 5555 to
5585, which is the range used by emulators and devices. Adb does not allow changing those ports. If you
encounter a problem while starting adb, check if one of the ports in this range is already in use by another
program.

For additional information, see http://developer.android.com/tools/help/adb.html.

Why do I get the error: Failed to allocate memory: 8?

This error displays if you are trying to start up the emulator and the system cannot allocate enough
memory. You can try the following:

1. Lower the RAM size in the memory options of the emulator.
2. Lower the RAM size of Intel HAXM. To lower the RAM size, run the IntelHaxm.exe again and choose

change.
3. Open the Task Manager and check if there is enough free memory available. If not, try to free up

additional memory by closing a few programs.

Why can I not work with a secure website?

If you cannot test a secure website (HTTPS) on a physical mobile device, try the following:

1. Open the Silk Test Web Tunneler application on the mobile device to check the following:

• A certificate is installed for the secure website.
• The certificate matches the root certificate of the machine on which the Open Agent is installed.

If no certificate is installed or the certificate does not match the root certificate of the machine on which
the Open Agent is installed, a yellow warning message is displayed.

Testing Specific Environments | 93

http://developer.android.com/tools/help/adb.html

2. Click on the warning and select Ok to install the certificate. Installing a certificate requires to set a
password or a screen lock for the mobile device. If no password or screen lock is set you are prompted
to set one during this step.

3. If the certificate is not found on the device the installation fails and an error message displays. Check if
the file root.crt exists under sdcard/silk/certs/.

4. If the file root.crt does not exist, copy the file manually by using the File Explorer. The certificate
might be missing if you have no write permissions on the mobile device.

5. After you have copied the certificate to the device, you can install the certificate by using the Silk Test
Web Tunneler application or by clicking on the certificate in the file system.

If you cannot test a secure website (HTTPS) on an emulator, manually add the root certificate of the
website. For additional information, see Manually Adding a Root Certificate to Test a Secure Web
Application.

Manually Adding a Root Certificate to Test a Secure Web Application
If you are testing an Android emulator with Android version 4.4 or later, you cannot follow the process
described in this topic. For information on how to add a root certificate to test a secure Web application on
an Android emulator with Android version 4.4 or later, see Retrieving the Root Certificate of a Secure Web
Application.

Note: To perform the steps described in this topic, you must have configured the Open Agent as a
proxy for the Android device or Android emulator.

When you are testing a mobile Web application which uses HTTPS on an Android device or Android
emulator, each request to open a specific site will automatically generate a certificate for this site on the
machine on which the Open Agent is installed. This new certificate is issued to the same domain as the
original certificate, replacing the original certificate to enable testing over the SSL connection.

The first certificate that is generated is the root certificate for the mobile Web application.

To be able to test the application with Silk4J, the root certificate needs to be installed on the Android device
or Android emulator. By default, the root certificate is copied to the device during hooking. However, if the
root certificate is not automatically installed, manually install the root certificate once for each mobile Web
application that you want to test.

1. If you are testing a mobile Web application on an Android emulator with Android 4.4 or later, perform the
following steps:

a) From the Android device or Android emulator, open the mobile Web application that you want to test.
b) For example, open www.borland.com.
c) Append the following extension to the URL: /_st_/dynamic/certificate. For example, the new

URL for www.borland.com in the mobile browser is the following: www.borland.com/_st_/dynamic/
certificate.

2. Open the mobile Web application that you want to test. If it is the first time that you open the mobile
Web application, the Open Agent generates the modified root certificate for the application.

3. On the machine on which the Open Agent is installed, go to the folder where the root certificate is
located.

By default, this is the folder %Appdata%\Silk\SilkTest\certs\authority.

4. Copy the root certificate file root.crt.

5. Paste the root certificate file to the root folder in the storage of your Android device.

If you are testing on an Android emulator, the Open Agent automatically copies the certificate to the root
directory of the emulator.

Note: To enable the Open Agent to copy the certificate to the emulator, configure a size for the SD
card in the emulator settings.

6. If you are testing on a physical Android device, install the certificate from the storage into your Android
device.

94 | Testing Specific Environments

http://www.borland.com

For additional information about how to install a certificate from the storage, refer to the documentation
of your Android device or Android emulator.

7. If you are testing on an Android emulator:

a) Navigate to Settings > Security > Install from SD card on the emulator.
b) Click OK to install the certificate.
c) Optional: Navigate to Settings > Security > Trusted credentials > USER to verify that the

certificate is installed on the emulator.

8. Close all browsers on the device or emulator, to enable Silk4J to check whether all required certificates
for the web application are properly installed and used.

Installing the Root Certificate to Test a Secure Web Application
Note: If you are testing a physical Android device, or an Android emulator with an Android version
prior to 4.4, see Manually Adding a Root Certificate to Test a Secure Web Application.

Note: To perform the steps described in this topic, you must have configured the Open Agent as a
proxy for the Android device or Android emulator.

When you are testing a mobile Web application which uses HTTPS on an Android device or Android
emulator, each request to open a specific site will automatically generate a certificate for this site on the
machine on which the Open Agent is installed. This new certificate is issued to the same domain as the
original certificate, replacing the original certificate to enable testing over the SSL connection.

The first certificate that is generated is the root certificate for the mobile Web application.

To be able to test the application with Silk4J, the root certificate needs to be installed on the Android device
or Android emulator. By default, the root certificate is copied to the device during hooking. However, if the
root certificate is not automatically installed, manually install the root certificate once for each mobile Web
application that you want to test.

1. From the Android emulator, open the mobile Web application that you want to test.

For example, open www.borland.com.

2. Append /_st_/dynamic/certificate to the URL and go to the new URL.

For example, the URL for www.borland.com in the mobile browser is the following: www.borland.com/
st/dynamic/certificate.

3. Type a name for the certificate into the Certificate name field in the certificate download dialog box.

4. Leave the default setting, VPN and apps, in the Credential use list box.

5. Click OK. The certificate is installed on the emulator.

6. Close all browsers on the device or emulator, to enable Silk4J to check whether all required certificates
for the web application are properly installed and used.

Limitations for Testing Mobile Web Applications
The support for playing back tests and recording locators on mobile browsers is not as complete as the
support for the other supported browsers. The following list lists the known limitations for playing back tests
and recording locators on mobile browsers:

• The following classes, interfaces, methods, and properties are currently not supported for mobile Web
applications:

• BrowserApplication class.

• CloseOtherTabs method
• CloseTab method
• ExistsTab method
• GetActiveTab method

Testing Specific Environments | 95

http://www.borland.com

• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• OpenTab method
• SelectTab method

• DomElement class.

• DomDoubleClick method
• DomMouseMove method
• GetDomAttributeList method

• DomForm class. All methods and properties in this class are not supported for mobile Web
applications.

• DomRadioButton class.

• RadioListItemCount property
• RadioListItems property
• RadioListSelectedIndex property
• RadioListSelectedItem property

• DomTable class. All methods and properties in this class are not supported for mobile Web
applications.

• DomTableRow class. All methods and properties in this class are not supported for mobile Web
applications.

• IClickable interface.

• Click method. You can use clicks on Web applications running on an Android device, but not on
an iOS device.

• DoubleClick method
• PressMouse method
• ReleaseMouse method

• IKeyable interface. All methods and properties in this interface are not supported for mobile Web
applications.

• Image recognition is not supported for iOS. When you are testing a Web application on an iOS
device, you can only use image verifications.

• XPath logical operators are supported only for standard HTML attributes, and are not supported for
properties and custom Silk Test attributes. For example, the logical operators are not supported for the
textContents attribute and the innerText attribute. Expressions built with these operators are
always case-sensitive, independent of the Silk Test setting.

• XPath logical operators are not supported on stock Android browser on Android versions prior to version
4.4.

• Recording in landscape mode is not supported for emulators that include virtual buttons in the system
bar. Such emulators do not correctly detect rotation and render the system bar in landscape mode to
the right of the screen, instead of the lower part of the screen. However, you can record against such an
emulator in portrait mode.

Clicking on Objects in a Mobile Website
When clicking on an object during the recording and replay of an automated test, a mobile website
presents the following challenges in comparison to a desktop website:

• Varying zoom factors and device pixel ratios.
• Varying screen sizes for different mobile devices.
• Varying font and graphic sizes between mobile devices, usually smaller in comparison to a website in a

desktop browser.

96 | Testing Specific Environments

• Varying pixel size and resolution for different mobile devices.

Silk4J enables you to surpass these challenges and to click the appropriate object on a mobile website.

When recording a test on a mobile device, Silk4J does not record coordinates when recording a Click.
However, for cross-browser testing, coordinates are allowed during replay. You can also manually add
coordinates to a Click. Silk4J interprets these coordinates as the HTML coordinates of the object. To click
on the appropriate object inside the BrowserWindow, during the replay of a test on a mobile device, Silk4J
applies the current zoom factor to the HTML coordinates of the object. The device pixel coordinates are the
HTML coordinates of the object, multiplied with the current zoom factor.

If the object is not visible in the currently displayed section of the mobile website, Silk4J scrolls to the
appropriate location in the website.

Example

The following code shows how you can test a DomButton with a fixed size of 100 x 20
px in your HTML page.

DomButton domButton = desktop.find("locator for the button");
domButton.click(MouseButton.LEFT, new Point(50, 10));

During replay on a different mobile device or with a different zoom factor, the
DomButton might for example have an actual width of 10px on the device screen.
Silk4J clicks in the middle of the element when using the code above, independent of
the current zoom factor, because Silk4J interprets the coordinates as HTML coordinates
and applies the current zoom factor.

.NET Support
Silk Test provides built-in support for testing .NET applications including:

• Windows Forms (Win Forms) applications
• Windows Presentation Foundation (WPF) applications
• Microsoft Silverlight applications

For details about supported versions, click Start > Programs > Silk > Silk Test > Release Notes to view
the Release Notes.

Windows Forms Support
Silk4J provides built-in support for testing .NET standalone and No-Touch Windows Forms (Win Forms)
applications. However, side-by-side execution is supported only on standalone applications. Silk4J can
record and play back controls embedded in:

• Framework version 2.0
• Framework version 3.0
• Framework version 3.5

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Object Recognition

The name that was given to an element in the application is used as automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute.

Testing Specific Environments | 97

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Supported Controls

For a complete list of the record and replay controls available for Win Forms testing, see Windows Forms
Class Reference.

Attributes for Windows Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows Forms applications include:

• automationid
• caption
• windowid
• priorlabel (For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.)

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Custom Attributes for Windows Forms Applications
Windows Forms applications use the predefined automation property automationId to specify a stable
identifier for the Windows forms control.

Silk4J automatically will use this property for identification in the locator. Windows Forms application
locators look like the following:

/FormsWindow//PushButton[@automationId='btnBasicControls']

Dynamically Invoking Windows Forms Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

98 | Testing Specific Environments

The invoke Method

For a Windows Forms or a WPF control, you can use the invoke method to call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the invoke Method

For an object of the Silk4J type DataGrid, you can call all methods that MSDN defines
for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//Java code
boolean isExpanded = (Boolean) dataGrid.invoke("IsExpanded", 3);

Second Example for the invoke Method

To invoke the static method String.compare(String s1, String s2) inside the
AUT, use the following code:

//Java code
int result = (Integer)
mainWindow.invoke("System.String.Compare", "a", "b");

Third Example for the invoke Method

This example shows how you can dynamically invoke the user-generated method
GetContents.

You can write code which you can use to interact with a control in the application under
test (AUT), in this example an UltraGrid. Instead of creating complex dynamic invoke
calls to retrieve the contents of the UltraGrid, you can generate a new method
GetContents and then just dynamically invoke the new method.

In Visual Studio, the following code in the AUT defines the GetContents method as a
method of the UltraGridUtil class:

//C# code, because this is code in the AUT
namespace UltraGridExtensions {
 public class UltraGridUtil {
 /// <summary>
 /// Retrieves the contents of an UltraGrid as nested list
 /// </summary>
 /// <param name="grid"></param>
 /// <returns></returns>
 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }
 result.Add(rowContent);
 }
 return result;
 }
 }
}

Testing Specific Environments | 99

The code for the UltraGridUtil class needs to be added to the AUT. You can do this
in the following ways:

• The application developer can compile the code for the class into the AUT. The
assembly needs to be already loaded.

• You can create a new assembly that is loaded into the AUT during test execution.

To load the assembly, you can use the following code:

FormsWindow.LoadAssembly(String assemblyFileName)

You can load the assembly by using the full path, for example:

mainWindow.LoadAssembly("C:/temp/ultraGridExtensions.dll")

When the code for the UltraGridUtil class is in the AUT, you can add the following code
to your test script to invoke the GetContents method:

List<List<String>> contents =
mainWindow.invoke("UltraGridExtensions.UltraGridUtil.GetContents
", ultraGrid);

The mainWindow object, on which the invoke method is called, only identifies the
AUT and can be replaced by any other object in the AUT.

The invokeMethods Method

For a Windows Forms or a WPF control, you can use the invokeMethods method to invoke a sequence
of nested methods. You can call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the invokeMethods method generates a
relatively complex script, because you have to pass five methods with their
corresponding parameters to the invokeMethods method:

WPFControl dataGrid = mainWindow.find("//
WPFControl[@automationId='Custom Data Grid']");

// Get text contents of third cell in first row.
int rowIndex = 0;
int columnIndex = 2;

List<String> methodNames = Arrays.asList("Rows", "get_Item",
"Cells", "get_Item", "Text");
List<List<Object>> parameters = Arrays.asList(new
ArrayList<Object>(), Arrays.<Object>asList(rowIndex), new
ArrayList<Object>(), Arrays.<Object>asList(rowIndex), new
ArrayList<Object>());

String cellText = (String) dataGrid.invokeMethods(methodNames,
parameters);

100 | Testing Specific Environments

A better approach in such a case is to add code to the application under test and then
to use the invokeMethods method. For this example, add the getCellText method
to the AUT:

// C# code, if the AUT is implemented in C#.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

' VB code, if the AUT is implemented in VB.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

To get the text contents of the cell, dynamically invoke the GetCellText method from
your test script:

String cellText = (String) mainWindow.invoke("GetCellText",
dataGrid, rowIndex, columnIndex);

For additional information, see Adding Code to the Application Under Test to Test
Custom Controls.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods and properties that the MSDN defines for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point
and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

• Other controls

Control parameters can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

Testing Specific Environments | 101

• All methods that have no return value return null.

Windows Presentation Foundation (WPF) Support
Silk4J provides built-in support for testing Windows Presentation Foundation (WPF) applications. Silk4J
supports standalone WPF applications and can record and play back controls embedded in .NET version
3.5 or later.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Supported Controls

For a complete list of the controls available for WPF testing, see WPF Class Reference.

All supported WPF classes for Silk4J WPF support start with the prefix WPF, such as WPFWindow and
WPFListBox.

Supported methods and properties for WPF controls depend on the actual implementation and runtime
state. The methods and properties may differ from the list that is defined for the corresponding class. To
determine the methods and properties that are supported in a specific situation, use the following code:

• GetPropertyList()

• GetDynamicMethodList()

For additional information abut WPF, refer to MSDN.

Attributes for Windows Presentation Foundation (WPF) Applications
Supported attributes for WPF applications include:

• automationId
• caption
• className
• name
• All dynamic locator attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Object Recognition

To identify components within WPF scripts, you can specify the automationId, caption, className, or
name. The name that is given to an element in the application is used as the automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationId might look like: //
WPFButton[@automationId='okButton']".

If you define an automationId and any other attribute, only the automationId is used during replay. If there is
no automationId defined, the name is used to resolve the component. If neither a name nor an
automationId are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationId because it is the most useful property.

102 | Testing Specific Environments

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://msdn.microsoft.com

Attribute Type Description Example

automationId An ID that was provided by
the developer of the test
application.

//WPFButton[@automationId='okButton']"

name The name of a control. The
Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify
the control in the application
code.

//WPFButton[@name='okButton']"

caption The text that the control
displays. When testing a
localized application in
multiple languages, use the
automationId or name
attribute instead of the
caption.

//WPFButton[@automationId='Ok']"

className The simple .NET class
name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk4J recognizes.

//WPFButton[@className='MyCustomButton']"

During recording, Silk4J creates a locator for a WPF control by using the automationId, name, caption, or
className attributes in the order that they are listed in the preceding table. For example, if a control has a
automationId and a name, Silk4J uses the automationId when creating the locator.

The following example shows how an application developer can define a name and an automationId for a
WPF button in the XAML code of the application:

<Button Name="okButton" AutomationProperties.AutomationId="okButton"
Click="okButton_Click">Ok</Button>

Custom Attributes for WPF Applications
WPF applications use the predefined automation property AutomationProperties.AutomationId to
specify a stable identifier for the WPF control as follows:

<Window x:Class="Test.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button AutomationProperties.AutomationId="AID_buttonA">The
Button</Button>
 </Grid>
</Window>

Silk4J automatically uses this property for identification in the locator. WPF application locators look like the
following:

/WPFWindow[@caption='MainWindow']//WPFButton[@automationId='AID_buttonA']

Testing Specific Environments | 103

Classes that Derive from the WPFItemsControl Class
Silk4J can interact with classes that derive from WPFItemsControl, such as WPFListBox,
WPFTreeView, and WPFMenu, in two ways:

• Working with the control

Most controls contain methods and properties for typical use cases. The items are identified by text or
index.

• Working with individual items, such as WPFListBoxItem, WPFTreeViewItem, or WPFMenuItem

For advanced use cases, use individual items. For example, use individual items for opening the context
menu on a specific item in a list box, or clicking a certain position relative to an item.

Custom WPF Controls
Generally, Silk4J provides record and playback support for all standard WPF controls.

Silk4J handles custom controls based on the way the custom control is implemented. You can implement
custom controls by using the following approaches:

• Deriving classes from UserControl

This is a typical way to create compound controls. Silk4J recognizes these user controls as
WPFUserControl and provides full support for the contained controls.

• Deriving classes from standard WPF controls, such as ListBox

Silk4J treats these controls as an instance of the standard WPF control that they derive from. Record,
playback, and recognition of children may not work if the user control behavior differs significantly from
its base class implementation.

• Using standard controls that use templates to change their visual appearance

Low-level replay might not work in certain cases. Switch to high-level playback mode in such cases. To
change the replay mode, use the Script Options dialog box and change the OPT_REPLAY_MODE
option.

Silk4J filters out certain controls that are typically not relevant for functional testing. For example, controls
that are used for layout purposes are not included. However, if a custom control derives from an excluded
class, specify the name of the related WPF class to expose the filtered controls during recording and
playback.

Dynamically Invoking WPF Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

104 | Testing Specific Environments

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The invoke Method

For a Windows Forms or a WPF control, you can use the invoke method to call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the invoke Method

For an object of the Silk4J type DataGrid, you can call all methods that MSDN defines
for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//Java code
boolean isExpanded = (Boolean) dataGrid.invoke("IsExpanded", 3);

Second Example for the invoke Method

To invoke the static method String.compare(String s1, String s2) inside the
AUT, use the following code:

//Java code
int result = (Integer)
mainWindow.invoke("System.String.Compare", "a", "b");

Third Example for the invoke Method

This example shows how you can dynamically invoke the user-generated method
GetContents.

You can write code which you can use to interact with a control in the application under
test (AUT), in this example an UltraGrid. Instead of creating complex dynamic invoke
calls to retrieve the contents of the UltraGrid, you can generate a new method
GetContents and then just dynamically invoke the new method.

In Visual Studio, the following code in the AUT defines the GetContents method as a
method of the UltraGridUtil class:

//C# code, because this is code in the AUT
namespace UltraGridExtensions {
 public class UltraGridUtil {
 /// <summary>
 /// Retrieves the contents of an UltraGrid as nested list
 /// </summary>
 /// <param name="grid"></param>
 /// <returns></returns>
 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }

Testing Specific Environments | 105

 result.Add(rowContent);
 }
 return result;
 }
 }
}

The code for the UltraGridUtil class needs to be added to the AUT. You can do this
in the following ways:

• The application developer can compile the code for the class into the AUT. The
assembly needs to be already loaded.

• You can create a new assembly that is loaded into the AUT during test execution.

To load the assembly, you can use the following code:

FormsWindow.LoadAssembly(String assemblyFileName)

You can load the assembly by using the full path, for example:

mainWindow.LoadAssembly("C:/temp/ultraGridExtensions.dll")

When the code for the UltraGridUtil class is in the AUT, you can add the following code
to your test script to invoke the GetContents method:

List<List<String>> contents =
mainWindow.invoke("UltraGridExtensions.UltraGridUtil.GetContents
", ultraGrid);

The mainWindow object, on which the invoke method is called, only identifies the
AUT and can be replaced by any other object in the AUT.

The invokeMethods Method

For a Windows Forms or a WPF control, you can use the invokeMethods method to invoke a sequence
of nested methods. You can call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the invokeMethods method generates a
relatively complex script, because you have to pass five methods with their
corresponding parameters to the invokeMethods method:

WPFControl dataGrid = mainWindow.find("//
WPFControl[@automationId='Custom Data Grid']");

// Get text contents of third cell in first row.
int rowIndex = 0;
int columnIndex = 2;

List<String> methodNames = Arrays.asList("Rows", "get_Item",
"Cells", "get_Item", "Text");

106 | Testing Specific Environments

List<List<Object>> parameters = Arrays.asList(new
ArrayList<Object>(), Arrays.<Object>asList(rowIndex), new
ArrayList<Object>(), Arrays.<Object>asList(rowIndex), new
ArrayList<Object>());

String cellText = (String) dataGrid.invokeMethods(methodNames,
parameters);

A better approach in such a case is to add code to the application under test and then
to use the invokeMethods method. For this example, add the getCellText method
to the AUT:

// C# code, if the AUT is implemented in C#.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

' VB code, if the AUT is implemented in VB.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

To get the text contents of the cell, dynamically invoke the GetCellText method from
your test script:

String cellText = (String) mainWindow.invoke("GetCellText",
dataGrid, rowIndex, columnIndex);

For additional information, see Adding Code to the Application Under Test to Test
Custom Controls.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods and properties that the MSDN defines for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point
and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

• WPF controls

WPF control parameters can be passed as TestObject.

Testing Specific Environments | 107

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.
• A string for all other types

Call ToString on returned .NET objects to retrieve the string representation

Example

For example, when an application developer creates a custom calculator control that
offers the following methods and the following property:

public void Reset()
public int Add(int number1, int number2)
public System.Windows.Vector StrechVector(System.Windows.Vector
vector, double
factor)
public String Description { get;}

The tester can call the methods directly from his test. For example:

customControl.invoke("Reset");
int sum = customControl.invoke("Add", 1, 2);
// the vector can be passed as list of integer
List<Integer> vector = new ArrayList<Integer>();
vector.add(3);
vector.add(4);
// returns "6;8" because this is the string representation of
the .NET object
String strechedVector = customControl.invoke("StrechVector",
vector, 2.0);
String description = customControl.getProperty("Description");

Setting WPF Classes to Expose During Recording and Playback
Silk4J filters out certain controls that are typically not relevant for functional testing. For example, controls
that are used for layout purposes are not included. However, if a custom control derives from an excluded
class, specify the name of the related WPF class to expose the filtered controls during recording and
playback.

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Silk4J > Edit Options.

2. Click the plus sign (+) next to Record in the Options menu tree. The Record options display in the right
side panel.

3. Click WPF.

4. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.

Separate class names with a comma.

108 | Testing Specific Environments

5. Click OK.

Silverlight Application Support
Microsoft Silverlight (Silverlight) is an application framework for writing and running rich internet
applications, with features and purposes similar to those of Adobe Flash. The run-time environment for
Silverlight is available as a plug-in for most web browsers.

Silk4J provides built-in support for testing Silverlight applications. Silk4J supports Silverlight applications
that run in a browser as well as out-of-browser and can record and play back controls in .NET version 3.5
or later.

The following applications, that are based on Silverlight, are supported:

• Silverlight applications that run in Internet Explorer.
• Silverlight applications that run in Mozilla Firefox.
• Out-of-Browser Silverlight applications.

Supported Controls

Silk4J includes record and replay support for Silverlight controls.

For a complete list of the controls available for Silverlight testing, see the Silverlight Class Reference.

Note: With Silk Test 14.0 or later, Silk4J recognizes only Silverlight controls that are available for
interaction and visible on the screen. This change might change the behavior of tests that were
recorded with a Silk Test version prior to Silk Test 14.0. To run such tests with Silk Test 14.0 or later,
remove all invisible or not yet available Silverlight controls from the tests.

Prerequisites

The support for testing Silverlight applications in Microsoft Windows XP requires the installation of Service
Pack 3 and the Update for Windows XP with the Microsoft User Interface Automation that is provided in
Windows 7. You can download the update from http://www.microsoft.com/download/en/details.aspx?
id=13821.

Note: The Microsoft User Interface Automation needs to be installed for the Silverlight support. If you
are using a Windows operating system and the Silverlight support does not work, you can install the
update with the Microsoft User Interface Automation, which is appropriate for your operating system,
from http://support.microsoft.com/kb/971513.

Locator Attributes for Identifying Silverlight Controls
Supported locator attributes for Silverlight controls include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify components within Silverlight scripts, you can specify the automationId, caption, className,
name or any dynamic locator attribute. The automationId can be set by the application developer. For
example, a locator with an automationId might look like //SLButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Testing Specific Environments | 109

http://www.microsoft.com/download/en/details.aspx?id=13821
http://www.microsoft.com/download/en/details.aspx?id=13821
http://support.microsoft.com/kb/971513

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
SLButton[@automationId="okBu
tton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//SLButton[@caption="Ok"]

className The simple .NET class name (without namespace) of
the Silverlight control. Using the className attribute
can help to identify a custom control that is derived
from a standard Silverlight control that Silk4J
recognizes.

//
SLButton[@className='MyCusto
mButton']

name The name of a control. Can be provided by the
developer of the application under test.

//SLButton[@name="okButton"]

Attention: The name attribute in XAML code maps to the locator attribute automationId, not to the
locator attribute name.

During recording, Silk4J creates a locator for a Silverlight control by using the automationId, name, caption,
or className attributes in the order that they are listed in the preceding table. For example, if a control has
an automationId and a name, Silk4J uses the automationId, if it is unique, when creating the locator.

The following table shows how an application developer can define a Silverlight button with the text "Ok" in
the XAML code of the application:

XAML Code for the Object Locator to Find the Object from Silk Test

<Button>Ok</Button> //SLButton[@caption="Ok"]

<Button Name="okButton">Ok</Button> //SLButton[@automationId="okButton"]

<Button
AutomationProperties.AutomationId="okB
utton">Ok</Button>

//SLButton[@automationId="okButton"]

<Button
AutomationProperties.Name="okButton">O
k</Button>

//SLButton[@name="okButton"]

Dynamically Invoking Silverlight Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

110 | Testing Specific Environments

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types.

Silk4J types include primitive types, for example boolean, int, and string, lists, and other types, for
example Point and Rect.

• Enum types.

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects.

Pass .NET struct and object parameters as a list. The elements in the list must match one constructor
for the .NET object in the test application. For example, if the method expects a parameter of the .NET
type System.Windows.Vector, you can pass a list with two integers. This works because the
System.Windows.Vector type has a constructor with two integer arguments.

• Other controls.

Control parameters can be passed as TestObject.

Supported Methods and Properties

The following methods and properties can be called:

• All public methods and properties that the MSDN defines for the AutomationElement class. For
additional information, see http://msdn.microsoft.com/en-us/library/
system.windows.automation.automationelement.aspx.

• All methods and properties that MSUIA exposes. The available methods and properties are grouped in
"patterns". Pattern is a MSUIA specific term. Every control implements certain patterns. For an overview
of patterns in general and all available patterns see http://msdn.microsoft.com/en-us/library/
ms752362.aspx. A custom control developer can provide testing support for the custom control by
implementing a set of MSUIA patterns.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types.
• All methods that have no return value return null.
• A string for all other types.

To retrieve this string representation, call the ToString method on returned .NET objects in the
application under test.

Testing Specific Environments | 111

http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx

Example

A TabItem in Silverlight, which is an item in a TabControl.

tabItem.invoke("SelectionItemPattern.Select");
mySilverligtObject.getProperty("IsPassword");

Scrolling in Silverlight
Silk4J provides two different sets of scrolling-related methods and properties, depending on the Silverlight
control.

• The first type of controls includes controls that can scroll by themselves and therefore do not expose the
scrollbars explicitly as children. For example combo boxes, panes, list boxes, tree controls, data grids,
auto complete boxes, and others.

• The second type of controls includes controls that cannot scroll by themselves but expose scrollbars as
children for scrolling. For example text fields.

This distinction in Silk4J exists because the controls in Silk4J implement scrolling in those two ways.

Controls that support scrolling

In this case, scrolling-related methods and property are available for the control that contains the
scrollbars. Therefore, Silk4J does not expose scrollbar objects.

Examples

The following command scrolls a list box to the bottom:

listBox.SetVerticalScrollPercent(100)

The following command scrolls the list box down by one unit:

listBox.ScrollVertical(ScrollAmount.SmallIncrement)

Controls that do not support scrolling

In this case the scrollbars are exposed. No scrolling-related methods and properties are available for the
control itself. The horizontal and vertical scrollbar objects enable you to scroll in the control by specifying
the increment or decrement, or the final position, as a parameter in the corresponding API functions. The
increment or decrement can take the values of the ScrollAmount enumeration. For additional information,
refer to the Silverlight documentation. The final position is related to the position of the object, which is
defined by the application designer.

Examples

The following command scrolls a vertical scrollbar within a text box to position 15:

 textBox.SLVerticalScrollBar().ScrollToPosition(15)

The following command scrolls a vertical scrollbar within a text box to the bottom:

 textBox.SLVerticalScrollBar().ScrollToMaximum()

Troubleshooting when Testing Silverlight Applications

Silk4J cannot see inside the Silverlight application and no green rectangles are drawn during
recording

The following reasons may cause Silk4J to be unable to see inside the Silverlight application:

112 | Testing Specific Environments

Reason Solution

You use a Mozilla Firefox version prior to 4.0. Use Mozilla Firefox 4.0 or later.

You use a Silverlight version prior to 3. Use Silverlight 3 (Silverlight Runtime 4) or Silverlight 4
(Silverlight Runtime 4).

Your Silverlight application is running in windowless
mode.

Silk4J does not support Silverlight applications that run in
windowless mode. To test such an application, you need
to change the Web site where your Silverlight application
is running. Therefore you need to set the windowless
parameter in the object tag of the HTML or ASPX file, in
which the Silverlight application is hosted, to false.

The following sample code sets the windowless
parameter to false:

<object ...>
 <param name="windowless"
value="false"/>
 ...
</object>

Rumba Support
Rumba is the world's premier Windows desktop terminal emulation solution. Silk Test provides built-in
support for recording and replaying Rumba.

When testing with Rumba, please consider the following:

• The Rumba version must be compatible to the Silk Test version. Versions of Rumba prior to version 8.1
are not supported.

• All controls that surround the green screen in Rumba are using basic WPF functionality (or Win32).
• The supported Rumba desktop types are:

• Mainframe Display
• AS400 Display
• Unix Display

For a complete list of the record and replay controls available for Rumba testing, see the Rumba Class
Reference.

Enabling and Disabling Rumba
Rumba is the world's premier Windows desktop terminal emulation solution. Rumba provides connectivity
solutions to mainframes, mid-range, UNIX, Linux, and HP servers.

Enabling Support

Before you can record and replay Rumba scripts, you need to enable support:

1. Install Rumba desktop client software version 8.1 or later.
2. Click Start > Programs > Silk > Silk Test > Administration > Rumba plugin > Enable Silk Test

Rumba plugin.

Disabling Support

Click Start > Programs > Silk > Silk Test > Administration > Rumba plugin > Disable Silk Test Rumba
plugin.

Testing Specific Environments | 113

Locator Attributes for Identifying Rumba Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. Supported attributes include:

caption The text that the control displays.

priorlabel Since input fields on a form normally have a label explaining the purpose of the input,
the intention of priorlabel is to identify the text input field, RumbaTextField, by the
text of its adjacent label field, RumbaLabel. If no preceding label is found in the same
line of the text field, or if the label at the right side is closer to the text field than the left
one, a label on the right side of the text field is used.

StartRow This attribute is not recorded, but you can manually add it to the locator. Use
StartRow to identify the text input field, RumbaTextField, that starts at this row.

StartColumn This attribute is not recorded, but you can manually add it to the locator. Use
StartColumn to identify the text input field, RumbaTextField, that starts at this
column.

All dynamic
locator
attributes.

For additional information on dynamic locator attributes, see Dynamic Locator
Attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Using Screen Verifications with Rumba
To automatically insert screen verifications in Rumba, turn on the following option in the Options dialog
box: Record > General > Record Screen Verifications.

To manually insert screen verifications:

1. In your test, click the Create Verification Type Logic button to open the Test Logic Designer -
Verification.

2. Click Next.

3. Select The Contents of a Screen.

Any excluded objects as identified in Tools > Options > Record > Rumba > Excluded Objects will be
used. You can customize these further in the Properties window of the test after you finish performing
this procedure.

4. Click Next.

5. Click the Identify button.

6. Select the control on the Rumba Screen that you want to identify. The whole screen will be captured.

7. Click Next.

8. Click Finish.

Testing a Unix Display
For Unix displays, Silk4J can only record the interactions with the main RUMBA screen control, because
the underlying structure of the Unix display differs to the structure of the AS/400 and Mainframe displays.

114 | Testing Specific Environments

SAP Support
Silk4J provides built-in support for testing SAP client/server applications based on the Windows-based GUI
module.

Note: You can only test SAP applications with Silk4J if you have a Premium license for Silk4J. For
additional information on the licensing modes, see Licensing Information.

Note: If you use SAP NetWeaver with Internet Explorer or Firefox, Silk4J tests the application using
the xBrowser technology domain.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Supported Controls

For a complete list of the record and replay controls available for SAP testing, see the SAP Class
Reference.

For a list of supported attributes, see Attributes for SAP Applications.

Attributes for SAP Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for SAP include:

• automationId
• caption

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking SAP Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Testing Specific Environments | 115

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods that the SAP automation interface defines
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point
and Rect).

• UI controls

UI controls can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Dynamically Invoking Methods on SAP Controls
When Silk4J cannot record actions against an SAP control, you can record the actions with the recorder
that is available in SAP and then dynamically invoke the recorded methods in a Silk4J script. By doing so,
you can replay actions against SAP controls that you cannot record.

1. To record the actions that you want to perform against the control, use the SAP GUI Scripting tool that
is available in SAP.

For additional information on the SAP GUI Scripting tool, refer to the SAP documentation.

2. Open the recorded actions from the location to which the SAP GUI Scripting tool has saved them and
see what methods were recorded.

3. In Silk4J, dynamically invoke the recorded methods from your script.

Examples

For example, if you want to replay pressing a special control in the SAP UI, which is
labeled Test and which is a combination of a button and a list box, and selecting the
sub-menu subsub2 of the control, you can record the action with the recorder that is
available in SAP. The resulting code will look like the following:

session.findById("wnd[0]/usr/cntlCONTAINER/shellcont/
shell").pressContextButton "TEST"
session.findById("wnd[0]/usr/cntlCONTAINER/shellcont/
shell").selectContextMenuItem "subsub2"

116 | Testing Specific Environments

Now you can use the following code to dynamically invoke the methods
pressContextButton and selectContextMenuItem in your script in Silk4J:

.SapToolbarControl("shell
ToolbarControl").invoke("pressContextButton", "TEST")
.SapToolbarControl("shell
ToolbarControl").invoke("selectContextMenuItem", "subsub2")

Replaying this code will press the control in the SAP UI and select the sub-menu.

Configuring Automation Security Settings for SAP
Before you launch an SAP application, you must configure the security warning settings. Otherwise, a
security warning, A script is trying to attach to the GUI, displays each time a test plays
back an SAP application.

1. In Windows Control Panel, choose SAP Configuration. The SAP Configuration dialog box opens.

2. In the Design Selection tab, uncheck the Notify When a Script Attaches to a Running SAP GUI.

Windows API-Based Application Support
Silk4J provides built-in support for testing Microsoft Windows API-based applications. Several objects exist
in Microsoft applications that Silk4J can better recognize if you enable Accessibility. For example, without
enabling Accessibility Silk4J records only basic information about the menu bar in Microsoft Word and the
tabs that appear in Internet Explorer versions later than version 7.0. However, with Accessibility enabled,
Silk4J fully recognizes those objects. You can also improve Silk4J object recognition by defining a new
window, if necessary.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Supported Controls

For a complete list of the record and replay controls available for Windows-based testing, see Win32 Class
Reference.

Attributes for Windows API-based Client/Server
Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows API-based client/server applications include:

• caption
• windowid
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text box, the caption of the closest label at the left side or above the control is used.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Testing Specific Environments | 117

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Determining the priorLabel in the Win32 Technology
Domain
To determine the priorLabel in the Win32 technology domain, all labels and groups in the same window as
the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, the priorLabel is determined based upon the

following criteria:

• If one label is to the left and the other above the control, the left one is preferred.
• If both levels are to the left of the control, the upper one is preferred.
• If both levels are above the control, the left one is preferred.

• If the closest control is a group control, first all labels within the group are considered according to the
rules specified above. If no labels within the group are eligible, then the caption of the group is used as
the priorLabel.

xBrowser Support
Use the xBrowser technology domain to test Web applications that use:

• Internet Explorer
• Mozilla Firefox
• Google Chrome
• Embedded browser controls

The xBrowser technology domain supports the testing of plain HTML pages as well as AJAX pages. AJAX
pages require additional, sophisticated strategies for object recognition and synchronization.

Note: You must record tests for Web applications using Internet Explorer. To create tests that use
another supported browser, record them with Internet Explorer and play them back with the other
browser. Or, you can manually create tests for the other browser using the Identify Objects dialog
box to identify the locators in the supported browser that you want to use.

Note: Before you record or playback Web applications, disable all browser add-ons that are installed
in your system. To disable add-ons in Internet Explorer, click Tools > Internet Options, click the
Programs tab, click Manage add-ons, select an add-on and then click Disable.

For information about supported versions, any known issues, and workarounds, refer to the Release Notes.

Sample Applications

To access the Silk Test sample Web applications, go to:

• http://demo.borland.com/InsuranceWebExtJS/
• http://demo.borland.com/gmopost

Selecting the Browser for Test Replay
You can define the browser that is used for the replay of a test in the following ways:

• If you execute a test from the UI of Silk4J and the Select Browser dialog box displays, the browser
selected in the dialog box is used, and Silk4J ignores which browser is set in the test script.

118 | Testing Specific Environments

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf
http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/gmopost

• If the Select Browser dialog box is disabled, because the Don't show again is checked, the application
configurations in the individual test scripts determine the browser that is used to execute the tests.

Note: To re-enable the Select Browser dialog box, click Silk4J > Edit Application
Configurations and check the Show 'Select Browser' dialog before record and playback
check box

• If you execute a script from the command line or from a Continuous Integration (CI) server, the
application configurations of the individual scripts are used.

To overwrite the browser that is specified in the application configuration, use the
silktest.configurationName environment variable.

Examples of setting the browser when executing a script from the command line

• To use Internet Explorer as the browser, type:

SET silktest.configurationName = InternetExplorer

• To use Mozilla Firefox as the browser, type:

SET silktest.configurationName = Firefox

• To use Google Chrome as the browser, type:

SET silktest.configurationName = GoogleChrome

• To use a browser on an Android device as the browser, use the name of the Android
device and the operating system. For example, if the device is a Nexus 7 and the
operating system of the device is Android 4.2, type:

SET silktest.configurationName = Nexus 7 - Android

• To use a browser on an iOS device as the browser, use the name that you have
specified for the iOS device and the operating system. For example, if you have
specified the name MyiDevice, type:

SET silktest.configurationName = MyiDevice - iOS

Tip: Open the Select Browser dialog box, for example by
starting to replay or record from the Silk4J UI, to see a list of the
browsers that are currently available on your system.

Test Objects for xBrowser
Silk4J uses the following classes to model a Web application:

Class Description

BrowserApplication Exposes the main window of a Web browser and
provides methods for tabbing.

BrowserWindow Provides access to tabs and embedded browser controls
and provides methods for navigating to different pages.

DomElement Exposes the DOM tree of a Web application (including
frames) and provides access to all DOM attributes.
Specialized classes are available for several DOM
elements.

Object Recognition for xBrowser Objects
The xBrowser technology domain supports dynamic object recognition.

Test cases use locator strings to find and identify objects. A typical locator includes a locator name and at
least one locator attribute, such as "//LocatorName[@locatorAttribute='value']".

Testing Specific Environments | 119

Locator
Names

With other technology types, such as Java SWT, locator names are created using the
class name of the test object. With xBrowser, the tag name of the DOM element can also
be used as locator name. The following locators describe the same element:

1. Using the tag name: "//a[@href='http://www.microfocus.com']"
2. Using the class name: "//DomLink[@href='http://www.microfocus.com']"

To optimize replay speed, use tag names rather than class names.

Locator
Attributes

All DOM attributes can be used as locator string attributes. For example, the element
<button automationid='123'>Click Me</button> can be identified using the
locator "//button[@automationid='123']".

Recording
Locators

Silk4J uses a built-in locator generator when recording test cases and using the Identify
Object dialog box. You can configure the locator generator to improve the results for a
specific application.

Page Synchronization for xBrowser
Synchronization is performed automatically before and after every method call. A method call is not started
and does not end until the synchronization criteria is met.

Note: Any property access is not synchronized.

Synchronization Modes

Silk4J includes synchronization modes for HTML and AJAX.

Using the HTML mode ensures that all HTML documents are in an interactive state. With this mode, you
can test simple Web pages. If more complex scenarios with Java script are used, it might be necessary to
manually script synchronization functions, such as:

• WaitForObject

• WaitForProperty

• WaitForDisappearance

• WaitForChildDisappearance

The AJAX mode synchronization waits for the browser to be in a kind of idle state, which is especially
useful for AJAX applications or pages that contain AJAX components. Using the AJAX mode eliminates the
need to manually script synchronization functions (such as wait for objects to appear or disappear, wait for
a specific property value, and so on), which eases the script creation process dramatically. This automatic
synchronization is also the base for a successful record and playback approach without manual script
adoptions.

Troubleshooting

Because of the true asynchronous nature of AJAX, generally there is no real idle state of the browser.
Therefore, in rare situations, Silk4J will not recognize an end of the invoked method call and throws a
timeout error after the specified timeout period. In these situations, it is necessary to set the
synchronization mode to HTML at least for the problematic call.

Note: Regardless of the page synchronization method that you use, in tests where a Flash object
retrieves data from a server and then performs calculations to render the data, you must manually add
a synchronization method to your test. Otherwise, Silk4J does not wait for the Flash object to
complete its calculations. For example, you might use Thread.sleep(millisecs).

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently open
in order to retrieve asynchronous data from the server. These requests may let the synchronization hang
until the specified synchronization timeout expires. To prevent this situation, either use the HTML

120 | Testing Specific Environments

synchronization mode or specify the URL of the problematic request in the Synchronization exclude list
setting.

Use a monitoring tool to determine if playback errors occur because of a synchronization issue. For
instance, you can use FindBugs, http://findbugs.sourceforge.net/, to determine if an AJAX call is affecting
playback. Then, add the problematic service to the Synchronization exclude list.

Note: If you exclude a URL, synchronization is turned off for each call that targets the URL that you
specified. Any synchronization that is needed for that URL must be called manually. For example, you
might need to manually add WaitForObject to a test. To avoid numerous manual calls, exclude
URLs for a concrete target, rather than for a top-level URL, if possible.

Configuring Page Synchronization Settings

You can configure page synchronization settings for each individual test or you can set global options that
apply to all tests in the Script Options dialog box.

To add the URL to the exclusion filter, specify the URL in the Synchronization exclude list in the Script
Options dialog box.

To configure individual settings for tests, record the test and then insert code to override the global
playback value. For example, to exclude the time service, you might type:

desktop.setOption(CommonOptions.OPT_XBROWSER_SYNC_EXCLUDE_URLS,
 Arrays.asList("timeService"));

Comparing API Playback and Native Playback for
xBrowser
Silk4J supports API playback and native playback for Web applications. If your application uses a plug-in or
AJAX, use native user input. If your application does not use a plug-in or AJAX, we recommend using API
playback.

Advantages of native playback include:

• With native playback, the agent emulates user input by moving the mouse pointer over elements and
pressing the corresponding elements. As a result, playback works with most applications without any
modifications.

• Native playback supports plug-ins, such as Flash and Java applets, and applications that use AJAX,
while high-level API recordings do not.

Advantages of API playback include:

• With API playback, the Web page is driven directly by DOM events, such as onmouseover or
onclick.

• Scripts that use API playback do not require that the browser be in the foreground.
• Scripts that use API playback do not need to scroll an element into view before clicking it.
• Generally API scripts are more reliable since high-level user input is insensitive to pop-up windows and

user interaction during playback.
• API playback is faster than native playback.

You can use the Script Options dialog box to configure the types of functions to record and whether to use
native user input.

Differences Between API and Native Playback Functions

The DomElement class provides different functions for API playback and native playback.

The following table describes which functions use API playback and which use native playback.

Testing Specific Environments | 121

http://findbugs.sourceforge.net/

API Playback Native Playback

Mouse Actions DomClick

DomDoubleClick

DomMouseMove

Click

DoubleClick

MoveMouse

PressMouse

ReleaseMouse

Keyboard Actions not available TypeKeys

Specialized Functions Select

SetText

etc.

not available

Setting Browser Recording Options
Specify custom attributes, browser attributes to ignore while recording, and whether to record native user
input instead of DOM functions.

Silk4J includes a sophisticated locator generator mechanism that guarantees locators are unique at the
time of recording and are easy to maintain. Depending on your application and the frameworks that you
use, you might want to modify the default settings to achieve the best results. You can use any property
that is available in the respective technology as a custom attribute given that they are either numbers
(integers, doubles), strings, item identifiers, or enumeration values.

In xBrowser applications, you can also retrieve arbitrary properties and then use those properties as
custom attributes. To achieve optimal results, add a custom automation ID to the elements that you want to
interact with in your test.

1. Click Silk4J > Edit Options.

2. Click the plus sign (+) next to Record in the Options menu tree. The Record options display in the right
side panel.

3. Click xBrowser.

4. To add a custom attribute for a Web application, in the Custom attributes text box, type the attributes
that you want to use.

Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change
whenever another object is added before one you have defined already.

Note: To include custom attributes in a Web application, add them to the html tag. For example
type, <input type='button' MyAutomationID='abc' value='click me' /> to add an
attribute called MyAutomationID.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, loginName to two
different text fields, both fields will return when you call the loginName attribute.

Note: There is a 62 character limit to attribute names.

5. In the Locator attribute name exclude list text box, type the attribute names to ignore while recording.

Use this list to specify attributes that change frequently, such as size, width, height, and style. You can
include the wildcards '*' and '?' in the Locator attribute name exclude list.
For example, if you do not want to record attributes named height, add the height attribute name to
the list.

122 | Testing Specific Environments

Separate attribute names with a comma.

6. In the Locator attribute value exclude list text box, type the attribute values to ignore while recording.
For example, if you do not want to record attributes assigned the value of x-auto, add the x-auto
attribute value to the list.

Some AJAX frameworks generate attribute values that change every time the page is reloaded. Use this
list to ignore such values. You can also use wildcards in this list.

Separate attribute names with a comma.

7. To record native user input instead of DOM functions, from the Record native user input list box,
select Yes.

For example, to record Click instead of DomClick and TypeKeys instead of SetText, select Yes.

If your application uses a plug-in or AJAX, specify Yes to use native user input. If your application does
not use a plug-in or AJAX, we recommend using high-level DOM functions, which do not require the
browser to be focused or active during playback. As a result, tests that use DOM functions are faster
and more reliable.

8. Click OK.

Setting Mouse Move Preferences
Specify whether mouse move actions are recorded for Web applications, Win32 applications, and Windows
Forms applications that use mouse move events. You cannot record mouse move events for child domains
of the xBrowser technology domain, for example Apache Flex and Swing.

1. Click Silk4J > Edit Options.

2. Click the plus sign (+) next to Record in the Options menu tree. The Record options display in the right
side panel.

3. Click Recording.

4. To record mouse move actions, check the OPT_RECORD_MOUSEMOVES option..

Silk4J will only record mouse move events that cause changes to the hovered element or its parent in
order to keep scripts short.

5. If you record mouse move actions, in the Record mouse move delay text box, specify how many
milliseconds the mouse has to be motionless before a MoveMouse action is recorded

By default this value is set to 200.

Mouse move actions are only recorded if the mouse stands still for this time. A shorter delay will result
in more unexpected move mouse actions, a longer delay will require you to keep the mouse still to
record an action.

6. Click OK.

Browser Configuration Settings for xBrowser
Several browser settings help to sustain stable test executions. Although Silk4J works without changing
any settings, there are several reasons that you might want to change the browser settings.

Increase replay speed Use about:blank as home page instead of a slowly loading Web
page.

Avoid unexpected behavior of the
browser

• Disable pop up windows and warning dialog boxes.
• Disable auto-complete features.
• Disable password wizards.

Prevent malfunction of the
browser

Disable unnecessary third-party plugins.

The following sections describe where these settings are located in the corresponding browser.

Testing Specific Environments | 123

Internet Explorer

The browser settings are located at Tools > Internet Options. The following table lists options that you
might want to adjust.

Tab Option Configuration Comments

General Home page Set to about:blank. Minimize start up time of new tabs.

General Tabs • Disable warning when closing multiple tabs.

• Enable to switch to new tabs when they are
created.

• Avoid unexpected dialog boxes.

• Links that open new tabs might
not replay correctly otherwise.

Privacy Pop-up
blocker

Disable pop up blocker. Make sure your Web site can open
new windows.

Content AutoComplete Turn off completely • Avoid unexpected dialog boxes.

• Avoid unexpected behavior when
typing keys.

Program
s

Manage add-
ons

Only enable add-ons that are absolutely required. • Third-party add-ons might contain
bugs.

• Possibly not compatible to Silk4J.

Advance
d

Settings • Disable Automatically check for Internet
Explorer updates.

• Enable Disable script debugging (Internet
Explorer).

• Enable Disable script debugging (Other).

• Disable Enable automatic crash recovery.

• Disable Display notification about every
script error.

• Disable all Warn ... settings

Avoid unexpected dialog boxes.

Note: Recording a Web application in Internet Explorer with a zoom level different to 100% might not
work as expected. Before recording actions against a Web application in Internet Explorer, set the
zoom level to 100%.

Mozilla Firefox

In Mozilla Firefox, you can edit all settings by navigating a tab to about:config. The following table lists
options that you might want to adjust. If any of the options do not exist, you can create them by right-
clicking the table and choosing New.

Option Value Comments

app.update.auto false Avoid unexpected behavior (disable auto update).

app.update.enabled false Avoid unexpected behavior (disable updates in general).

app.update.mode 0 Avoid unexpected dialog boxes (do not prompt for new updates).

app.update.silent true Avoid unexpected dialog boxes (do not prompt for new updates).

browser.sessionstore.res
ume_from_crash

false Avoid unexpected dialog boxes (warning after a browser crash).

browser.sessionstore.ma
x_tabs_undo

0 Enhance performance. Controls how many closed tabs are kept track of
through the Session Restore service.

124 | Testing Specific Environments

Option Value Comments

browser.sessionstore.ma
x_windows_undo

0 Enhance performance. Controls how many closed windows are kept track
of through the Session Restore service.

browser.sessionstore.res
ume_session_once

false Avoid unexpected dialog boxes. Controls whether the last saved session is
restored once the next time the browser starts.

browser.shell.checkDefau
ltBrowser

false Avoid unexpected dialog boxes. Checks if Mozilla Firefox is the default
browser.

browser.startup.homepag
e

"about:blank
"

Minimize start up time of new tabs.

browser.startup.page 0 Minimize browser startup time (no start page in initial tab).

browser.tabs.warnOnClo
se

false Avoid unexpected dialog boxes (warning when closing multiple tabs).

browser.tabs.warnOnClo
seOtherTabs

false Avoid unexpected dialog boxes (warning when closing other tabs).

browser.tabs.warnOnOpe
n

false Avoid unexpected dialog boxes (warning when opening multiple tabs).

dom.max_chrome_script
_run_time

180 Avoid unexpected dialog boxes (warning when XUL code takes too long to
execute, timeout in seconds).

dom.max_script_run_tim
e

600 Avoid unexpected dialog boxes (warning when script code takes too long to
execute, timeout in seconds).

dom.successive_dialog_ti
me_limit

0 Avoid unexpected Prevent page from creating additional dialogs dialog
box.

extensions.update.enable
d

false Avoid unexpected dialog boxes. Disables automatic extension update.

Google Chrome

You do not have to change browser settings for Google Chrome. Silk4J automatically starts Google
Chrome with the appropriate command-line parameters.

Note: To avoid unexpected behavior when testing web applications, disable auto updates for Google
Chrome. For additional information, see http://dev.chromium.org/administrators/turning-off-auto-
updates.

Configuring the Locator Generator for xBrowser
The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unique at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

To achieve optimal results, add a custom automation ID to the elements that you want to interact with in
your test. In Web applications, you can add an attribute to the element that you want to interact with, such
as <div myAutomationId=”my unique element name” />. This approach can eliminate the
maintenance associated with locator changes.

1. Click Silk4J > Edit Options and then click the Custom Attributes tab.

Testing Specific Environments | 125

http://dev.chromium.org/administrators/turning-off-auto-updates
http://dev.chromium.org/administrators/turning-off-auto-updates

2. If you use custom automation IDs, from the Select a TechDomain list box, select xBrowser and then
add the IDs to the list.

The custom attributes list contains attributes that are suitable for locators. If custom attributes are
available, the locator generator uses these attributes before any other attribute. The order of the list also
represents the priority in which the attributes are used by the locator generator. If the attributes that you
specify are not available for the objects that you select, Silk4J uses the default attributes for xBrowser.

3. Click the Browser tab.

4. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.

For example, use this list to specify attributes that change frequently, such as size, width, height, and
style. You can include the wildcards ‘*’ and ‘?’ in the Locator attribute name blacklist.

Separate attribute names with a comma.

5. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

Some AJAX frameworks generate attribute values that change every time the page is reloaded. Use this
list to ignore such values. You can also use wildcards in this list.

Separate attribute values with a comma.

6. Click OK.

You can now record or manually create a test case.

Prerequisites for Replaying Tests with Google Chrome

Command-line parameters

When you use Google Chrome to replay a test or to record locators, Google Chrome is started with the
following command:

%LOCALAPPDATA%\Google\Chrome\Application\chrome.exe
 --enable-logging
 --log-level=1
 --disable-web-security
 --disable-hang-monitor
 --disable-prompt-on-repost
 --dom-automation
 --full-memory-crash-report
 --no-default-browser-check
 --no-first-run
 --homepage=about:blank
 --disable-web-resources
 --disable-preconnect
 --enable-logging
 --log-level=1
 --safebrowsing-disable-auto-update
 --test-type=ui
 --noerrdialogs
 --metrics-recording-only
 --allow-file-access-from-files
 --disable-tab-closeable-state-watcher
 --allow-file-access
 --disable-sync
 --testing-channel=NamedTestingInterface:st_42

When you use the wizard to hook on to an application, these command-line parameters are automatically
added to the base state. If an instance of Google Chrome is already running when you start testing, without
the appropriate command-line parameters, Silk4J closes Google Chrome and tries to restart the browser
with the command-line parameters. If the browser cannot be restarted, an error message displays.

126 | Testing Specific Environments

Note: The command-line parameter disable-web-security is required when you want to record
or replay cross-domain documents.

Limitations for Testing with Google Chrome
The support for playing back tests and recording locators with Google Chrome is not as complete as the
support for the other supported browsers. The following list lists the known limitations for playing back tests
and recording locators with Google Chrome:

• Silk Test does not support testing child technology domains of the xBrowser domain with Google
Chrome. For example Apache Flex or Microsoft Silverlight are not supported with Google Chrome.

• Silk Test does not provide native support for Google Chrome. You cannot test internal Google Chrome
functionality. For example, in a test, you cannot change the currently displayed Web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between Web
pages. Silk Test supports handling alerts and similar dialog boxes.

• The page synchronization for Google Chrome is not as advanced as for the other supported browsers.
Changing the synchronization mode has no impact on the synchronization for Google Chrome.

• Silk Test does not support the methods TextClick and TextSelect when testing applications with
Google Chrome.

• Silk Test does not recognize opening the Print dialog box in Google Chrome by using the Google
Chrome menu. To add opening this dialog box in Google Chrome to a test, you have to send Ctrl+Shift
+P using the TypeKeys method. Internet Explorer does not recognize this shortcut, so you have to first
record your test in Internet Explorer, and then manually add pressing Ctrl+Shift+P to your test.

• When two Google Chrome windows are open at the same time and the second window is detached
from the first one, Silk Test does not recognize the elements on the detached Google Chrome window.
For example, start Google Chrome and open two tabs. Then detach the second tab from the first one.
Silk Test does no longer recognize the elements on the second tab. To recognize elements with Silk
Test on multiple Google Chrome windows, use CTRL+N to open a new Google Chrome window.

• When you want to test a Web application with Google Chrome and the Continue running background
apps when Google Chrome is closed check box is checked, Silk Test cannot restart Google Chrome
to load the automation support.

• To replay a test with Google Chrome, you need to perform one of the following:

• Start Google Chrome and enable the Silk Test Chrome extension.

Note: If by mistake you have disabled the Silk Test Chrome extension, you have to re-install the
extension from the Chrome Web Store.

• If enabling the Silk Test Chrome extension is not possible, because you have no access to the
Chrome Web Store, remove the registry key HKEY_LOCAL_MACHINE\SOFTWARE\[Wow6432Node
\]Google\Chrome\Extensions\cjkcicfagnoafgjpgnpcdfllcnneidjj:

1. In the Start menu, type regedit into the search box and press Enter.
2. In the Registry Editor, navigate to HKEY_LOCAL_MACHINE\SOFTWARE\[Wow6432Node

\]Google\Chrome\Extensions.
3. Right click cjkcicfagnoafgjpgnpcdfllcnneidjj and select Delete.

Note: If the Silk Test Chrome extension symbol is marked red, this indicates an error with the Silk Test
Chrome support.

xBrowser Frequently Asked Questions
This section includes a collection of questions that you might encounter when testing your Web application.

How do I Verify the Font Type Used for the Text of an Element?
You can access all attributes of the currentStyle attribute of a DOM element by separating the attribute
name with a ":".

Testing Specific Environments | 127

https://chrome.google.com/webstore/detail/silk-test-chrome-extensio/cjkcicfagnoafgjpgnpcdfllcnneidjj?utm_source=chrome-app-launcher-info-dialog

Internet Explorer 8 or earlier wDomElement.GetProperty("currentStyle:fontName")

All other browsers, for example
Internet Explorer 9 or later and
Mozilla Firefox

wDomElement.GetProperty("currentStyle:font-name")

What is the Difference Between textContents, innerText, and
innerHtml?
• textContents is all text contained by an element and all its children that are for formatting purposes

only.
• innerText returns all text contained by an element and all its child elements.
• innerHtml returns all text, including html tags, that is contained by an element.

Consider the following html code.

<div id="mylinks">
 This is my link collection:

 Bye bye Borland
 Welcome to Micro Focus

</div>

The following table details the different properties that return.

Code Returned Value

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("textContents")

This is my link collection:

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerText")

This is my link collection:Bye bye Borland
Welcome to Micro Focus

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerHtml")

This is my link collection:

 Bye bye
Borland
 Welcome to
Micro Focus

Note: In Silk Test 13.5 or later, whitespace in texts, which are retrieved through the textContents
property of an element, is trimmed consistently across all supported browsers. For some browser
versions, this whitespace handling differs to Silk Test versions prior to Silk Test 13.5. You can re-
enable the old behavior by setting the OPT_COMPATIBILITY option to a version lower than 13.5.0.

I Configured innerText as a Custom Class Attribute, but it Is Not Used
in Locators
A maximum length for attributes used in locator strings exists. InnerText tends to be lengthy, so it might
not be used in the locator. If possible, use textContents instead.

What Should I Take Care Of When Creating Cross-Browser Scripts?
When you are creating cross-browser scripts, you might encounter one or more of the following issues:

128 | Testing Specific Environments

• Different attribute values. For example, colors in Internet Explorer are returned as "# FF0000" and in
Mozilla Firefox as "rgb(255,0,0)".

• Different attribute names. For example, the font size attribute is called "fontSize" in Internet Explorer
8 or earlier and is called "font-size" in all other browsers, for example Internet Explorer 9 or later
and Mozilla Firefox.

• Some frameworks may render different DOM trees.

How Can I See Which Browser I Am Currently Using?
The BrowserApplication class provides a property "browsertype" that returns the type of the
browser. You can add this property to a locator in order to define which browser it matches.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Examples

To get the browser type, type the following into the locator:

browserApplication.GetProperty("browsertype")

Additionally, the BrowserWindow provides a method GetUserAgent that returns the user agent string of
the current window.

Which Locators are Best Suited for Stable Cross-Browser Testing?
The built in locator generator attempts to create stable locators. However, it is difficult to generate quality
locators if no information is available. In this case, the locator generator uses hierarchical information and
indices, which results in fragile locators that are suitable for direct record and replay but ill-suited for stable,
daily execution. Furthermore, with cross-browser testing, several AJAX frameworks might render different
DOM hierarchies for different browsers.

To avoid this issue, use custom IDs for the UI elements of your application.

Logging Output of My Application Contains Wrong Timestamps
This might be a side effect of the synchronization. To avoid this problem, specify the HTML synchronization
mode.

My Test Script Hangs After Navigating to a New Page
This can happen if an AJAX application keeps the browser busy (open connections for Server Push /
ActiveX components). Try to set the HTML synchronization mode. Check the Page Synchronization for
xBrowser topic for other troubleshooting hints.

Recorded an Incorrect Locator
The attributes for the element might change if the mouse hovers over the element. Silk4J tries to track this
scenario, but it fails occasionally. Try to identify the affected attributes and configure Silk4J to ignore them.

Rectangles Around Elements in Internet Explorer are Misplaced
• Make sure the zoom factor is set to 100%. Otherwise, the rectangles are not placed correctly.
• Ensure that there is no notification bar displayed above the browser window. Silk4J cannot handle

notification bars.

Testing Specific Environments | 129

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

Link.Select Does Not Set the Focus for a Newly Opened Window in
Internet Explorer
This is a limitation that can be fixed by changing the Browser Configuration Settings. Set the option to
always activate a newly opened window.

DomClick(x, y) Is Not Working Like Click(x, y)
If your application uses the onclick event and requires coordinates, the DomClick method does not
work. Try to use Click instead.

FileInputField.DomClick() Will Not Open the Dialog
Try to use Click instead.

The Move Mouse Setting Is Turned On but All Moves Are Not
Recorded. Why Not?
In order to not pollute the script with a lot of useless MoveMouse actions, Silk4J does the following:

• Only records a MoveMouse action if the mouse stands still for a specific time.
• Only records MoveMouse actions if it observes activity going on after an element was hovered over. In

some situations, you might need to add some manual actions to your script.
• Silk4J supports recording mouse moves only for Web applications, Win32 applications, and Windows

Forms applications. Silk4J does not support recording mouse moves for child technology domains of
the xBrowser technology domain, for example Apache Flex and Swing.

I Need Some Functionality that Is Not Exposed by the xBrowser API.
What Can I Do?
You can use ExecuteJavaScript() to execute JavaScript code directly in your Web application. This
way you can build a workaround for nearly everything.

Why Are the Class and the Style Attributes Not Used in the Locator?
These attributes are on the ignore list because they might change frequently in AJAX applications and
therefore result in unstable locators. However, in many situations these attributes can be used to identify
objects, so it might make sense to use them in your application.

Dialog is Not Recognized During Replay
When recording a script, Silk4J recognizes some windows as Dialog. If you want to use such a script as a
cross-browser script, you have to replace Dialog with Window, because some browsers do not recognize
Dialog.

For example, the script might include the following line:

/BrowserApplication//Dialog//PushButton[@caption='OK']

Rewrite the line to enable cross-browser testing to:

/BrowserApplication//Window//PushButton[@caption='OK']

Why Do I Get an Invalidated-Handle Error?
This topic describes what you can do when Silk4J displays the following error message: The handle for
this object has been invalidated.

130 | Testing Specific Environments

This message indicates that something caused the object on which you called a method, for example
WaitForProperty, to disappear. For example, if something causes the browser to navigate to a new
page, during a method call in a Web application, all objects on the previous page are automatically
invalidated.

When testing a Web application, the reason for this problem might be the built-in synchronization. For
example, suppose that the application under test includes a shopping cart, and you have added an item to
this shopping cart. You are waiting for the next page to be loaded and for the shopping cart to change its
status to contains items. If the action, which adds the item, returns too soon, the shopping cart on the
first page will be waiting for the status to change while the new page is loaded, causing the shopping cart
of the first page to be invalidated. This behavior will result in an invalidated-handle error.

As a workaround, you should wait for an object that is only available on the second page before you verify
the status of the shopping cart. As soon as the object is available, you can verify the status of the shopping
cart, which is then correctly verified on the second page.

As a best practice for all applications, Micro Focus recommends creating a separate method for finding
controls that you use often within tests. For example:

public Dialog getSaveAsDialog(Desktop desktop) {
 return desktop.find("//Dialog[@caption = 'Save As']");
}

The Find and FindAll methods return a handle for each matching object, which is only valid as long as
the object in the application exists. For example, a handle to a dialog is invalid once the dialog is closed.
Any attempts to execute methods on this handle after the dialog closes will throw an
InvalidObjectHandleException. Similarly, handles for DOM objects on a Web page become invalid if
the Web page is reloaded. Since it is a common practice to design test methods to be independent of each
other and of order of execution, get new handles for the objects in each test method. In order not to
duplicate the XPath query, helper methods, like getSaveAsDialog, can be created. For example:

@Test
public void testSaveAsDialog() {
 // ... some code to open the 'Save As' dialog (e.g by clicking a menu
item) ...
 Dialog saveAsDialog = getSaveAsDialog(desktop);
 saveAsDialog.close();
 // ... some code to open the 'Save As' dialog again
 getSaveAsDialog(desktop).click(); // works as expected
 saveAsDialog.click(); // fails because an InvalidObjectHandleException is
thrown
}

The final line of code fails because it uses the object handle that no longer exists.

Why Are Clicks Recorded Differently in Internet Explorer 10?
When you record a Click on a DomElement in Internet Explorer 10 and the DomElement is dismissed
after the Click, then the recording behavior might not be as expected. If another DomElement is located
beneath the initial DomElement, Silk Test records a Click, a MouseMove, and a ReleaseMouse, instead
of recording a single Click.

A possible workaround for this unexpected recording behavior depends on the application under test.
Usually it is sufficient to delete the unnecessary MouseMove and ReleaseMouse events from the
recorded script.

Attributes for Web Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Testing Specific Environments | 131

Supported attributes for Web applications include:

• caption (supports wildcards ? and *)
• all DOM attributes (supports wildcards ? and *)

Note: Empty spaces are handled differently by each browser. As a result, the textContent and
innerText attributes have been normalized. Empty spaces are skipped or replaced by a single
space if an empty space is followed by another empty space. Empty spaces are detected spaces,
carriage returns, line feeds, and tabs. The matching of such values is normalized also. For example:

<a>abc
abc

Uses the following locator:

//A[@innerText='abc abc']

Custom Attributes for Web Applications
HTML defines a common attribute ID that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify UI controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose UI control information to Silk4J.

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk4J allows you to configure the attribute that you want
to use as the default attribute for identification, even if the attribute is a custom attribute of the control class.
To set the custom attribute as the default identification attribute for a specific technology domain, click
Silk4J > Edit Options > Custom Attributes and select the technology domain.

The application developer just needs to add the additional HTML attribute to the Web
element.

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322..."
AUTOMATION_ID = "AID_Login" <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk4J uses the custom attribute to construct a
unique locator whenever possible. Web locators look like the following:

…//DomLink[@AUTOMATION_ID='AID_Login'

Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = 'gwt-uid-<nnn>'

In this case <nnn> changes frequently.

132 | Testing Specific Environments

64-bit Application Support
Silk4J supports testing 64-bit applications for the following technology types:

• Windows Forms
• Windows Presentation Foundation (WPF)
• Microsoft Windows API-based
• Java AWT/Swing
• Java SWT

Check the Release Notes for the most up-to-date information about supported versions, any known issues,
and workarounds.

Supported Attribute Types
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. If necessary, you can change the attribute type in one of the following ways:

• Manually typing another attribute type and value.
• Specifying another preference for the default attribute type by changing the Preferred attribute list

values.

Attributes for Apache Flex Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Flex applications include:

• automationName
• caption (similar to automationName)
• automationClassName (e.g. FlexButton)
• className (the full qualified name of the implementation class, e.g. mx.controls.Button)
• automationIndex (the index of the control in the view of the FlexAutomation, e.g. index:1)
• index (similar to automationIndex but without the prefix, e.g. 1)
• id (the id of the control)
• windowId (similar to id)
• label (the label of the control)
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Attributes for Java AWT/Swing Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Testing Specific Environments | 133

Supported attributes for Java AWT/Swing include:

• caption
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName
• Swing only: All custom object definition attributes set in the widget with

SetClientProperty("propertyName", "propertyValue")

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Java SWT Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java SWT include:

• caption
• all custom object definition attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for SAP Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for SAP include:

• automationId
• caption

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Locator Attributes for Identifying Silverlight Controls
Supported locator attributes for Silverlight controls include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

134 | Testing Specific Environments

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify components within Silverlight scripts, you can specify the automationId, caption, className,
name or any dynamic locator attribute. The automationId can be set by the application developer. For
example, a locator with an automationId might look like //SLButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
SLButton[@automationId="okBu
tton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//SLButton[@caption="Ok"]

className The simple .NET class name (without namespace) of
the Silverlight control. Using the className attribute
can help to identify a custom control that is derived
from a standard Silverlight control that Silk4J
recognizes.

//
SLButton[@className='MyCusto
mButton']

name The name of a control. Can be provided by the
developer of the application under test.

//SLButton[@name="okButton"]

Attention: The name attribute in XAML code maps to the locator attribute automationId, not to the
locator attribute name.

During recording, Silk4J creates a locator for a Silverlight control by using the automationId, name, caption,
or className attributes in the order that they are listed in the preceding table. For example, if a control has
an automationId and a name, Silk4J uses the automationId, if it is unique, when creating the locator.

The following table shows how an application developer can define a Silverlight button with the text "Ok" in
the XAML code of the application:

XAML Code for the Object Locator to Find the Object from Silk Test

<Button>Ok</Button> //SLButton[@caption="Ok"]

<Button Name="okButton">Ok</Button> //SLButton[@automationId="okButton"]

<Button
AutomationProperties.AutomationId="okB
utton">Ok</Button>

//SLButton[@automationId="okButton"]

<Button
AutomationProperties.Name="okButton">O
k</Button>

//SLButton[@name="okButton"]

Locator Attributes for Identifying Rumba Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. Supported attributes include:

Testing Specific Environments | 135

caption The text that the control displays.

priorlabel Since input fields on a form normally have a label explaining the purpose of the input,
the intention of priorlabel is to identify the text input field, RumbaTextField, by the
text of its adjacent label field, RumbaLabel. If no preceding label is found in the same
line of the text field, or if the label at the right side is closer to the text field than the left
one, a label on the right side of the text field is used.

StartRow This attribute is not recorded, but you can manually add it to the locator. Use
StartRow to identify the text input field, RumbaTextField, that starts at this row.

StartColumn This attribute is not recorded, but you can manually add it to the locator. Use
StartColumn to identify the text input field, RumbaTextField, that starts at this
column.

All dynamic
locator
attributes.

For additional information on dynamic locator attributes, see Dynamic Locator
Attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Web Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Web applications include:

• caption (supports wildcards ? and *)
• all DOM attributes (supports wildcards ? and *)

Note: Empty spaces are handled differently by each browser. As a result, the textContent and
innerText attributes have been normalized. Empty spaces are skipped or replaced by a single
space if an empty space is followed by another empty space. Empty spaces are detected spaces,
carriage returns, line feeds, and tabs. The matching of such values is normalized also. For example:

<a>abc
abc

Uses the following locator:

//A[@innerText='abc abc']

Attributes for Windows Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows Forms applications include:

• automationid
• caption
• windowid
• priorlabel (For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.)

136 | Testing Specific Environments

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Windows Presentation Foundation (WPF)
Applications
Supported attributes for WPF applications include:

• automationId
• caption
• className
• name
• All dynamic locator attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Object Recognition

To identify components within WPF scripts, you can specify the automationId, caption, className, or
name. The name that is given to an element in the application is used as the automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationId might look like: //
WPFButton[@automationId='okButton']".

If you define an automationId and any other attribute, only the automationId is used during replay. If there is
no automationId defined, the name is used to resolve the component. If neither a name nor an
automationId are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationId because it is the most useful property.

Attribute Type Description Example

automationId An ID that was provided by
the developer of the test
application.

//WPFButton[@automationId='okButton']"

name The name of a control. The
Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify
the control in the application
code.

//WPFButton[@name='okButton']"

caption The text that the control
displays. When testing a
localized application in
multiple languages, use the
automationId or name
attribute instead of the
caption.

//WPFButton[@automationId='Ok']"

Testing Specific Environments | 137

Attribute Type Description Example

className The simple .NET class
name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk4J recognizes.

//WPFButton[@className='MyCustomButton']"

During recording, Silk4J creates a locator for a WPF control by using the automationId, name, caption, or
className attributes in the order that they are listed in the preceding table. For example, if a control has a
automationId and a name, Silk4J uses the automationId when creating the locator.

The following example shows how an application developer can define a name and an automationId for a
WPF button in the XAML code of the application:

<Button Name="okButton" AutomationProperties.AutomationId="okButton"
Click="okButton_Click">Ok</Button>

Attributes for Windows API-based Client/Server
Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows API-based client/server applications include:

• caption
• windowid
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text box, the caption of the closest label at the left side or above the control is used.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamic Locator Attributes
In a locator for identifying a control during replay you can use a pre-defined set of locator attributes, for
example caption and automationId, which depend on the technology domain. But you can also use every
property, including dynamic properties, of a control as locator attribute. A list of available properties for a
certain control can be retrieved with the GetPropertyList method. All returned properties can be used
for identifying a control with a locator.

Note: You can use the GetProperty method to retrieve the actual value for a certain property of
interest. You can then use this value in your locator.

Example

If you want to identify the button that has the user input focus in a Silverlight application,
you can type:

browser.Find("//SLButton[@IsKeyboardFocused=true]")

138 | Testing Specific Environments

or alternatively

Dim button = dialog.SLButton("@IsKeyboardFocused=true")

This works because Silk4J exposes a property called IsDefault for the Silverlight
button control.

Example

If you want to identify a button in a Silverlight application with the font size 12 you can
type:

Dim button = browser.Find("//SLButton[@FontSize=12]")

or alternatively

Dim button = browser.SLButton("@FontSize=12")

This works because the underlying control in the application under test, in this case the
Silverlight button, has a property called FontSize.

Testing Specific Environments | 139

Keyword-Driven Tests
Keyword-driven testing is a software testing methodology that separates test design from test development
and therefore allows the involvement of additional professional groups, for example business analysts, in
the test automation process. Silk Central and Silk Test support the keyword-driven testing methodology and
allow a very close collaboration between automation engineers and business analysts by having
automation engineers develop a maintainable automation framework consisting of shared assets in the
form of keywords in Silk Test. These keywords can then be used by business analysts either in Silk Test to
create new keyword-driven tests or in Silk Central to convert their existing manual test assets to automated
tests or to create new keyword-driven tests. A keyword-driven test is a sequence of keywords. A keyword-
driven test can be played back just like any other test.

There are two phases required to create keyword-driven tests:

1. Designing the test.
2. Implementing the keywords.

For a complete list of the record and replay controls available for keyword-driven testing, see the
com.borland.silk.keyworddriven.annotations package in the API Reference.

Advantages of Keyword-Driven Testing
The advantages of using the keyword-driven testing methodology are the following:

• Keyword-driven testing separates test automation from test case design, which allows for better division
of labor and collaboration between test engineers implementing keywords and subject matter experts
designing test cases.

• Tests can be developed early, without requiring access to the application under test, and the keywords
can be implemented later.

• Tests can be developed without programming knowledge.
• Keyword-driven tests require less maintenance in the long run. You need to maintain the keywords, and

all keyword-driven tests using these keywords are automatically updated.
• Test cases are concise.
• Test cases are easier to read and to understand for a non-technical audience.
• Test cases are easy to modify.
• New test cases can reuse existing keywords, which amongst else makes it easier to achieve a greater

test coverage.
• The internal complexity of the keyword implementation is not visible to a user that needs to create or

execute a keyword-driven test.

Keywords
A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET. In Silk4J,
a keyword is an annotated test method (@Keyword). Keywords are saved as keyword assets.

You can define keywords and keyword sequences during the creation of a keyword-driven test and you can
then implement them as test methods. You can also mark existing test methods as keywords with the
@Keyword annotation. In Java, keywords are defined with the following annotation:

@Keyword("keyword_name")

140 | Keyword-Driven Tests

A keyword sequence is a keyword that is a combination of other keywords, which are often executed
together. This allows you to better structure your keywords, reducing maintenance effort and keeping your
tests well-arranged.

A keyword can have input and output parameters. Any parameter of the test method that implements the
keyword is a parameter of the keyword. To specify a different name for a parameter of a keyword, you can
use the following annotation:

// Java code
@Argument("parameter_name")

By default a parameter is an input parameter in Silk4J. To define an output parameter, use the class
OutParameter.

Note: To specify an output parameter for a keyword in the Keyword-Driven Test Editor, use the
following annotation:

${parameter_name}

In the Keyword-Driven Test Editor, you can use the same annotation to use an output parameter of
a keyword as an input parameter for other keywords.

Example

A test method that is marked as a keyword can look like the following:

// Java code
@Keyword("Login")
public void login(){
 ... // method implementation
}

or

// Java code
@Keyword(value="Login", description="Logs in with the given
name and password.")
public void login(@Argument("UserName") String userName,

 @Argument("Password") String password,

 @Argument("Success") OutParameter success) {
 ... // method implementation
}

where the keyword logs into the application under test with a given user name and
password and returns whether the login was successful. To use the output parameter as
an input parameter for other keywords, set the value for the output parameter inside the
keyword.

• The keyword name parameter of the Keyword annotation is optional. You can use
the keyword name parameter to specify a different name than the method name. If
the parameter is not specified, the name of the method is used as the keyword
name.

• The Argument annotation is also optional. If a method is marked as a keyword, then
all arguments are automatically used as keyword arguments. You can use the
Argument annotation to specify a different name for the keyword argument, for
example UserName instead of userName.

Creating a Keyword-Driven Test in Silk4J
Before you can create a keyword-driven test in Silk4J, you have to select a project.

Keyword-Driven Tests | 141

Use the Keyword-Driven Test Editor to combine new keywords and existing keywords into new keyword-
driven tests. New keywords need to be implemented as Silk4J in a later step.

1. Click Silk4J > New Keyword-Driven Test. The New Keyword-Driven Test dialog box opens.

2. Type a name for the new test into the Name field.

3. Optional: Select the project in which the new test should be included.

By default, if a project is active, the new test is created in the active project.

Note: To optimally use the functionality that Silk4J provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.

4. Click Finish to save the keyword-driven test.

5. Click No to create an empty keyword-driven test. The Keyword-Driven Test Editor opens.

6. Perform one of the following actions:

• To add a new keyword, type a name for the keyword into the New Keyword field.
• To add an existing keyword, expand the list and select the keyword that you want to add.

7. Press Enter.

8. Repeat the previous two steps until the test includes all the keywords that you want to execute.

9. Click Save.

Continue with implementing the keywords or with executing the test, if all keywords are already
implemented.

Recording a Keyword-Driven Test in Silk4J
Before you can create a keyword-driven test in Silk4J, you have to select a project.

To record a single keyword, see Recording a Keyword.

To record a new keyword-driven test:

1. Click Silk4J > New Keyword-Driven Test. The New Keyword-Driven Test dialog box opens.

2. Type a name for the new test into the Name field.

3. Optional: Select the project in which the new test should be included.

By default, if a project is active, the new test is created in the active project.

Note: To optimally use the functionality that Silk4J provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.

4. Click Finish to save the keyword-driven test.

5. Click Yes to start recording the keyword-driven test.

6. If you have set an application configuration for the current project and you are testing a Web application,
the Select Browser dialog box opens. Select the browser on which you want to record the keyword.

7. Depending on the dialog that is open, perform one of the following:

• In the Select Application dialog box, click OK.
• In the Select Browser dialog box, click Record.

8. In the application under test, perform the actions that you want to include in the first keyword.

For information about the actions available during recording, see Actions Available During Recording.

9. To specify a name for the keyword, hover the mouse cursor over the keyword name in the Recording
window and click Edit.

Note: Silk4J automatically adds the keyword Start application to the start of the keyword-driven
test. In this keyword, the applications base state is executed to enable the test to replay correctly.
For additional information on the base state, see Base State.

142 | Keyword-Driven Tests

10.Type a name for the keyword into the Keyword name field.

11.Click OK.

12.To record the actions for the next keyword, type a name for the new keyword into the New keyword
name field and click Add. Silk4J records any new actions into the new keyword.

13.Create new keywords and record the actions for the keywords until you have recorded the entire
keyword-driven test.

14.Click Stop. The Record Complete dialog box opens.

15.Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

16.In the Test class text box, specify the name for the test class.
For example, type: AutoQuoteInput.

To use an existing class, click Select and select the class that you want to use.

17.Click OK.

Silk4J creates the new keyword-driven test with all recorded keywords.

Setting the Base State for a Keyword-Driven Test in Silk4J
When you execute a keyword-driven test with Silk4J and the keyword-driven test calls a base state
keyword, Silk4J starts your AUT from the base state.

During the recording of a keyword-driven test, Silk4J searches in the current project for a base state
keyword, which is a keyword for which the isBaseState property is set to true.

• If a base state keyword exists in the current project, Silk4J inserts this keyword as the first keyword of
the keyword-driven test.

• If there is no base state keyword in the project, Silk4J creates a new base state keyword with the name
Start application and inserts it as the first keyword of the keyword-driven test.

To manually mark a keyword as a base state keyword, add the isBaseState property to the Keyword
annotation, and set the value of the property to true:

@Keyword(value = "Start application", isBaseState = true)
public void start_application() {
 // Base state implementation
}

Implementing a Keyword in Silk4J
Before implementing a keyword, define the keyword as part of a keyword-driven test.

To implement a keyword for reuse in keyword-driven tests:

1. Open a keyword-driven test that includes the keyword that you want to implement.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Select Keyword Location dialog box opens.

3. Click Select to select the package and class to which you want to add the keyword implementation.

4. Optional: Define the package name for the new keyword implementation in the Package field.

5. Define the class name for the new keyword implementation in the Class field.

6. Click OK.

7. Perform one of the following actions:

Keyword-Driven Tests | 143

• To record the keyword, click Yes.
• To create an empty keyword method, click No.

8. If you have set an application configuration for the current project and you are testing a Web application,
the Select Browser dialog box opens. Select the browser on which you want to record the keyword.

9. Click Record.

For additional information on recording, see Recording a Keyword.

If an implemented keyword is displayed as not implemented in the Keywords window, check Project >
Build Automatically in the Eclipse menu.

Recording a Keyword in Silk4J
You can only record actions for a keyword that already exists in a keyword-driven test, not for a keyword
that is completely new. To record a new keyword-driven test, see Recording a Keyword-Driven Test.

To record the actions for a new keyword:

1. Open a keyword-driven test that includes the keyword that you want to record.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Select Keyword Location dialog box opens.

3. Click Select to select the package and class to which you want to add the keyword implementation.

4. Optional: Define the package name for the new keyword implementation in the Package field.

5. Define the class name for the new keyword implementation in the Class field.

6. Click OK.

7. If you have set an application configuration for the current project and you are testing a Web application,
the Select Browser dialog box opens. Select the browser on which you want to record the keyword.

8. Click Record. The Recording dialog box opens and Silk4J starts recording the actions for the keyword.

9. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

10.Click Stop. The Record Complete dialog box opens.

The recorded actions are displayed in the context of the defined class.

Marking a Test Method in a Script as a Keyword
Mark an existing test method in a script as a keyword to reuse the method in keyword-driven tests.

1. Open the script which includes the test method that you want to mark as a keyword.

2. Add @keyword() to the start of the test method.

By default, the keyword name is the name of the test method.

3. Optional: You can set a different name for the keyword by adding @keyword("keywordName") to the
start of the test method.

You can now use the test method as a keyword in a keyword-driven test.

Examples

To mark the test method testLogin as a new keyword with the name Login, type the
following before the start of the test method:

@Keyword("Login")

144 | Keyword-Driven Tests

To mark the test method testLogin as a new keyword with the name Login and with
the two input parameters UserName and PassWord, type the following:

@Keyword(value="Login", description="Logs in with the given
name and password.")
public void login(@Argument("UserName") String userName,
@Argument("Password") String password) {
 ... // method implementation
}

Editing a Keyword-Driven Test
To edit a keyword-driven test:

1. Open the keyword-driven test in the Keyword-Driven Test Editor.

a) In the Package Explorer, expand the project in which the keyword-driven test resides.
b) Expand the Keyword Driven Tests folder.
c) Double-click the keyword-driven test that you want to edit.

2. To add a new keyword to the keyword-driven test:

a) Click into the New Keyword field.
b) Type a name for the new keyword.
c) Press Enter.

3. To edit an existing keyword, click Open Keyword to the left of the keyword.

Note: Silk Central has the ownership of any keyword that has been created in Silk Central, which
means any changes that you make to such keywords are saved in Silk Central, not in Silk4J.

4. To remove the keyword from the keyword-driven test, click Delete Keyword to the left of the keyword.

The keyword is still available in the Keywords window and you can re-add it to the keyword-driven test
at any time.

5. To save your changes, click File > Save.

Combining Keywords into Keyword Sequences
Use the Keyword-Driven Test Editor to combine keywords, which you want to execute sequentially in
multiple keyword-driven tests, into a keyword sequence.

1. Open the keyword-driven test that includes the keywords that you want to combine.

2. In the Keyword-Driven Test Editor, press and hold down the Ctrl key and then click the keywords
that you want to combine.

3. Right-click on the selection and click Combine. The Combine Keywords dialog box opens.

4. Type a name for the new keyword sequence into the Name field.

5. Optional: Type a description for the new keyword sequence into the Description field.

6. Click Combine.

The new keyword sequence opens and is also displayed in the Keywords window. You can use the
keyword sequence in keyword-driven tests.

Note: Like any other keyword, you cannot execute a keyword sequence on its own, but only as part of
a keyword-driven test.

Keyword-Driven Tests | 145

Replaying Keyword-Driven Tests

1. In the Package Explorer, navigate to the keyword-driven test asset that you want to replay.

2. Richt-click the asset name.

3. Choose Run As > Keyword-Driven Test.

4. Optional: In the Run Configurations dialog box, you can select a different test or project.

5. If you are testing a Web application, the Select Browser dialog box opens. Select the browser and click
Run.

Note: If multiple applications are configured for the current project, the Select Browser dialog box
is not displayed.

6. Click Run.

7. Optional: If necessary, you can click both Shift keys at the same time to stop the execution of the test.

8. When the test execution is complete, the Playback Complete dialog box opens. Click Explore Results
to review the TrueLog for the completed test.

Replaying Keyword-Driven Tests Which Are Stored in Silk
Central

Replaying keyword-driven tests stored in Silk Central is only supported in Silk4J, and not on the other Silk
Test clients.

1. In the menu, click Silk4J > Show Keywords View.

2. In the Keywords view, hover the mouse cursor over the keyword-driven test in the and click Go to
implementation.

3. In the toolbar, click Run.

4. If you are testing a Web application, the Select Browser dialog box opens. Select the browser and click
Run.

Note: If multiple applications are configured for the current project, the Select Browser dialog box
is not displayed.

5. Click Run.

6. Optional: If necessary, you can click both Shift keys at the same time to stop the execution of the test.

7. When the test execution is complete, the Playback Complete dialog box opens. Click Explore Results
to review the TrueLog for the completed test.

Replaying Keyword-Driven Tests from the Command Line
You must update the PATH variable to reference your JDK location before performing this task. For details,
reference the Sun documentation at: http://java.sun.com/j2se/1.5.0/install-windows.html.

To replay keyword-driven tests from the command line, for example when replaying the tests from a CI
server, use the KeywordTestSuite class.

1. Include the following in the CLASSPATH:

• junit.jar.
• The org.hamcrest.core JAR file.

146 | Keyword-Driven Tests

http://java.sun.com/j2se/1.5.0/install-windows.html

• silktest-jtf-nodeps.jar.
• com.borland.silk.keyworddriven.engine.jar.
• The JAR of folder that contains your keyword-driven tests.

set CLASSPATH=<eclipse_install_directory>\plugins
\org.junit_4.11.0.v201303080030\junit.jar;<eclipse_install_directory>
\plugins\org.hamcrest.core_1.3.0.v201303031735.jar;%OPEN_AGENT_HOME%\JTF
\silktest-jtf-nodeps.jar;%OPEN_AGENT_HOME%\KeywordDrivenTesting
\com.borland.silk.keyworddriven.engine.jar;C:\myTests.jar

2. Run the JUnit test method by typing:

java org.junit.runner.JUnitCore <keyword test suite name>

Note: For troubleshooting information, reference the JUnit documentation at: http://
junit.sourceforge.net/doc/faq/faq.htm#running_1.

Example

For example, to run the two keyword driven tests My Keyword Driven Test 1 and My
Keyword Driven Test 2 , type the following code into your script:

package demo;

import org.junit.runner.RunWith;

import com.borland.silktest.jtf.keyworddriven.KeywordTestSuite;
import com.borland.silktest.jtf.keyworddriven.KeywordTests;

@RunWith(KeywordTestSuite.class)
@KeywordTests({ "My Keyword Driven Test 1", "My Keyword Driven
Test 2" })
public class MyTestSuite {

}

To run these test classes from the command line, type the following:

java org.junit.runner.JUnitCore demo.KeywordTestSuite

Replaying a Keyword-Driven Test with Specific Variables
Before you can set the values of variables for the execution of a keyword-driven test, you have to create the
project.

When executing keyword-driven tests that are part of an automation framework and that are managed in a
test management tool, for example Silk Central, you can set the values of any variables that are used for
the execution of the keyword-driven test in Silk4J.

1. In the Package Explorer, expand the project which includes the keyword-driven tests that you want to
execute based on the variables.

2. Right-click the folder Keyword Driven Tests of the project and select New > File. The New File dialog
box opens.

3. Type globalvariables.properties into the File name field.

4. Click Finish. The new properties file opens.

5. Add new lines to the file to specify the variables.

The format for a new variable is:

name=value

Keyword-Driven Tests | 147

http://junit.sourceforge.net/doc/faq/faq.htm#running_1
http://junit.sourceforge.net/doc/faq/faq.htm#running_1

For example, to specify the two variables user and password, type the following:

user=John
password=john5673

For information about the format of a properties file and how you can enter UNICODE characters, for
example a space, see Properties File Format.

6. Save the globalvariables.properties file.

Whenever a keyword-driven test in the project is executed from Silk4J, the variables are used.

Integrating Silk4J with Silk Central
Integrate Silk4J and Silk Central to enable collaboration between technical and less-technical users.

When Silk4J and Silk Central are integrated and a library exists in Silk Central with the same name as the
active Silk4J project, the Keywords view under Silk4J > Show Keywords View now displays all keywords
from the Silk Central library in addition to any keywords defined in the active Silk4J project.

Note: The Silk Central connection information is separately stored for every Silk4J user, which means
every Silk4J user that wants to work with the keywords from Silk Central must integrate Silk4J with
Silk Central.

Integrating Silk4J with Silk Central provides you with the following advantages:

• Test management and execution is handled by Silk Central.
• Keywords are stored in the Silk Central database (upload library) and are available to all projects in Silk

Central.
• Manual tests can be directly automated in Silk Central and can be executed in Silk4J from Silk Central.

1. From the Eclipse menu, select Silk4J > Silk Central Configuration. The Preferences dialog box
opens.

2. Type the URL of your Silk Central server into the URL field.

For example, if the Silk Central server name is sctm-server, type http://sctm-server.

Note: If you have changed the default port for Silk Central (19120), add the port number to the
URL. For example, if the port is 13450, type http://sctm-server:13450 into the URL field.

3. Type a valid user name and password into the corresponding fields.

4. Click Verify to verify if Silk4J can access the Silk Central server with the specified user.

5. Click OK.

Uploading a Keyword Library to Silk Central
To work with Silk Central, ensure that you have configured a valid Silk Central location. For additional
information, see Integrating Silk4J with Silk Central.

To automate manual tests in Silk Central, upload keywords that you have implemented in a Silk4J project
as a keyword library to Silk Central, where you can then use the keywords to automate manual tests.

1. In Silk4J, select the project in which the keyword-driven tests reside.

2. Ensure that a library with the same name exists in Silk Central (Tests > Libraries).

3. In the toolbar, click Upload Keyword Library.

Silk4J creates a keyword library out of all the keywords that are implemented in the project. Then Silk4J
saves the keyword library with the name library.zip into the output folder of the project. Finally, Silk4J
uploads the library to Silk Central. You can now use the keywords in Silk Central. Any keyword-driven tests

148 | Keyword-Driven Tests

http://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html

in Silk Central, which use the keywords that are included in the keyword library, automatically use the
current implementation of the keywords.

Uploading a keyword library from a project that was created in Silk Test 15.5

To upload keyword libraries from Silk4J projects that were created with Silk Test 15.5,
you need to edit the build.xml file of the project.

1. In the Package Explorer, expand the folder of the project from which you want to
upload the keyword library.

2. Open the build.xml file.
3. Add the keyword assets directory of the project to the JAR build step of the compile

target:

<fileset dir="Keyword Assets" includes="**/*.kwd"
erroronmissingdir="false" />

4. Add the following target for the keyword library:

<target name="build.keyword.library" depends="compile">
 <java
classname="com.borland.silk.kwd.library.docbuilder.DocBuilder"
 fork="true">
 <classpath refid="project.classpath" />

 <arg value="AutoQuote Silk4J Library" />
 <arg value="${output}" />
 <arg value="${output}/library.zip" />
 </java>
</target>

The new build.xml file should look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<project name="AutoQuote" default="compile">

 <property name="src" value="src" />
 <property name="bin" value="build" />
 <property name="output" value="output" />
 <property name="lib" value="lib" />
 <property name="buildlib" value="buildlib" />

 <path id="project.classpath">
 <fileset dir="${lib}" includes="*.jar"
excludes="*source*" />
 <fileset dir="${buildlib}" includes="*.jar"
excludes="*source*" />
 </path>

 <target name="clean">
 <delete dir="${output}" />
 </target>

 <target name="compile" depends="clean">
 <mkdir dir="${output}" />

 <delete dir="${bin}" />
 <mkdir dir="${bin}" />

 <componentdef name="ecj"
classname="org.eclipse.jdt.core.JDTCompilerAdapter"
classpathref="project.classpath" />
 <javac srcdir="${src}" destdir="${bin}" debug="true"
source="1.7" target="1.7" encoding="utf-8"
includeantruntime="false">
 <classpath refid="project.classpath" />

Keyword-Driven Tests | 149

 <ecj />
 </javac>

 <jar destfile="${output}/tests.jar" >
 <fileset dir="${bin}" includes="**/*.class" />
 <fileset dir="${src}" includes="**/*" excludes="**/
*.java" />
 <fileset dir="Object Maps" includes="**/*.objectmap"
erroronmissingdir="false" />
 <fileset dir="Image Assets" includes="**/*.imageasset"
erroronmissingdir="false" />
 <fileset dir="Verifications" includes="**/*.verification"
erroronmissingdir="false" />
 <fileset dir="Keyword Assets" includes="**/*.kwd"
erroronmissingdir="false" />
 </jar>

 <copy todir="${output}" overwrite="true">
 <fileset dir="${lib}" includes="*.jar"
excludes="*source*" />
 </copy>
 <delete dir="${bin}" />
 </target>

 <target name="build.keyword.library" depends="compile">
 <java
classname="com.borland.silk.kwd.library.docbuilder.DocBuilder"
fork="true">
 <classpath refid="project.classpath" />

 <arg value="AutoQuote Silk4J Library" />
 <arg value="${output}" />
 <arg value="${output}/library.zip" />
 </java>
 </target>
</project>

Searching for a Keyword
Use the search field in the Keywords view to find a specific keyword. When you enter alphanumeric
characters, the list is dynamically updated with all existing matches. Tips for searching:

• Keyword and group names are considered: test will find all keywords that contain test and all
keywords in groups where the group name contains test.

• ? replaces 0-1 characters: user?test will find userTest and usersTest.
• * replaces 0-n characters: my*keyword will find myKeyword, myNewKeyword and

my_other_keyword.
• <string>. only searches in group names: group. will find all keywords in groups where the group

name contains group.
• .<string> only searches in keyword names: .keyword will find all keywords that contain keyword.
• <string>.<string> searches for a keyword in a specific group: group.word will find myKeyword in

the group myGroup.

150 | Keyword-Driven Tests

Filtering Keywords
To find a specific keyword in the current project, you can filter the keywords that are displayed in the
Keywords window. If an integration with Silk Central is configured, the result includes the relevant
keywords from Silk Central.

1. In the menu, click Silk4J > Show Keywords View to open the Keywords window.

2. In the Keywords window, type the name of the keyword that you are searching for into the search field.
The Keywords window lists all keywords in the current project with the given name.

3. Optional: To see in which keyword-driven tests and keyword sequences a keyword is used, hover the
mouse cursor over the keyword in the Keywords window and click Find Keyword Usages.

If an integration with Silk Central is configured, the result includes the relevant keywords from Silk
Central.

4. Optional: To edit a keyword, hover the mouse cursor over the keyword in the Keywords window and
click Go to implementation.

Finding All References of a Keyword
To find all keyword-driven tests and Java files in which a keyword is referenced:

1. In the Keyword-Driven Test Editor, click Open Keyword. The Java file, in which the keyword is
implemented, opens.

2. Right-click on the name of the method that implements the keyword.

3. Click References.

4. To find all references of the keyword in the workspace, click Workspace.

All keyword-driven tests and Java files in which the keyword is referenced are listed in the Search window.

Grouping Keywords
To better structure the keywords in a library, you can group them.

This topic shows how you can add a keyword to a specific group. The steps for Silk4NET and Silk Test
Workbench are similar. For additional information on performing keyword-driven testing with a specific Silk
Test client, refer to the documentation of the Silk Test client. These group names are also used by Silk
Central and your keywords are grouped accordingly.

To add a keyword to a specific group:

1. Open the implementation of the keyword.

a) Open the project in which the keyword is implemented.
b) Open the Keywords window.
c) In the Keywords window, select the keyword.
d) Click Go to implementation.

2. To add all methods in a class to the keyword group, add the keyword group before the start of the class.

For example, to add the group calculator to the keywords, type:

@KeywordGroup("Calculator")

In the Keywords window, the displayed keyword name now includes the group. For example, the keyword
Addition in the group Calculator is displayed as Calculator.Addition.

Keyword-Driven Tests | 151

Troubleshooting for Keyword-Driven Testing

Why does the Keywords window falsely show a keyword as not implemented?

If an implemented keyword is displayed as not implemented in the Keywords window, check Project >
Build Automatically in the Eclipse menu.

152 | Keyword-Driven Tests

Object Recognition
Silk4J enables you to easily identify the objects in your application under test.

Within Silk4J, literal references to identified objects are referred to as locators. Silk4J uses locators to find
and identify objects in the application under test (AUT). Locators are a subset of the XPath query language,
which is a common XML-based language defined by the World Wide Web Consortium, W3C.

Locator Basic Concepts
Silk4J supports a subset of the XPath query language. For additional information about XPath, see http://
www.w3.org/TR/xpath20/.

XPath expressions rely on the current context, the position of the object in the hierarchy on which the Find
method was invoked. All XPath expressions depend on this position, much like a file system. For example:

• "//Shell" finds all shells in any hierarchy starting from the current context.
• "Shell" finds all shells that are direct children of the current context.

Additionally, some XPath expressions are context sensitive. For example, myWindow.find(xPath) makes
myWindow the current context.

Dynamic object recognition uses a Find or FindAll functions to identify an object in a test case. Silk Test
Classic provides an alternative to using Find or FindAll functions in scripts that use XPath queries. You
can use locator keywords in an INC file to create scripts that use dynamic object recognition and window
declarations.

Object Type and Search Scope
A locator typically contains the type of object to identify and a search scope. The search scope is one of
the following:

• //
• /

Locators rely on the current object, which is the object for which the locator is specified. The current object
is located in the object hierarchy of the application's UI. All locators depend on the position of the current
object in this hierarchy, much like a file system.

XPath expressions rely on the current context, which is the position of the object in the hierarchy on which
the Find method was invoked. All XPath expressions depend on this position, much like a file system.

Note:

The object type in a locator for an HTML element is either the HTML tag name or the class name that
Silk4J uses for this object. For example, the locators //a and //DomLink, where DomLink is the
name for hyperlinks in Silk4J, are equivalent. For all non-HTML based technologies only the Silk4J
class name can be used.

Example

• //a identifies hyperlink objects in any hierarchy relative to the current object.
• /a identifies hyperlink objects that are direct children of the current object.

Note: <a> is the HTML tag for hyperlinks on a Web page.

Object Recognition | 153

http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

Example

The following code sample identifies the first hyperlink in a browser. This example
assumes that a variable with the name browserWindow exists in the script that refers to
a running browser instance. Here the type is "a" and the current object is
browserWindow.

DomLink link = browserWindow.<DomLink>find("//a");

Using Attributes to Identify an Object
To identify an object based on its properties, you can use locator attributes. The locator attributes are
specified in square brackets after the type of the object.

Example

The following sample uses the textContents attribute to identify a hyperlink with the
text Home. If there are multiple hyperlinks with the same text, the locator identifies the
first one.

DomLink link = browserWindow.<DomLink>find(//
a[@textContents='Home']");

Locator Syntax
Silk4J supports a subset of the XPath query language to locate UI controls.

The following table lists the constructs that Silk4J supports.

Note: <a> is the HTML tag for hyperlinks on a Web page.

Supported Locator Construct Sample Description

// //a Identifies objects that are
descendants of the current object.

The example identifies hyperlinks on
a Web page.

/ /a Identifies objects that are direct
children of the current object. Objects
located on lower hierarchy levels are
not recognized.

The example identifies hyperlinks on
a Web page that are direct children of
the current object.

Attribute //a[@textContents='Home'] Identifies objects by a specific
attribute.

The example identifies hyperlinks with
the text Home.

Index Example 1: //a[3] Identifies a specific occurrence of an
object if there are multiple ones.
Indices are 1-based in locators.

154 | Object Recognition

Supported Locator Construct Sample Description

Example 2: //
a[@textContents='Home']
[2]

Example 1 identifies the third
hyperlink and Example 2 identifies
the second hyperlink with the text
Home.

Logical Operators: and, or, not, =, != Example 1: //
a[@textContents='Remove'
or
@textContents='Delete']

Example 2: //
a[@textContents!
='Remove']

Example 3: //
a[not(@textContents='Dele
te' or @id='lnkDelete')
and @href='*/delete']

Identifies objects by using logical
operators to combine attributes.

Example 1 identifies hyperlinks that
either have the caption Remove or
Delete, Example 2 identifies
hyperlinks with a text that is not
Remove, and Example 3 shows how
to combine different logical operators.

.. Example 1: //
a[@textContents='Edit']/.
.

Example 2: //
a[@textContents='Edit']/.
.//
a[@textContents='Delete']

Identifies the parent of an object.

Example 1 identifies the parent of the
hyperlink with the text Edit and
Example 2 identifies a hyperlink with
the text Delete that has a sibling
hyperlink with the text Edit.

* Example 1: //
*[@textContents='Home']

Example 2: /*/a

Identifies objects without considering
their types, like hyperlink, text field, or
button.

Example 1 identifies objects with the
given text content, regardless of their
type, and Example 2 identifies
hyperlinks that are second-level
descendants of the current object.

The following table lists the locator constructs that Silk4J does not support.

Unsupported Locator Construct Example

Comparing two attributes with each other. //a[@textContents = @id]

An attribute name on the right side is not supported. An
attribute name must be on the left side.

//a['abc' = @id]

Combining multiple locators with and or or. //a[@id = 'abc'] or ..//Checkbox

More than one set of attribute brackets. //a[@id = 'abc'] [@textContents =
'123']

(use //a [@id = 'abc' and @textContents
= '123'] instead)

More than one set of index brackets. //a[1][2]

Object Recognition | 155

Unsupported Locator Construct Example

Any construct that does not explicitly specify a class or
the class wildcard, such as including a wildcard as part of
a class name.

//[@id = 'abc']

(use //*[@id = 'abc'] instead)

"//*//a[@id='abc']"

Using Locators
Within Silk4J, literal references to identified objects are referred to as locators. For convenience, you can
use shortened forms for the locator strings in scripts. Silk4J automatically expands the syntax to use full
locator strings when you playback a script. When you manually code a script, you can omit the following
parts in the following order:

• The search scope, //.
• The object type name. Silk4J defaults to the class name.
• The surrounding square brackets of the attributes, [].

When you manually code a script, we recommend that you use the shortest form available.

Note: When you identify an object, the full locator string is captured by default.

The following locators are equivalent:

• The first example uses the full locator string.

_desktop.<DomLink>find("//BrowserApplication//BrowserWindow//
a[@textContents='Home']").select();

To confirm the full locator string, use the Locator Spy dialog box.
• The second example works when the browser window already exists.

browserWindow.<DomLink>find("//a[@textContents='Home']").select();

Alternatively, you can use the shortened form.

browserWindow.<DomLink>find("@textContents='Home'").select();

To find an object that has no real attributes for identification, use the index. For instance, to select the
second hyperlink on a Web page, you can type:

browserWindow.<DomLink>find("//DomLink[2]").select();

Additionally, to find the first object of its kind, which might be useful if the object has no real attributes, you
can type:

browserWindow.<DomLink>find("//DomLink").select();

Using Locators to Check if an Object Exists
You can use the Exists method to determine if an object exists in the application under test.

The following code checks if a hyperlink with the text Log out exists on a Web page:

if (browserWindow.exists("//a[@textContents='Log out']")) {
 // do something
}

Using the Find method

You can use the Find method and the FindOptions method to check if an object, which you want to use
later, exists.

156 | Object Recognition

The following code searches for a window and closes the window if the window is found:

Window mainWindow = _desktop.<Window>find("//Window[@caption='My Window']",
New FindOptions(False));
if (mainWindow){
 mainWindow.closeSynchron();
}

Identifying Multiple Objects with One Locator
You can use the FindAll method to identify all objects that match a locator rather that only identifying the
first object that matches the locator.

Example

The following code example uses the FindAll method to retrieve all hyperlinks of a
Web page:

List<DomLink> links = browserWindow.<DomLink>findAll("//a");

Locator Customization
This section describes how you can create stable locators that enable Silk4J to reliably recognize the
controls in your application under test (AUT).

Silk4J relies on the identifiers that the AUT exposes for its UI controls and is very flexible and powerful in
regards to identifying UI controls. Silk4J can use any declared properties for any UI control class and can
also create locators by using the hierarchy of UI controls. From the hierarchy, Silk4J chooses the most
appropriate items and properties to identify each UI control.

Silk4J can exclude dynamic numbers of controls along the UI control hierarchy, which makes the object
recognition in Silk4J very robust against changes in the AUT. Intermediate grouping controls that change
the hierarchy of the UI control tree, like formatting elements in Web pages, can be excluded from the object
recognition.

Some UI controls do not expose meaningful properties, based on which they can be identified uniquely.
Applications which include such controls are described as applications with bad testability. Hierarchies, and
especially dynamic hierarchies, provide a good means to create unique locators for such applications.
Applications with good testability should always provide a simple mechanism to identify UI controls
uniquely.

One of the simplest and most effective practices to make your AUT easier to test is to introduce stable
identifiers for controls and to expose these stable identifiers through the existing interfaces of the
application.

Stable Identifiers
A stable identifier for a UI control is an identifier that does not change between invocations of the control
and between different versions of the application, in which the UI control exists. A stable identifier needs to
be unique in the context of its usage, meaning that no other control with the same identifier is accessible at
the same time. This does not necessarily mean that you need to use GUID-style identifiers that are unique
in a global context. Identifiers for controls should be readable and provide meaningful names. Naming
conventions for these identifiers will make it much easier to associate the identifier to the actual control.

Object Recognition | 157

Example: Is the caption a good identifier for a control?

Very often test tools are using the caption as the default identifier for UI controls. The
caption is the text in the UI that is associated with the control. However, using the
caption to identify a UI control has the following drawbacks:

• The caption is not stable. Captions can change frequently during the development
process. For example, the UI of the AUT might be reviewed at the end of the
development process. This prevents introducing UI testing early in the development
process because the UI is not stable.

• The caption is not unique. For example, an application might include multiple buttons
with the caption OK.

• Many controls are not exposing a caption, so you need to use another property for
identification.

• Using captions for testing localized applications is cumbersome, as you need to
maintain a caption for a control in each language and you also have to maintain a
complex script logic where you dynamically can assign the appropriate caption for
each language.

Creating Stable Locators
One of the main advantages of Silk4J is the flexible and powerful object-recognition mechanism. By using
XPath notation to locate UI controls, Silk4J can reliably identify UI controls that do not have any suitable
attributes, as long as there are UI elements near the element of interest that have suitable attributes. The
XPath locators in Silk4J can use the entire UI control hierarchy or parts of it for identifying UI controls.
Especially modern AJAX toolkits, which dynamically generate very complex Document Object Models
(DOMs), do not provide suitable control attributes that can be used for locating UI controls.

In such a case, test tools that do not provide intelligent object-recognition mechanisms often need to use
index-based recognition techniques to identity UI controls. For example, identify the n-th control with icon
Expand. This often results in test scripts that are hard to maintain, as even minor changes in the
application can break the test script.

A good strategy to create stable locators for UI controls that do not provide useful attributes is to look for an
anchor element with a stable locator somewhere in the hierarchy. From that anchor element you can then
work your way to the element for which you want to create the locator.

Silk4J uses this strategy when creating locators, however there might be situations in which you have to
manually create a stable locator for a control.

Example: Locating the Expand Icon in a Dynamic GWT Tree
The Google Widget Toolkit (GWT) is a very popular and powerful toolkit, which is hard to test. The dynamic
tree control is a very commonly used UI control in GWT. To expand the tree, we need to identify the
Expand icon element.

You can find a sample dynamic GWT tree at http://gwt.google.com/samples/Showcase/Showcase.html#!
CwTree.

The default locator generated by Silk4J is the following:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-debug-cwTree-dynamicTree-
root-child0']/DIV/DIV[1]//IMG[@border='0']

For the following reasons, this default locator is no reliable locator for identifying the Expand icon for the
control Item 0.0:

• The locator is complex and built on multiple hierarchies. A small change in the DOM structure, which is
dynamic with AJAX, can break the locator.

• The locator contains an index for some of the controls along the hierarchy. Index based locators are
generally weak as they find controls by their occurrence, for example finding the sixth expand icon in a

158 | Object Recognition

http://gwt.google.com/samples/Showcase/Showcase.html#!CwTree
http://gwt.google.com/samples/Showcase/Showcase.html#!CwTree

tree does not define the control well. An exception to that rule would be if the index is used to express
different data sets that you want to identify, for example the sixth data row in a grid.

Often a good strategy for finding better locators is to search for siblings of elements that you need to locate.
If you find siblings with better locators, XPath allows you to construct the locator by identifying those
siblings. In this case, the tree item Item 0.0 provides a better locator than the Expand icon. The locator of
the tree item Item 0.0 is a stable and simple locator as it uses the @textContents property of the control.

By default, Silk4J uses the property @id, but in GWT the @id is often not a stable property, because it
contains a value like ='gwt-uid-<nnn>', where <nnn> changes frequently, even for the same element
between different calls.

You can manually change the locator to use the @textContents property instead of the @id.

Original Locator:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-uid-109']

Alternate Locator:

/BrowserApplication//BrowserWindow//DIV[@textContents='Item 0.0']

Or you can instruct Silk4J to avoid using @id='gwt-uid-<nnn>'. In this case Silk4J will automatically
record the stable locator. You can do this by adding the text pattern that is used in @id properties to the
locator attribute value blacklist. In this case, add gwt-uid* to the blacklist.

When inspecting the hierarchy of elements, you can see that the control Item 0.0 and the Expand icon
control have a joint root node, which is a DomTableRow control.

To build a stable locator for the Expand icon, you first need to locate Icon 0.0 with the following locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']

Then you need to go up two levels in the element hierarchy to the DomTableRow element. You express this
with XPath by adding /../.. to the locator. Finally you need to search from DomTableRow for the
Expand icon. This is easy as the Expand icon is the only IMG control in the sub-tree. You express this with
XPath by adding //IMG to the locator. The final stable locator for the Expand icon looks like the following:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/../..//IMG

You can also use the sibling approach to identify text fields. Text fields often do not provide any meaningful
attributes that can be used in locators. By using the label of a text field, you could create a meaningful
locator for the text field, because the label is the best identifier for the text field from the perspective of a
tester. You can easily use the label as a part of the locator for a test field by using the sibling approach.

Custom Attributes
Many UI technologies provide a mechanism that allows them to extend the set of predefined attributes of
UI controls with custom attributes. These custom attributes can be used by the application developer to
introduce stable identifiers that uniquely identify the control. Silk4J can access custom attributes of UI
controls and can also use these custom attributes to identify UI controls.

Using special automation for the identification of UI controls has several advantages compared to using the
defined attributes like caption. Being able to establish stable identifiers in the application code and to
expose these identifiers through either custom attributes or defined automation properties leads to
understandable and maintainable test-automation scripts, allowing you to start with your test automation
early in the development process.

You can configure the attributes used for identification by using the flexible locator strategy of Silk4J.

Object Recognition | 159

Custom Attributes for Apache Flex Applications
Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding="utf-8"?>
 <s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <fx:Script>
 …
 </fx:Script>
 <s:Button x="247" y="81" label="Button" id="button1" enabled="true"
click="button1_clickHandler(event)"
 automationName="AID_buttonRepeat"/>
 <s:Label x="128" y="123" width="315" height="18" id="label1"
verticalAlign="middle"
 text="awaiting your click" textAlign="center"/>
 </s:Group>

Apache Flex application locators look like the following:

…//SparkApplication//SparkButton[@caption='AID_buttonRepeat'

Attention: For Apache Flex applications, the automationName is always mapped to the locator
attribute caption in Silk4J. If the automationName attribute is not specified, Silk4J maps the
property ID to the locator attribute caption.

Java SWT Custom Attributes
You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, 'silkTestAutomationId')
for a widget that uniquely identifies the widget in the application. A tester using Silk4J can then add that
attribute to the list of custom attributes (in this case, 'silkTestAutomationId'), and can identify
controls by that unique ID. Using a custom attribute is more reliable than other attributes like caption or
index, since a caption will change when you translate the application into another language, and the index
will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different text fields, both fields will return when you call the 'loginName' attribute.

Java SWT Example

If you create a button in the application that you want to test using the following code:

Button myButton = Button(parent, SWT.NONE);

myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton("@SilkTestAutomationId='myButton'")

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Custom Attributes for Web Applications
HTML defines a common attribute ID that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

160 | Object Recognition

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify UI controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose UI control information to Silk4J.

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk4J allows you to configure the attribute that you want
to use as the default attribute for identification, even if the attribute is a custom attribute of the control class.
To set the custom attribute as the default identification attribute for a specific technology domain, click
Silk4J > Edit Options > Custom Attributes and select the technology domain.

The application developer just needs to add the additional HTML attribute to the Web
element.

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322..."
AUTOMATION_ID = "AID_Login" <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk4J uses the custom attribute to construct a
unique locator whenever possible. Web locators look like the following:

…//DomLink[@AUTOMATION_ID='AID_Login'

Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = 'gwt-uid-<nnn>'

In this case <nnn> changes frequently.

Custom Attributes for Windows Forms Applications
Windows Forms applications use the predefined automation property automationId to specify a stable
identifier for the Windows forms control.

Silk4J automatically will use this property for identification in the locator. Windows Forms application
locators look like the following:

/FormsWindow//PushButton[@automationId='btnBasicControls']

Custom Attributes for WPF Applications
WPF applications use the predefined automation property AutomationProperties.AutomationId to
specify a stable identifier for the WPF control as follows:

<Window x:Class="Test.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button AutomationProperties.AutomationId="AID_buttonA">The
Button</Button>

Object Recognition | 161

 </Grid>
</Window>

Silk4J automatically uses this property for identification in the locator. WPF application locators look like the
following:

/WPFWindow[@caption='MainWindow']//WPFButton[@automationId='AID_buttonA']

Troubleshooting Performance Issues for XPath
When testing applications with a complex object structure, for example complex web applications, you may
encounter performance issues, or issues related to the reliability of your scripts. This topic describes how
you can improve the performance of your scripts by using different locators than the ones that Silk4J has
automatically generated during recording.

Note: In general, we do not recommend using complex locators. Using complex locators might lead to
a loss of reliability for your tests. Small changes in the structure of the tested application can break
such a complex locator. Nevertheless, when the performance of your scripts is not satisfying, using
more specific locators might result in tests with better performance.

The following is a sample element tree for the application MyApplication:

Root
 Node id=1
 Leaf id=2
 Leaf id=3
 Leaf id=4
 Leaf id=5
 Node id=6
 Node id=7
 Leaf id=8
 Leaf id=9
 Node id=9
 Leaf id=10

You can use one or more of the following optimizations to improve the performance of your scripts:

• If you want to locate an element in a complex object structure , search for the element in a specific part
of the object structure, not in the entire object structure. For example, to find the element with the
identifier 4 in the sample tree, if you have a query like Root.Find("//Leaf[@id='4']"), replace it
with a query like Root.Find("/Node[@id='1']/Leaf[@id='4']"). The first query searches the
entire element tree of the application for leafs with the identifier 4. The first leaf found is then returned.
The second query searches only the first level nodes, which are the node with the identifier 1 and the
node with the identifier 6, for the node with the identifier 1, and then searches in the subtree of the node
with the identifier 1 for all leafs with the identifier 4.

• When you want to locate multiple items in the same hierarchy, first locate the hierarchy, and then locate
the items in a loop. If you have a query like Root.FindAll("/Node[@id='1']/Leaf"), replace it
with a loop like the following:

public void test() {
 TestObject node;
 int i;

 node = desktop.find("//Node[@id='1']");
 for (i=1; i<=4; i++)
 node.find("/Leaf[@id='"+i+"']");
}

162 | Object Recognition

Locator Spy
Use the Locator Spy to identify the caption or the XPath locator string for GUI objects. You can copy the
relevant XPath locator strings and attributes into methods in your scripts. Additionally, you can manually
edit the attributes of the XPath locator strings in your test scripts and validate the changes in the Locator
Spy. Using the Locator Spy ensures that the XPath query string is valid.

The object tree in the locator spy lists all the objects that are available in the current application or Web
page. You can use the object tree to inspect the available objects and the object structure of the application
or Web page.

Note: The locator attributes table of the Locator Spy displays all attributes that you can use in the
locator. For Web applications, the table also includes any attributes that you have defined to be
ignored during recording.

Object Recognition | 163

Object Maps
An object map is a test asset that contains items that associate a logical name (an alias) with a control or a
window, rather than the control or window's locator. Once a control is registered in an object map asset, all
references to it in scripts are made by its alias, rather than by its actual locator name.

You can use object maps to store objects that you are using often in multiple scripts. Multiple tests can
reference a single object map item definition, which enables you to update that object map definition once
and have Silk4J update it in all tests that reference the object map definition.

In your scripts, you can mix object map identifiers and locators. This feature enables you to keep your
object maps relatively small and easier to manage. You can simply store the commonly used objects in
your object maps, and use locators to reference objects that are rarely used.

Tip: To optimally use the functionality that object maps provide, create an individual project in Silk4J
for each application that you want to test.

Example for object maps

The following construct shows a definition for a BrowserWindow where the locator is
used:

_desktop.BrowserApplication("cnn_com").BrowserWindow("//
BrowserWindow[1]")

The name of the object map asset is cnn_com. The locator that can be substituted by
an alias in the object map is the following:

"//BrowserWindow[1]"

The object map entry for the BrowserWindow is BrowserWindow.

The resulting definition of the BrowserWindow in the script is the following:

_desktop.BrowserApplication("cnn_com").BrowserWindow("BrowserWin
dow")

If the index in the locator changes, you can just change the alias in the object map,
instead of having to change every appearance of the locator in your test script. Silk4J
will update all tests that reference the object map definition.

Example for mixing object map identifiers and locators

The following sample code shows how you can mix object map identifiers and locators
to specify a rarely used child object of an object stored in an object map:

Window window = _desktop.find("MyApplication"); // object map
id - the application window is used often
MenuItem aboutMenuItem = _desktop.find("//
MenuItem[@caption='About']"); // locator - the About dialog is
only used once
aboutMenuItem.select();

The following sample code shows how you can mix object map identifiers and locators
to specify an often used child object of a rarely used object.

MobileDevice device = _desktop.find("//
MobileDevice[@deviceName='Nexus 7']"); // locator - the device
name should be script-specific

164 | Object Maps

MobileTextView textView = device.find("MyTextView"); // object
map id - this textView is not depending on the device

Advantages of Using Object Maps
Object maps have the following advantages:

• They simplify test maintenance by applying changes made to a locator for an object map item to all
tests that include the corresponding object map item.

• They ease the handling of locators in a large scale functional testing environment.
• They can be managed independent of individual scripts.
• They substitute complex locator names with descriptive names, which can make scripts easier to read.
• They eliminate dependence on locators, which may change if the test application is modified.

Turning Object Maps Off and On
You can configure Silk4J to use the locator name or the alias from the object map during recording.

To use the alias from the object map during recording:

1. Click Silk4J > Edit Options.

2. Click Recording.

3. Check the Record object maps setting.

By default, Silk4J records the alias from the object map during recording. If you set the Record object
maps setting unchecked, Silk4J records the locator name during recording. You can turn the Record
object maps setting off and on as you find necessary. However, when a test is recorded with locators,
you must re-record it in order to use object map items.

Note: In addition to the XPath attributes, Silk4J uses additional attributes of the element when
merging object maps during locator recording. However, attributes that might lead to ambiguous
usage of object map IDs in a recorded script are not used to map locators to existing object map
entries.

Note: When you enable the Record object maps setting, object map item names display in place of
locators throughout Silk4J. For instance, if you view the Application Configurations category in the
Properties pane, you will notice that the Locator box shows the object map item name rather than
the locator name.

Using Assets in Multiple Projects
In Silk4J, image assets, image verifications, and object maps are referred to as assets. If you want to use
assets outside of the scope of the project in which they are located, you need to add a direct project
dependency from the project in which you want to use the assets to the project in which the assets are
located. When you are playing back tests from Eclipse, all dependent projects are added to the classpath
for the test execution, and therefore Silk4J can find the assets in the dependent projects.

During replay, when an asset is used, Silk4J firstly searches in the current project for the asset. The current
project is the JAR file which contains the test code that is currently executed. If Silk4J does not find the
asset in the current project, Silk4J additionally searchesall other projects in the classpath.. If the asset is
still not found, Silk4J throws an error.

If assets with the same name exist in more than one project, and you do not want to use the asset that is
included in the current project, you can define which specific asset you want to use in any method that

Object Maps | 165

uses the asset. To define which asset you want to use, add the asset namespace as a prefix to the asset
name when calling the method. The asset namespace defaults to the project name.

Note: When you start working with Silk4J, the asset namespace option is added to the
silk4j.settings file of every Silk4J project in your workspace that has been created with a
previous version of Silk4J.

Example: Adding a project dependency

If the project ProjectA contains a test that calls the following code:

window.imageClick("imageAsset");

and the image asset imageAsset is located in project ProjectB, you need to add a direct
project dependency from ProjectA to ProjectB.

To add a project dependency in Eclipse, right-click the project and select Properties.
Select Java Build Path, click on the Projects tab, and add your project here.

Note: Using Project References instead of Java Build Path
does not work.

Example: Calling a specific asset

If ProjectA and ProjectB both contain an image asset with the name
anotherImageAsset, and you explicitly want to click the image asset from ProjectB, use
the following code:

window.imageClick("ProjectB:anotherImageAsset")

Merging Object Maps During Action Recording
When you record actions with Silk4J, Silk4J checks if existing object map entries can be reused. Silk4J
checks this directly during recording, when a new locator is generated. Silk4J checks if the object that is
currently recorded in the application under test exactly matches an existing object map entry, and if yes,
Silk4J reuses the object map identifier from the object map.

This behavior has the following benefits:
• Silk4J correctly reuses an object map identifier during recording, even if the locator in the object map

has changed.
• A recorded script cannot contain wrong object map identifiers, and therefore will never fail to play back

because of a wrong object map identifier.
• If you restructure your object map, for example by adding an additional level of hierarchy, the object map

identifiers are still reused.

Example

Silk4J records the following script when you click on the Products link in the Borland
website, http://www.borland.com.

With _desktop.BrowserApplication("borland_com")
 With .BrowserWindow("BrowserWindow")
 .DomLink("Products").Click(MouseButton .Left, New Point
(47, 18))
 End With
End With

The recorded object map looks like this:

borland_com //BrowserApplication
 BrowserWindow //BrowserWindow

166 | Object Maps

http://www.borland.com

 Products //
A[@textContents='Products']

You could now manually restructure the object map to include the header section of the
Borland website:

borland_com //BrowserApplication
 BrowserWindow //BrowserWindow
 header //
HEADER[@role='banner']
 Products //
A[@textContents='Products']

When you now record a click on the Products link the object map is reused correctly,
and the following script is recorded:

With _desktop.BrowserApplication("borland_com")
 With .BrowserWindow("BrowserWindow")
 .DomElement("header").DomLink("Products").Click(MouseButt
on .Left, New Point (47, 18))
 End With
End With

Note: When you record another object in the header section of
the Borland website, for example the About link, Silk4J adds
the About object map entry as a child of BrowserWindow, and
not of header.

Using Object Maps with Web Applications
By default, when you record actions against a Web application, Silk4J creates an object map with the name
WebBrowser for native browser controls and an object map asset for every Web domain.

For common browser controls which are not specific for a Web domain, like the main window or the dialog
boxes for printing or settings, an additional object map is generated in the current project with the name
WebBrowser.

In the object map, you can edit the URL pattern by which the object map entries are grouped. When you
edit the pattern, Silk4J performs a syntactical validation of the pattern. You can use the wildcards * and ?
in the pattern.

Example

When you record some actions on http://www.borland.com and http://
www.microfocus.com and then open the printer dialog, the following three new object
map assets are added to the Asset Browser:

• WebBrowser
• borland_com
• microfocus_com

Note: Silk4J generates the new object map assets only for projects without an object map. If you
record actions against a Web application for which Silk4J already includes an object map that was
generated with a version of Silk4J prior to version 14.0, the additionally recorded entries are stored
into the existing object map, and there are no additional object map assets generated for the Web
domains.

Object Maps | 167

http://www.borland.com
http://www.microfocus.com
http://www.microfocus.com

Renaming an Object Map Item
You can manually rename items and locators in an object map.

Warning: Renaming an object map item affects every script that uses that item. For example, if you
rename the Cancel button object map item from CancelMe to Cancel, every script that uses
CancelMe must be changed manually to use Cancel.

Object map items must be unique. If you try to add a duplicate object map item, Silk4J notifies you that the
object must be unique.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip explains
the error. Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,]. Invalid locator
paths include: empty or incomplete locator paths.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the object map item that you want to rename.
• Right-click the object map that includes the object map item that you want to rename and choose

Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to rename.
For example, you might need to expand a node to locate the item that you want to rename.

4. Click the object that you want to rename and then click the object again.

5. Type the item name that you want to use and then press Enter.

If you use an invalid character, the item name displays in red.

The new name displays in the Item name list.

6. Press CTRL+S to save your changes

Note: All child nodes of any node in the object map tree are sorted alphabetically when you save the
object map.

If any existing scripts use the item name that you changed, you must manually change the scripts to use
the new item name.

Modifying Object Maps
An existing object map is able to reuse existing object map identifiers during recording, even if you have
added additional structural elements to the object map.

Example: Adding a DIV to an existing object map

Let us suppose you want to add a DIV element to bundle the email and login fields in
the following simple object map:

demo_borland_com //
BrowserApplication
 BrowserWindow //
BrowserWindow
 login-form email //
INPUT[@id='login-form:email']
 login-form login //
INPUT[@id='login-form:login']

168 | Object Maps

You can change the structure of the object map by adding the new DIV loginArea and
the object map will still be able to correctly reuse the object map identifiers during
recording.

demo_borland_com //
BrowserApplication
 BrowserWindow //
BrowserWindow

loginArea //'DIV[@id='
login']
 login-form email //
INPUT[@id='login-form:email']
 login-form login //
INPUT[@id='login-form:login']

Modifying a Locator in an Object Map
Locators are automatically associated with an object map item when you record a script. However, you
might want to modify a locator path to make it more generic. For example, if your test application
automatically assigns the date or time to a specific control, you might want to modify the locator for that
control to use a wildcard. Using a wildcard enables you to use the same locator for each test even though
each test inserts a different date or time.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the locator that you want to modify.
• Right-click the object map that includes the locator that you want to modify and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the locator that you want to modify.
For example, you might need to expand a node to locate the locator that you want to modify.

4. Click the locator path that you want to modify and then click the locator path again.

5. If you have a valid locator path, you can type the item name and locator path that you want to use and
then press Enter. To determine a valid locator path, use the Locator Spy dialog box as described in
the following steps:

a) In the Silk4J tool bar, click Locator Spy.
b) Position the mouse over the object that you want to record and press CTRL+ALT. Silk4J displays the

locator string in the Locator text field.
c) Select the locator that you want to use in the Locator Details table.
d) Copy and paste the locator into the object map.

6. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

7. Press CTRL+S to save your changes

If any existing scripts use the locator path that you modified, you must manually change the visual tests or
scripts to use the new locator path.

Object Maps | 169

Updating Object Maps from the Test Application
If items in the test application change, you can use the Object Map UI to update the locators for these
items.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to use.
• Right-click the object map that you want to use and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Click Update Locator. The Locator Spy displays and Silk4J opens the test application.

4. Position the mouse cursor over the object that you want to record and press CTRL+ALT. Silk4J displays
the locator string in the Locator text field.

5. Select the locator that you want to use in the Locator Details table.

6. Remove any attributes that you do not want to use from the locator that is displayed in the Locator text
field.

7. Click Validate Locator to validate that the locator works.

8. Click Paste Locator to Editor to update the locator in the object map.

9. Save the changed object map.

When you update an object map item from the AUT, you can change only the XPath representations of leaf
nodes in the object map tree. You cannot change the XPath representations of any parent nodes. When the
XPath representations of higher-level nodesin the object map tree are not consistent after the update, an
error message displays.

Example

For example, suppose you have an object map item with an object map ID that has the
following three hierarchy levels:

WebBrowser.Dialog.Cancel

The corresponding XPath representation of these hierarchy levels is the following:

 /BrowserApplication//Dialog//PushButton[@caption='Cancel']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //Dialog
• Third hierarchy level: //PushButton[@caption='Cancel']

You can use the following locator to update the object map item:

 /BrowserApplication//Dialog//PushButton[@id='123']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //Dialog
• Third hierarchy level: //PushButton[@id='123']

You cannot use the following locator cannot to update the object map item, because the
second level hierarchy nodes do not match:

 /BrowserApplication//BrowserWindow//PushButton[@id='9999999']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //BrowserWindow

170 | Object Maps

• Third hierarchy level: //PushButton[@id='9999999']

Copying an Object Map Item
You can copy and paste object map entries within or between object maps. For example, if the same
functionality exists in two separate test applications, you might copy a portion of one object map into
another object map.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the object map item that you want to copy.
• Right-click the object map that includes the object map item that you want to copy and choose

Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to copy.
For example, you might need to expand a node to locate the item that you want to copy.

4. Choose one of the following:

• Right-click the object map item that you want to copy and choose Copy tree.
• Click the object map item that you want to copy and then press Ctrl+C.

5. In the object map hierarchy, navigate to the position where you want to paste the item that you copied.

For instance, to include an item on the first level of the hierarchy, click the first item name in the item list.
To position the copied item a level below a specific item, click the item that you want to position the
copied item below.

To copy and paste between object maps, you must exit the map where you copied the object map item
and open and edit the object map where you want to paste the object map item.

6. Choose one of the following:

• Right-click the position in the object map where you want to paste the copied object map item and
choose Paste.

• Click the position in the object map where you want to paste the copied object map item and then
press Ctrl+V.

The object map item displays in its new position in the hierarchy.

7. Press CTRL+S to save your changes

If any existing scripts use the object map item name that you moved, you must manually change the scripts
to use the new position in the hierarchy.

Adding an Object Map Item
Object map items are automatically created when you record a script. Occasionally, you might want to
manually add an object map item.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Double-click the object map to which you want to add the new item. The object map displays a hierarchy
of the object map items and the locator associated with each item.

3. In the object map hierarchy, right-click on the item below which you want to add the new object map
item.

Object Maps | 171

For instance, to include an item on the first level of the hierarchy, right-click on the first item name in the
item list. To position the new item a level below a specific item, right-click on the item below which you
want to position the new item.

4. Click Insert new. A new item is added to the hierarchy, as the first child of the current node.

5. If you have a valid locator path, you can type the item name and locator path that you want to use and
then press Enter. To determine a valid locator path, use the Locator Spy dialog box as described in
the following steps:

a) In the Silk4J tool bar, click Locator Spy.
b) Position the mouse over the object that you want to record and press CTRL+ALT. Silk4J displays the

locator string in the Locator text field.
c) Select the locator that you want to use in the Locator Details table.
d) Copy and paste the locator into the object map.

6. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

7. Press CTRL+S to save your changes

Note: All child nodes of any node in the object map tree are sorted alphabetically when you save the
object map.

Opening an Object Map from a Script
When you are editing a script, you can open an object map by right clicking on an object map entry in the
script and selecting Open Silk4JAsset. This will open the object map in the GUI.

Use Ctrl+Click and click on an object map entry and the object map entry will turn into a hyperlink.
Click it to open it.

Example

@Test
public void test() {
 Window mainWindow = desktop.<Window>find("Untitled -
Notepad");
 mainWindow.<TextField>find("TextField").typeKeys("hello");
}

In the previous code sample, right-click Untitled - Notepad to open the entry
Untitled - Notepad in the object map, or right-click TextField to open the entry
Untitled - Notepad.TextField in the object map.

Highlighting an Object Map Item in the Test Application
After you add or record an object map item, you can click Highlight to highlight the item in the test
application. You might want to highlight an item to confirm that it's the item that you want to modify in the
object map.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

172 | Object Maps

• Double-click the object map that you want to use.
• Right-click the object map that you want to use and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. In the object map hierarchy, select the object map item that you want to highlight in the test application.

Note: Ensure that only one instance of the test application is running. Running multiple instances
of the test application will cause an error because multiple objects will match the locator.

4. Click Highlight.

The Select Application dialog box might open if the test application has not been associated with the
object map. If this happens, select the application that you want to test and then click OK.

Silk4J opens the test application and displays a green box around the control that the object map item
represents.

Navigating from a Locator to an Object Map Entry in a
Script

If you want to see more than the ID of an object map entry, you can easily see the raw locator that will be
used by the Open Agent when the command is executed by doing the following:

1. Open a script.

2. Place your cursor within a string in a line of the script that you want to identify.

3. Right click and select Open Silk4J Asset.

Note:

If the cursor is in a string that does not represent an object map entry, Silk4J will still assume that it
is an object map entry and you may not get the results that you expect.

The Object Map window opens with the proper item selected in the tree view.

Finding Errors in an Object Map
If you use an invalid character or locator, the item name or locator text displays in red and a tooltip explains
the error. Use the toolbar in the Object Map window to navigate to any errors.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to troubleshoot.
• Right-click the object map that you want to troubleshoot and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Look for any item name or locator text displayed in red.

4. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

5. Press CTRL+S to save your changes

Object Maps | 173

Deleting an Object Map Item
You might want to delete an item from an object map if it no longer exists in the test application or for some
other reason.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Double-click the object map that includes the object map item that you want to delete. The object map
displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to delete.
For example, you might need to expand a node to locate the object map item that you want to delete.

4. Choose one of the following:

• Right-click the object map item that you want to delete and choose Delete, or choose Delete tree to
additionally delete all child items of the object map item.

• Click the object map item that you want to delete and then press DEL, or press CTRL+DEL to
additionally delete all child items of the object map item.

After deleting an object map item, the focus moves to the next item in the object map.

5. Press CTRL+S to save your changes

If any existing scripts use the object map item or its children that you deleted, you must manually change
any references to that object map item in the scripts.

Initially Filling Object Maps
As a best practice, we recommend that you fill your object map and then review all object map items before
you record your tests.

To initially fill your object map with all available items in the AUT, you might create a test that clicks every
object and opens every window and dialog box in your test application. Then, you can review the object
map item for each object and make any necessary modifications before you record your functional tests.
After you have reviewed and modified the object map items you can delete the test that you have created
to fill the object map.

Tip: You can use the arrow keys to navigate between items in an object map.

Grouping Elements in Object Maps
When items in an object map have no consistent parent object, you can group these elements by adding a
new tree item with the locator ".", which is the locator for the current element in Xpath.

Warning: Grouping object map items affects every script that uses these items. Every script that uses
these items must be changed manually to use the new locators.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to edit.
• Right-click the object map that you want to edit and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

174 | Object Maps

3. Right click on the tree item below which you want to add the new structuring item and choose Insert
New.

4. Double click the Item name field of the new object map item.

5. Type the item name that you want to use and then press Enter.

If you use an invalid character, the item name displays in red.

The new name displays in the Item name list.

6. Click the Locator path field of the new object map item and type . into the field.

7. Press Enter.

8. For every object map item that you want to relocate to a new location under the new item:

a) Right click on the item that you want to relocate and choose Cut tree.
b) Right click on the new structuring item and choose Paste.

9. Press CTRL+S to save your changes

Object Maps | 175

Image Recognition Support
You can use image recognition in the following situations:

• To conveniently interact with test applications that contain highly customized controls, which cannot be
identified using object recognition. You can use image clicks instead of coordinate-based clicks to click
on a specified image.

• To test graphical objects in the application under test, for example charts.
• To perform a check of the visible UI of the application under test.

If you want to click on a control that is otherwise not recognizable, you can use the imageClick method
with an image asset. If you want to verify that an otherwise not recognizable control exists in your
application under test, you can use the verifyAsset method with an image verification.

Image recognition methods are supported for all technology domains that are supported by Silk4J.

Image Click Recording
Image click recording is disabled by default in favor of coordinate-based click recording, because image
click recording might generate a confusingly large number of images. To enable image click recording, you
can perform one of the following:

• In the Recording dialog box, check Record image clicks.
• Click Silk4J > Edit Options, select the Recording tab, and check the check box in the Record image

clicks section.

Note: When recording on a mobile browser, you do not have to enable image click recording.

When image click recording is enabled, Silk4J records ImageClick methods when object recognition or
text recognition is not possible. You can insert image clicks in your script for any control, even if the image
clicks are not recorded.

If you do not whish to record an ImageClick action, you can turn off image click recording and record
normal clicks or text clicks.

Note: The recorded images are not reused. Silk4J creates a new image asset for each image click
that you record.

Note: Image click recording is not supported for applications or applets that use the Java AWT/Swing
controls.

Image Recognition Methods
Silk4J provides the following methods for image recognition:

Method Description

imageClick Clicks in the middle of the image that is specified in an asset. Waits until
the image is found or the Object resolve timeout, which you can define in
the synchronization options, is over.

imageExists Returns whether the image that is specified in an asset exists.

176 | Image Recognition Support

Method Description

imageRectangle Returns the object-relative rectangle of the image that is specified in an
asset.

imageClickFile Clicks on the image that is specified in a file.

imageExistsFile Returns whether the image that is specified in a file exists.

imageRectangleFile Returns the object-relative rectangle of the image that is specified in a
file.

verifyAsset Executes a verification asset. Throws a VerificationFailedException if the
verification does not pass.

tryVerifyAsset Executes a verification asset and returns whether the verification passed.

Image Assets
You can use image assets in the following situations:

• To conveniently interact with test applications that contain highly customized controls, which cannot be
identified using object recognition. You can use image clicks instead of coordinate-based clicks to click
on a specified image.

• To test graphical objects in the application under test, for example charts.

Image assets consist of an image with some additional information that is required by Silk4J to work with
the asset.

Silk4J provides the following methods for image assets:

Method Description

imageClick Clicks in the middle of the specified image asset. Waits until the image is
found or the Object resolve timeout, which you can define in the
synchronization options, is over.

imageExists Returns whether the specified image asset exists.

imageRectangle Returns the object-relative rectangle of the specified image asset.

Image assets must be located in the Image Assets folder of the project. The .imageasset files must be
embedded resources.

Creating an Image Asset
You can create image assets in one of the following ways:

• By inserting a new image asset into an existing script.
• During recording.
• From the menu.

To create a new image asset from the menu, perform the following steps:

1. In the menu, click Silk4J > New Image Asset.

2. Select the project, to which you want to add the new image asset, and type a meaningful name for the
asset into the Name field.

3. Click Finish. The image asset UI opens.

4. Select how you want to add an image to the asset.

Image Recognition Support | 177

• If you want to use an existing image, click Browse and select the image file.
• If you want to capture a new image from the UI of the application under test, click Capture. If you are

testing a Web application, you can select the browser on which you want to capture the image from
the Select Browser window.

5. If you have selected to capture a new image, select the area of the screen that you want to capture and
click Capture Selection.

6. Optional: Click Verify to check if Silk4J can find the image asset in the UI of the AUT.

If you are testing a Web application, you can select the browser on which you want to capture the image
from the Select Browser window.

7. Optional: You can set the option Client Area Only to define that only the part of the image that is
actually part of the AUT is considered when Silk4J compares the image verification to the UI of the AUT.

8. Specify the Accuracy Level.
The accuracy level defines how much the image to be verified is allowed to be different to the image in
the application under test, before Silk4J declares the images as different. This is helpful if you are
testing multiple systems or browsers with different screen resolutions. We recommend to choose a high
level of accuracy in order to prevent false positives. You can change the default accuracy level in the
options.

Note: When you set the Accuracy Level to less than five, the actual colors of the images are no
longer considered for the comparison. Only the grayscale representations of the images are
compared.

9. Save the image asset.

The new image asset is listed under the current project in the Package Explorer, and you can use it to
perform image clicks.

You can add multiple images to the same image asset.

Note: To add an image click while recording against a mobile browser, you can right-click in the
Mobile Recording window and select ImageClick from the action list.

Adding Multiple Images to the Same Image Asset
During testing, you will often need to test functionality on multiple environments and with different testing
configurations. In a different environment, the actual image might differ in such a degree from the image
that you have captured in the image asset, that image clicks might fail, although the image is existing. In
such a case, you can add multiple images to the same image asset.

To add an additional image to an image asset:

1. Double-click on the image asset to which you want to add an additional image. The image asset UI
opens.

2. Click on the plus sign in the lower part of the UI to add a new image to the image asset.

3. Save the image asset.

The new image is added to the asset. Each time an image click is called, and until a match is achieved,
Silk4J will compare the images in the asset with the images in the UI of the application under test. By
default, Silk4J compares the images in the order in which they have been added to the asset.

Note: To change the order in which Silk4J compares the images, click on an image in the lower part
of the image asset UI and drag the image to the position that you want. The order lowers from left to
right. The image that is compared first is the image in the left-most position.

Opening an Asset from a Script
When you are editing a script, you can open an asset by right clicking it and selecting Open Silk4JAsset.
This will open the asset in the GUI.

178 | Image Recognition Support

If the asset is a reference to a file on the system, for example, referenced by ImageClickFile, the file
will be opened by your system's default editor.

Use Ctrl+Click and click on an asset and the asset will turn into a hyperlink. Click it to open it.

Image Verifications
You can use an Image Verification to check if an image exists in the UI of the application under test (AUT)
or not.

Image verifications consist of an image with some additional information that is required by Silk4J to work
with the asset.

To execute an image verification, use the verifyAsset method.

Image verification assets must be located in the Verifications folder of the project.
The .verification files must be embedded resources.

An image verification fails when Silk4J cannot find the image in the AUT. In this case the script breaks
execution and throws a VerificationFailedException. To avoid this behavior, use the tryVerifyAsset
method.

If the locator for the image verification is not found in the AUT, Silk4J throws an
ObjectNotFoundException.

You can open a successful image verification in TrueLog Explorer by clicking Open Verification in the Info
tab of the verification step. You can open a failed image verification in TrueLog Explorer by clicking Show
Differences in the Info tab of the verification step. If a failed image verification would have been successful
if a lower accuracy level had been used, the accuracy level that would have succeeded is suggested.

Creating an Image Verification
You can create image verifications in one of the following ways:

• By using the menu.
• During recording.

To create a new image verification in the menu, perform the following steps:

1. Click Silk4J > New Image Verification.

2. Select the project, to which you want to add the new image verification, and type a meaningful name for
the verification into the Name field.

3. Click Finish. The image verification UI opens.

4. Click Identify to identify the image that you want to verify in the application under test.

5. Optional: If you want to recapture the same image from the application under test, because there is a
change in comparison to the image that you had initially captured, click Recapture.

If you are testing a Web application, you can select the browser on which you want to capture the image
from the Select Browser window.

6. Optional: You can click Verify to test if the image verification works. Silk4J searches for the image in the
UI of the AUT, top-down and left to right, and highlights the first matching image.

7. Optional: You can add an exclusion area to the image verification, which will not be considered when
Silk4J compares the image verification to the UI of the application under test (AUT).

8. Optional: You can set the option Client Area Only to define that only the part of the image that is
actually part of the AUT is considered when Silk4J compares the image verification to the UI of the AUT.

9. Specify the Accuracy Level.
The accuracy level defines how much the image to be verified is allowed to be different to the image in
the application under test, before Silk4J declares the images as different. This is helpful if you are

Image Recognition Support | 179

testing multiple systems or browsers with different screen resolutions. We recommend to choose a high
level of accuracy in order to prevent false positives. You can change the default accuracy level in the
options.

Note: When you set the Accuracy Level to less than five, the actual colors of the images are no
longer considered for the comparison. Only the grayscale representations of the images are
compared.

10.Save the image verification.

The new image verification is listed in the Package Explorer, and you can use it to check if the image
exists in the UI of your application under test.

Adding an Image Verification During Recording
You can add image verifications to your scripts to check if controls which are otherwise not recognizable
exist in the UI of the application under test. To add an image verification during the recording of a script,
perform the following steps:

1. Begin recording.

2. Move the mouse cursor over the image that you want to verify and click Ctrl + Alt. Silk4J asks you if you
want to verify a property or an image.

3. Select Create or Insert an Image Verification.

4. Perform one of the following steps:

• To create a new image verification in the image verification UI, select New from the list box.
• To insert an existing image verification asset, select the image verification asset from the list box.

5. Click OK.

• If you have chosen to create a new image verification, the image verification UI opens.
• If you have chosen to use an existing image verification, the image verification is added to your

script. You can skip the remaining steps in this topic.

6. To create a new image verification, click Verify in the image verification UI.

7. Move the mouse cursor over the image in the AUT and click CTRL+ALT. The image verification UI
displays the new image verification.

8. Click OK. The new image verification is added to the current project.

9. Continue recording.

Using Assets in Multiple Projects
In Silk4J, image assets, image verifications, and object maps are referred to as assets. If you want to use
assets outside of the scope of the project in which they are located, you need to add a direct project
dependency from the project in which you want to use the assets to the project in which the assets are
located. When you are playing back tests from Eclipse, all dependent projects are added to the classpath
for the test execution, and therefore Silk4J can find the assets in the dependent projects.

During replay, when an asset is used, Silk4J firstly searches in the current project for the asset. The current
project is the JAR file which contains the test code that is currently executed. If Silk4J does not find the
asset in the current project, Silk4J additionally searchesall other projects in the classpath.. If the asset is
still not found, Silk4J throws an error.

If assets with the same name exist in more than one project, and you do not want to use the asset that is
included in the current project, you can define which specific asset you want to use in any method that
uses the asset. To define which asset you want to use, add the asset namespace as a prefix to the asset
name when calling the method. The asset namespace defaults to the project name.

180 | Image Recognition Support

Note: When you start working with Silk4J, the asset namespace option is added to the
silk4j.settings file of every Silk4J project in your workspace that has been created with a
previous version of Silk4J.

Example: Adding a project dependency

If the project ProjectA contains a test that calls the following code:

window.imageClick("imageAsset");

and the image asset imageAsset is located in project ProjectB, you need to add a direct
project dependency from ProjectA to ProjectB.

To add a project dependency in Eclipse, right-click the project and select Properties.
Select Java Build Path, click on the Projects tab, and add your project here.

Note: Using Project References instead of Java Build Path
does not work.

Example: Calling a specific asset

If ProjectA and ProjectB both contain an image asset with the name
anotherImageAsset, and you explicitly want to click the image asset from ProjectB, use
the following code:

window.imageClick("ProjectB:anotherImageAsset")

Image Recognition Support | 181

Enhancing Tests
This section describes how you can enhance a test.

Recording Additional Actions Into an Existing Test
Once a test is created, you can open the test and record additional actions to any point in the test. This
allows you to update an existing test with additional actions.

1. Open an existing test script.

2. Select the location in the test script into which you want to record additional actions.

Note: Recorded actions are inserted after the selected location. The application under test (AUT)
does not return to the base state. Instead, the AUT opens to the scope in which the preceding
actions in the test script were recorded.

3. Click Record Actions.

Silk4J minimizes and the Recording window or the Mobile Recording window opens.

4. Record the additional actions that you want to perform against the AUT.

For information about the actions available during recording, see Actions Available During Recording.

5. To stop recording, click Stop in the Recording window or Stop Recording in the Mobile Recording
window.

Calling Windows DLLs
This section describes how you can call DLLs. You can call a DLL either within the process of the Open
Agent or in the application under test (AUT). This allows the reuse of existing native DLLs in test scripts.

DLL calls in the Open Agent are typically used to call global functions that do not interact with UI controls in
the AUT.

DLL calls in the AUT are typically used to call functions that interact with UI controls of the application. This
allows Silk4J to automatically synchronize the DLL call during playback.

Note: In 32-bit applications, you can call 32-bit DLLs, while in 64-bit applications you can call 64-bit
DLLs. The Open Agent can execute both 32-bit and 64-bit DLLs.

Note: You can only call DLLs with a C interface. Calling of .NET assemblies, which also have the file
extension .dll, is not supported.

Calling a Windows DLL from Within a Script
All classes and annotations that are related to DLL calling are located in the package
com.borland.silktest.jtf.dll.

A declaration for a DLL starts with an interface that has a Dll attribute. The syntax of the declaration is the
following:

@Dll("dllname.dll")
public interface DllInterfaceName {
 FunctionDeclaration
 [FunctionDeclaration]…
}

182 | Enhancing Tests

dllname The name of or the full path to the DLL file that contains the functions you want to
call from your Java scripts. Environment variables in the DLL path are
automatically resolved. You do not have to use double backslashes (\\) in the path,
single backslashes (\) are sufficient.

DllInterfaceName The identifier that is used to interact with the DLL in a script.

FunctionDeclaration A function declaration of a DLL function you want to call.

DLL Function Declaration Syntax
A function declaration for a DLL typically has the following form:

return-type function-name([arg-list])

For functions that do not have a return value, the declaration has the following form:

void function-name([arg-list])

return-type The data type of the return value.

function-name The name of the function.

arg-list A list of the arguments that are passed to the function.

The list is specified as follows:

data-type identifier

data-type The data type of the argument.

• To specify arguments that can be modified by a function or passed out
from a function, use the InOutArgument and the OutArgument
class.

• If you want the DLL function to set the value of the argument, use the
OutArgument class.

• If you want to pass a value into the function, and have the function
change the value and pass the new value out, use the
InOutArgument class.

identifier The name of the argument.

DLL Calling Example
This example writes the text hello world! into a field by calling the SendMessage DLL function from
user32.dll.

DLL Declaration:

@Dll("user32.dll")
public interface IUserDll32Functions {
 int SendMessageW(TestObject obj, int message, int wParam, Object lParam);
}

The following code shows how to call the declared DLL function in the AUT:

IUserDll32Functions user32Function =
DllCall.createInProcessDllCall(IUserDll32Functions.class, desktop);
TextField textField = desktop.find("//TextField");
user32Function.SendMessageW(textField, WindowsMessages.WM_SETTEXT, 0, "my
text");

Enhancing Tests | 183

Note: You can only call DLL functions in the AUT if the first parameter of the DLL function has the C
data type HWND.

The following code shows how to call the declared DLL functions in the process of the Open Agent:

IUserDll32Functions user32Function =
DllCall.createAgentDllCall(IUserDll32Functions.class, desktop);
TextField textField = desktop.find("//TextField");
user32Function.SendMessageW(textField, WindowsMessages.WM_SETTEXT, 0, "my
text");

Note: The example code uses the WindowsMessages class that contains useful constants for usage
with DLL functions that relate to Windows messaging.

Passing Arguments to DLL Functions
DLL functions are written in C, so the arguments that you pass to these functions must have the
appropriate C data types. The following data types are supported:

int Use this data type for arguments or return values with the following
data types:

• int
• INT
• long
• LONG
• DWORD
• BOOL
• WPARAM
• HWND

The Java type int works for all DLL arguments that have a 4-byte
value.

long Use this data type for arguments or return values with the C data
types long and int64. The Java type long works for all DLL
arguments that have an 8-byte value.

short Use this data type for arguments or return values with the C data
types short and WORD. The Java type short works for all DLL
arguments that have a 2-byte value.

boolean Use this data type for arguments or return values with the C data
type bool.

String Use this for arguments or return values that are Strings in C.

double Use this for arguments or return values with the C data type
double.

com.borland.silktest.jtf.Rect Use this for arguments with the C data type RECT. Rect cannot be
used as a return value.

com.borland.silktest.jtf.Point Use this for arguments with the C data type POINT. Point cannot be
used as a return value.

com.borland.silktest.jtf.TestObject Use this for arguments with the C data type HWND. TestObject
cannot be used as a return value, however you can declare DLL
functions that return a HWND with an Integer as the return type.

Note: The passed TestObject must implement the
com.borland.silktest.jtf.INativeWindow interface so that

184 | Enhancing Tests

Silk4J is able to determine the window handle for the
TestObject that should be passed into the DLL function.
Otherwise an exception is thrown when calling the DLL
function.

List Use this for arrays for user defined C structs. Lists cannot be used
as a return value.

Note: When you use a List as an in/out parameter, the list
that is passed in must be large enough to hold the returned
contents.

Note: A C struct can be represented by a List, where every
list element corresponds to a struct member. The first struct
member is represented by the first element in the list, the
second struct members is represented by the second
element in the list, and so on.

Note: Any argument that you pass to a DLL function must have one of the preceding Java data types.

Passing Arguments that Can Be Modified by the DLL
Function
An argument whose value will be modified by a DLL function needs to be passed either by using an
InOutArgument, if the value can be changed, or by using an OutArgument.

Example

This example uses the GetCursorPos function of the user32.dll in order to retrieve
the current cursor position.

DLL declaration:

@Dll("user32.dll")
public interface IUserDll32Functions {
 int GetCursorPos(OutArgument<Point> point);
}

Usage:

IUserDll32Functions user32Function =
DllCall.createAgentDllCall(IUserDll32Functions.class, desktop);

OutArgument<Point> point = new OutArgument<Point>(Point.class);
user32Function.GetCursorPos(point);

System.out.println("cursor position = " + point.getValue());

Passing String Arguments to DLL Functions
Strings that are passing into a DLL function or that are returned by a DLL function are treated by default as
Unicode Strings. If your DLL function requires ANSI String arguments, use the CharacterSet property of
the DllFunctionOptions attribute.

Enhancing Tests | 185

Example

@Dll("user32.dll")
public interface IUserDll32Functions {
 @FunctionOptions(characterSet=DllCharacterSet.Ansi)
 int SendMessageA(TestObject obj, int message, int wParam,
Object lParam);
}

Passing a String back from a DLL call as an OutArgument works per default if the String's size does not
exceed 256 characters length. If the String that should be passed back is longer than 256 characters, you
need to pass an InOurArgument with a String in that is long enough to hold the resulting String.

Example

Use the following code to create a String with 1024 blank characters:

char[] charArray = new char[1024];
Arrays.fill(charArray,' ');
String longEmptyString = new String(charArray);

Pass this InOutArgument as an argument into a DLL function and the DLL function will
pass back Strings of up to 1024 characters of length.

When passing a String back from a DLL call as a function return value, the DLL should implement a DLL
function called FreeDllMemory that accepts the C String pointer returned by the DLL function and that
frees the previously allocated memory. If no such function exists the memory will be leaked.

Aliasing a DLL Name
If a DLL function has the same name as a reserved word in Java, or the function does not have a name but
an ordinal number, you need to rename the function within your declaration and use the alias statement to
map the declared name to the actual name.

Example

For example, the goto statement is reserved by the Java compiler. Therefore, to call a
function named goto, you need to declare it with another name, and add an alias
statement, as shown here:

@Dll("mydll.dll")
public interface IMyDllFunctions {
 @FunctionOptions(alias="break")
 void MyBreak();
}

Conventions for Calling DLL Functions
The following calling conventions are supported when calling DLL functions:

• __stdcall
• __cdecl

The __stdcall calling convention is used by default when calling DLL functions. This calling convention is
used by all Windows API DLL functions.

You can change the calling convention for a DLL function by using the CallingConvention property of
the DllFunctionOptions annotation.

186 | Enhancing Tests

Example

The following code example declares a DLL function with the __decl calling convention:

@Dll("msvcrt.dll")
public interface IMsVisualCRuntime {
 @FunctionOptions(callingConvention=CallingConvention.Cdecl)
 double cos(double inputInRadians);
}

Custom Controls
Silk4J provides the following features to support you when you are working with custom controls:

• The dynamic invoke functionality of Silk4J enables you to directly call methods, retrieve properties, or
set properties on an actual instance of a control in the application under test (AUT).

• The class mapping functionality enables you to map the name of a custom control class to the name of
a standard Silk Test class. You can then use the functionality that is supported for the standard Silk Test
class in your test.

Silk4J supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

• You can add code to the AUT to test custom controls.
• The Manage Custom Controls dialog box enables you to specify a name for a custom control that can

be used in a locator and also enables you to write reusable code for the interaction with the custom
control.

Note: For custom controls, you can only record methods like click,textClick, and typeKeys with
Silk4J. You cannot record custom methods for custom controls except when you are testing Apache
Flex applications.

Dynamic Invoke
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Enhancing Tests | 187

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Note: You cannot dynamically invoke methods for DOM elements.

Frequently Asked Questions About Dynamic Invoke
This section includes a collection of questions that you might encounter when you are dynamically invoking
methods to test custom controls.

Which Methods Can I Call With the invoke Method?

To get a list of all the methods that you can call with the invoke method for a specific test object, you can
use the getDynamicMethodList. To view the list, you can for example print it to the console or view it in
the debugger.

Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?

The invoke method can only return simple data types. Complex types are returned as string. Silk4J uses
the ToString method to retrieve the string representation of the return value. To call the individual
methods and read properties of the complex object that is returned by the first method invocation, use
invokeMethods instead of invoke.

How Can I Simplify My Scripts When I Use Many Calls To invokeMethods?

When you extensively use invokeMethods in your scripts, the scripts might become complex because
you have to pass all method names as strings and all parameters as lists. To simplify such complex scripts,
create a static method that interacts with the actual control in the AUT instead of interacting with the control
through invokeMethods. For additional information, see Adding Code to the Application Under Test to
Test Custom Controls.

Adding Code to the Application Under Test to Test
Custom Controls
When you are testing Windows Forms applications or WPF applications, and you want to test complex
custom controls or custom controls that you cannot test by simply using the invoke and invokeMethods
methods, you can create a static method that interacts with the actual control in the application under test
(AUT) and you can add this code to the AUT.

The benefit for you from adding code to the AUT is that the code in the AUT can use regular method calls
for interacting with the control, instead of using the reflection-like style of calling methods with the dynamic
invoke methods. Therefore you can use code completion and IntelliSense when you are writing you code.
You can then call the code in the AUT with a simple invoke call, where you pass the control of interest as a
parameter.

You can add code to the AUT in the following ways:

• Compile the code into the AUT. The implementation is simple, but you will be changing the AUT,
which you might not want to do.

• Inject code to the AUT at runtime by using the LoadAssembly method in a test script. This requires
more effort than compiling the code into the AUT, but the injected code will be located close to the
test code. The LoadAssembly method is available for the classes WPFWindow and FormsWindow.

188 | Enhancing Tests

Example: Testing the UltraGrid Infragistics control

This example demonstrates how you can retrieve the content of an UltraGrid control.
The UltraGrid control is included in the NETAdvantage for Windows Forms
library which is provided by Infragistics. You can download a trial of the library from
http://www.infragistics.com/products/windows-forms/downloads.

To create the UltraGridUtil class, perform the following actions:

1. Open Microsoft Visual Studio and create a new class library project in C# or
VB .NET. Call the new project AUTExtensions.

Note: The class library should use the same .NET version
as the AUT.

2. Add references to the required dependencies to the project. For example, for
Infragistics version 12.2 you need to reference the following assemblies:

• Infragistics4.Shared.v12.2
• Infragistics4.Win.UltraWinGrid.v12.2
• Infragistics4.Win.v12.2

If you are not sure which version of Infragistics is used in your AUT you can use the
Process Explorer tool from Microsoft to see which assemblies are loaded in your
AUT.

a. In the AUTExtensions project, create the new class UltraGridUtil with the
following content:

' VB code
Public Class UltraGridUtil

 Public Shared Function GetContents(ultraGrid As
Infragistics.Win.UltraWinGrid.UltraGrid) As List(Of List(Of
String))
 Dim contents = New List(Of List(Of String))
 For Each row In ultraGrid.Rows
 Dim rowContents = New List(Of String)
 For Each cell In row.Cells
 rowContents.Add(cell.Text)
 Next
 contents.Add(rowContents)
 Next
 Return contents
 End Function

End Class

// C# code
using System.Collections.Generic;

namespace AUTExtensions {

 public class UltraGridUtil {

 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }
 result.Add(rowContent);
 }

Enhancing Tests | 189

http://www.infragistics.com/products/windows-forms/downloads

 return result;
 }

 }

}

Note: The Shared modifier makes the GetContents
method a static method.

3. Build the AUTExtensions project.
4. Load the assembly into the AUT during playback.

• Open an existing test script or create a new test script.
• Add code to the test script to load the assembly that you have built from the file

system. For example:

mainWindow.loadAssembly("C:/buildoutput/AUTExtensions.dll");

5. Call the static method of the injected code in order to get the contents of the
UltraGrid:

// Java code
Control ultraGrid = mainWindow.find("//
Control[@automationId='my grid']");
List<List<String>> contents = (List<List<String>>)
mainWindow.invoke("AUTExtensions.UltraGridUtil.GetContents",
ultraGrid);

Frequently Asked Questions About Adding Code to the AUT
This section includes a collection of questions that you might encounter when you are adding code to the
AUT to test custom controls.

Why is Code That I Have Injected Into the AUT With the LoadAssembly Method Not Updated in the
AUT?

If code in the AUT is not replaced by code that you have injected with the LoadAssembly method into the
AUT, the assembly might already be loaded in your AUT. Assemblies cannot be unloaded, so you have to
close and re-start your AUT.

Why Do the Input Argument Types Not Match When I Invoke a Method?

If you invoke a method and you get an error that says that the input argument types do not match, the
method that you want to invoke was found but the arguments are not correct. Make sure that you use the
correct data types in your script.

If you use the LoadAssembly method in your script to load an assembly into the AUT, another reason for
this error might be that your assembly is built against a different version of the third-party library than the
version that is used by the AUT. To fix this problem, change the referenced assembly in your project. If you
are not sure which version of the third-party library is used in your AUT, you can use the Process Explorer
tool from Microsoft.

How Do I Fix the Compile Error when an Assembly Can Not Be Copied?

When you have tried to add code to the AUT with the LoadAssembly method, you might get the following
compile error:
Could not copy '<assembly_name>.dll' to '<assembly_name>.dll'. The process cannot access the file.
The reason for this compile error is that the assembly is already loaded in the AUT and cannot be
overwritten.

To fix this compile error, close the AUT and compile your script again.

190 | Enhancing Tests

Testing Apache Flex Custom Controls
Silk4J supports testing Apache Flex custom controls. However, by default, Silk4J cannot record and
playback the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

• Basic support

With basic support, you use dynamic invoke to interact with the custom control during replay. Use this
low-effort approach when you want to access properties and methods of the custom control in the test
application that Silk4J does not expose. The developer of the custom control can also add methods and
properties to the custom control specifically for making the control easier to test. A user can then call
those methods or properties using the dynamic invoke feature.

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

• No specific class name is included in the locator, for example Silk4J records //FlexBox rather
than //FlexSpinner.

• Only limited recording support.
• Silk4J cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking Apache Flex
Methods.

• Advanced support

With advanced support, you create specific automation support for the custom control. This additional
automation support provides recording support and more powerful play-back support. The advantages
of advanced support include:

• High-level recording and playback support, including the recording and replaying of events.
• Silk4J treats the custom control exactly the same as any other built-in Apache Flex control.
• Seamless integration into Silk4J API
• Silk4J uses the specific class name in the locator, for example Silk4J records //FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open Agent must be
extended.

Managing Custom Controls
You can create custom classes for custom controls for which Silk4J does not offer any dedicated support.
Creating custom classes offers the following advantages:

• Better locators for scripts.
• An easy way to write reusable code for the interaction with the custom control.

Example: Testing the UltraGrid Infragistics control

Suppose that a custom grid control is recognized by Silk4J as the generic class
Control. Using the custom control support of Silk4J has the following advantages:

Enhancing Tests | 191

Better object
recognition
because the
custom control
class name
can be used in
a locator.

Many objects might be recognized as Control.
The locator requires an index to identify the
specific object. For example, the object might be
identified by the locator //Control[13]. When
you create a custom class for this control, for
example the class UltraGrid, you can use the
locator //UltraGrid. By creating the custom
class, you do not require the high index, which
would be a fragile object identifier if the
application under test changed.

You can
implement
reusable
playback
actions for the
control in
scripts.

When you are using custom classes, you can
encapsulate the behavior for getting the contents
of a grid into a method by adding the following
code to your custom class, which is the class that
gets generated when you specify the custom
control in the user interface.

Typically, you can implement the methods in a
custom control class in one of the following ways:

• You can use methods like click, typeKeys,
textClick, and textCapture.

• You can dynamically invoke methods on the
object in the AUT.

• You can dynamically invoke methods that you
have added to the AUT. This is the approach
that is described in this example.

You can use the following code to call the static
method that is defined in the example in Adding
Code to the Application Under Test to Test
Custom Controls. The method GetContents is
added into the generated class UltraGrid.

// Java code
import
com.borland.silktest.jtf.Desktop;
import
com.borland.silktest.jtf.common.JtfO
bjectHandle;

public class UltraGrid extends
com.borland.silktest.jtf.Control {

 protected
UltraGrid(JtfObjectHandle handle,
Desktop desktop) {
 super(handle, desktop);
 }

 public List<List<String>>
getContents() {
 return (List<List<String>>)
invoke("AUTExtensions.UltraGridUtil.
GetContents", this);
 }
}

When you define a class as a custom control, you
can use the class in the same way in which you

192 | Enhancing Tests

can use any built-in class, for example the
Dialog class.

// Java code
UltraGrid ultraGrid =
mainWindow.find("//
UltraGrid[@automationId='my
grid']");
List<List<String>> contents =
ultraGrid.getContents();

Supporting a Custom Control
Silk4J supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

To create a custom class for a custom control for which Silk4J does not offer any dedicated support.

1. Click Silk4J > Manage Custom Controls. The Manage Custom Controls dialog box opens.

2. In the Silk4J Custom Controls Output Package field, type in a name or click Browse to select the
package that will contain the custom control.

3. Click on the tab of the technology domain for which you want to create a new custom class.

4. Click Add.

5. Click one of the following:

• Click Identify new custom control to directly select a custom control in your application with the
Identify Object dialog box.

• Click Add new custom control to manually add a custom control to the list.

A new row is added to the list of custom controls.

6. If you have chosen to manually add a custom control to the list:

a) In the Silk Test base class column, select an existing base class from which your class will derive.

This class should be the closest match to your type of custom control.
b) In the Silk Test class column, enter the name to use to refer to the class.

This is what will be seen in locators. For example: //UltraGrid instead of //Control[13].

Note: After you add a valid class, it will become available in the Silk Test base class list. You
can then reuse it as a base class.

c) In the Custom control class name column, enter the fully qualified class name of the class that is
being mapped.

For example: Infragistics.Win.UltraWinGrid.UltraGrid. For Win32 applications, you can
use the wildcards ? and * in the class name.

7. Only for Win32 applications: In the Use class declaration column, set the value to False to simply map
the name of a custom control class to the name of a standard Silk Test class.

When you map the custom control class to the standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. Set the value to True to additionally use the class
declaration of the custom control class.

8. Click OK.

9. Only for scripts:

Enhancing Tests | 193

a) Add custom methods and properties to your class for the custom control.
b) Use the custom methods and properties of your new class in your script.

Note: The custom methods and properties are not recorded.

Note: Do not rename the custom class or the base class in the script file. Changing the generated
classes in the script might result in unexpected behavior. Use the script only to add properties and
methods to your custom classes. Use the Manage Custom Controls dialog box to make any other
changes to the custom classes.

Custom Controls Options
Silk4J > Manage Custom Controls.

Silk4J supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

In the Silk4J Custom Controls Output Package, define the package into which the new custom classes
should be generated.

When you map a custom control class to a standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. The following Custom Controls options are
available:

Option Description

Silk Test base class Select an existing base class to use that your class will derive from. This class
should be the closest match to your type of custom control.

Silk Test class Enter the name to use to refer to the class. This is what will be seen in locators.

Custom control class
name

Enter the fully qualified class name of the class that is being mapped. You can
use the wildcards ? and * in the class name.

Use class
declaration

This option is available only for Win32 applications. By default False, which
means the name of the custom control class is mapped to the name of the
standard Silk Test class. Set this setting to True to additionally use the class
declaration of the custom control class.

Note: After you add a valid class, it will become available in the Silk Test base class list. You can
then reuse it as a base class.

Example: Setting the options for the UltraGrid Infragistics control

To support the UltraGrid Infragistics control, use the following values:

Option Value

Silk Test base class Control

Silk Test class UltraGrid

Custom control class name Infragistics.Win.UltraWi
nGrid.UltraGrid

194 | Enhancing Tests

Improving Object Recognition with Microsoft Accessibility
You can use Microsoft Accessibility (Accessibility) to ease the recognition of objects at the class level.
There are several objects in Internet Explorer and in Microsoft applications that Silk4J can better recognize
if you enable Accessibility. For example, without enabling Accessibility Silk4J records only basic information
about the menu bar in Microsoft Word and the tabs that appear. However, with Accessibility enabled, Silk4J
fully recognizes those objects.

Example

Without using Accessibility, Silk4J cannot fully recognize a DirectUIHwnd control,
because there is no public information about this control. Internet Explorer uses two
DirectUIHwnd controls, one of which is a popup at the bottom of the browser window.
This popup usually shows the following:

• The dialog box asking if you want to make Internet Explorer your default browser.
• The download options Open, Save, and Cancel.

When you start a project in Silk4J and record locators against the DirectUIHwnd
popup, with accessibility disabled, you will see only a single control. If you enable
Accessibility you will get full recognition of the DirectUIHwnd control.

Using Accessibility
Win32 uses the Accessibility support for controls that are recognized as generic controls. When Win32
locates a control, it tries to get the accessible object along with all accessible children of the control.

Objects returned by Accessibility are either of the class AccessibleControl, Button or CheckBox.
Button and Checkbox are treated specifically because they support the normal set of methods and
properties defined for those classes. For all generic objects returned by Accessibility the class is
AccessibleControl.

Example

If an application has the following control hierarchy before Accessibility is enabled:

• Control

• Control
• Button

When Accessibility is enabled, the hierarchy changes to the following:

• Control

• Control

• Accessible Control
• Accessible Control

• Button
• Button

Enabling Accessibility
If you are testing a Win32 application and Silk4J cannot recognize objects, you should first enable
Accessibility. Accessibility is designed to enhance object recognition at the class level.

Enhancing Tests | 195

To enable Accessibility:

1. Click Edit Options. The Script Options dialog box opens.

2. Click Advanced.

3. Select the Use Microsoft Accessibility option. Accessibility is turned on.

Overview of Silk4J Support of Unicode Content
The Open Agent is Unicode-enabled, which means that the Open Agent is able to recognize double-byte
(wide) languages.

With Silk4J you can test applications that contain content in double-byte languages such as Chinese,
Korean, or Japanese (Kanji) characters, or any combination of these.

The Open Agent supports the following:

• Localized versions of Windows.
• International keyboards and native language Input Method Editors (IME).
• Passing international strings as parameters to test cases, methods, and so on, and comparing strings.
• Reading and writing text files in multiple formats: ANSI, Unicode, and UTF-8.

For information about new features, supported platforms and versions, known issues, and work-arounds,
refer to the Release Notes.

Before testing double-byte characters with Silk4J

Testing an internationalized application, particularly one that contains double-byte characters, is more
complicated than testing an application that contains strictly English single-byte characters. Testing an
internationalized application requires that you understand a variety of issues, from operating system
support, to language packs, to fonts, to working with IMEs and complex languages.

Before you begin testing your application using Silk4J, you must do the following:

• Meet the needs of your application under test (AUT) for any necessary localized OS, regional settings,
and required language packs.

• Install the fonts necessary to display your AUT.
• If you are testing an application that requires an IME for data input, install the appropriate IME.

Text Recognition Support
Text recognition methods enable you to conveniently interact with test applications that contain highly
customized controls, which cannot be identified using object recognition. You can use text clicks instead of
coordinate-based clicks to click on a specified text string within a control.

For example, you can simulate selecting the first cell in the second row of the following table:

Specifying the text of the cell results in the following code line:

table.textClick("Brian Miller");

Text recognition methods are supported for the following technology domains:

196 | Enhancing Tests

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/160/en/silktest-160-releasenotes-en.pdf

• Win32.
• WPF.
• Windows Forms.
• Java SWT and Eclipse.
• Java AWT/Swing.

Note: For Java Applets, and for Swing applications with Java versions prior to version 1.6.10, text
recognition is supported out-of-the-box. For Swing applications with Java version 1.6.10 or later,
you have to add the following command-line element when starting the application:

-Dsun.java2d.d3d=false

For example:

javaw.exe -Dsun.java2d.d3d=false -jar mySwingApplication.jar

• xBrowser.

Text recognition methods

The following methods enable you to interact with the text of a control:

TextCapture Returns the text that is within a control. Also returns text from child controls.

TextClick Clicks on a specified text within a control. Waits until the text is found or the Object
resolve timeout, which you can define in the synchronization options, is over.

TextRectangle Returns the rectangle of a certain text within a control or a region of a control.

TextExists Determines whether a given text exists within a control or a region of a control.

Text click recording

Text click recording is enabled by default. To disable text click recording, click Silk4J > Edit Options >
Recording and uncheck the OPT_RECORD_TEXT_CLICK check box.

When text click recording is enabled, Silk4J records TextClick methods instead of clicks with relative
coordinates. Use this approach for controls where TextClick recording produces better results than
normal coordinate-based clicks. You can insert text clicks in your script for any control, even if the text
clicks are not recorded.

If you do not whish to record a TextClick action, you can turn off text click recording and record normal
clicks.

The text recognition methods prefer whole word matches over partially matched words. Silk4J recognizes
occurrences of whole words previously than partially matched words, even if the partially matched words
are displayed before the whole word matches on the screen. If there is no whole word found, the partly
matched words will be used in the order in which they are displayed on the screen.

Example

The user interface displays the text the hostname is the name of the host. The following
code clicks on host instead of hostname, although hostname is displayed before host on
the screen:

control.textClick("host");

The following code clicks on the substring host in the word hostname by specifying the
second occurrence:

control.textClick("host", 2);

Enhancing Tests | 197

Grouping Silk4J Tests
You can use the SilkTestCategories class to run Silk4J tests, write TrueLogs, and filter or group tests
with annotations. Define categories of test classes to group the Silk4J tests into these categories, and to
run only the tests that are included in a specified category or a subtype of that category. For additional
information, see Grouping tests using JUnit categories.

To include a Silk4J test in a category, use the @IncludeCategory annotation.

Using the category SilkTestCategories class enables you to write TrueLogs for the Silk4J tests
included in the category. You can also use the SilkTestSuite class to write TrueLogs. For additional
information, see Replaying a Test Method from the Command Line.

Example

The following example shows how you can execute the Silk4J tests that are included in
a category.

To import the Category class you will need to add a line similar to the following to the
start of your test script:

import org.junit.experimental.categories.Category;

Categories can be implemented as classes or as interfaces, for example:

public interface FastTests {}
 public interface SlowTests {}

You can flag an entire class with a category. In the following code sample, all methods in
the class are flagged with the category SlowTests:

@Category({ SlowTests.class})
public class A {
 @Test
 public void a() {
 ...
 }

 @Test
 public void b() {
 ...
 }
}

You can also flag individual methods in a class with a category. In the following code
sample, only the method d is flagged with the category FastTests:

public class B {
 @Test
 public void c() {
 ...
 }

 @Category(FastTests.class)
 @Test
 public void d() {
 ...
 }
}

198 | Enhancing Tests

https://weblogs.java.net/blog/johnsmart/archive/2010/04/25/grouping-tests-using-junit-categories-0

You can flag a class or method with multiple categories:

@Category({ SlowTests.class, FastTests.class })
public static class C {
 @Test
 public void e() {
 ...
 }
}

To run tests in a particular category, you need to set up a test suite:

@RunWith(SilkTestCategories.class)
@IncludeCategory(SlowTests.class)
@SuiteClasses({ A.class, C.class })
// Note: SilkTestCategories is a kind of Suite
public static class SlowTestSuite {}

Why Do I Get the Error: Category cannot be resolved to
a type?
If you want to use categories to group Silk4J tests, and you are faced with the error Category cannot
be resolved to a type, your test class does probably not import the Category class.

To import the Category class you will need to add a line similar to the following to the start of your test
script:

import org.junit.experimental.categories.Category;

Inserting a Result Comment in a Script
You can add result comments to a test script to provide supplemental information about the test. During the
execution of the test, the result comments are added to the TrueLog file of the test.

You can add different comment types for information, warnings, and errors. The following code sample
shows an example for each comment type:

desktop.logInfo("This is a comment!");
desktop.logWarning("This is a warning!");
desktop.logError("This is an error!");

Consuming Parameters from Silk Central
To enable Silk4J to use a parameter that has been set for a test in Silk Central, use the method
System.getProperty("myparam").

Configuration Testing with Silk Central Connect
To work with Silk Central, ensure that you have configured a valid Silk Central location. For additional
information, see Integrating Silk4J with Silk Central.

To execute your automated tests on a variety of configurations, which are combinations of operating
systems and Web browsers, you can use Silk Central Connect. Silk Central Connect is a tool that
combines aspects of test execution management and configuration testing into an easy to use interface,
providing the following advantages:

Enhancing Tests | 199

• Simple execution of all your automated unit tests on a variety of configurations.
• Leverages the advantages of the Amazon Web Services, enabling you to easily access a variety of

configurations without any upfront investment.
• Tight integration between Silk Central Connect and Silk4J for easy test creation, maintenance, and

execution.
• Side-by-side result analysis, enabling you to see how all of your tests look like across the different

configurations.

For additional information about Silk Central Connect, refer to the Silk Central Connect User Guide.

For information about installing, deploying, and licensing Silk Central Connect, refer to the Silk Central
Installation Help.

For information about configuring your test environment, see Setting Up Execution Servers.

Measuring Execution Time
You can use methods and properties provided by the Timer class to measure the time that your tests
require to execute. For additional information, see Timer Class in the Javadoc.

Among other usages, these methods and properties are used for the timing of test executions that are
triggered from Silk Performer. For additional information on integrating Silk4J with Silk Performer, refer to
the Silk Performer Help.

Slowing Down Tests
Some applications under test might require extensive loading of application data in the UI, and might not be
finished on time with loading objects that are required for replaying a test. To successfully replay tests on
such an AUT, you can check for the existence of an object before performing an action on it, or you can add
sleeps before performing an action.

Note: Micro Focus does not recommend generally adding sleeps to tests, because in most cases
Silk4J will automatically detect if an object is available, and sleeps might severely reduce the
performance of tests.

1. To check if an object is available in the AUT, use the exists method.

For example, to wait for six seconds for the button INPUT to become available, add the following line to
your test script:

desktop.exists("//BrowserWindow//INPUT", 6000);

2. To add a sleep before performing an action on a control, use the sleep method of the Utils class.

For example, to sleep for six seconds, add the following line to your test script:

Utils.sleep(3000);

For additional information on these methods, see the Javadoc.

Testing Applications in Multiple UI Sessions on a Single
Machine

To test applications in multiple UI sessions on a single machine or to test multiple agents on a single
machine, connect to multiple Open Agent instances on the machine. Every agent runs in its own UI-
session. A UI session can be a Remote Desktop (RPD) connection or a Citrix-based connection.

1. Create the UI sessions.

200 | Enhancing Tests

http://supportline.microfocus.com/Documentation/books/ASQ/SCTM/160/en/silkcentralconnect-160-userguide-en.pdf
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/SCTM-D613FA9C-INSTALLATIONHELP-CON.html
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/SCTM-D613FA9C-INSTALLATIONHELP-CON.html
http://documentation.microfocus.com:8080/help/index.jsp?topic=%2Fcom.microfocus.sctm.doc%2FSCTM-8D632EEB-SETTINGUPEXECUTIONSERVERS-CON.html
http://documentation.microfocus.com:8080/help/nav/4_1

2. Open a command line window.

3. Navigate to the folder /ng/MultiSessionLauncher in the Silk Test installation directory.

For example, the default folder path might look like the following: C:\Program Files (x86)\Silk
\SilkTest\ng\MultiSessionLauncher.

4. Execute the following command: MicroFocus.SilkTest.MultiSessionLauncher.exe <port>.

Note: Use a unique port number, because this port will be used in your Silk4J script to identify the
Open Agent and the UI session in which the agent is running.

5. Change your Silk4J scripts to connect to the Open Agent instances.

To connect to an Open Agent instance, add the following line to the script:

Desktop desktopSession = new Desktop("hostname:port");

Where hostname is the name of the machine on which the agent is running, and port is the unique port
that you have used to execute the launcher.

The resulting objects are independent of each other and can be used either in one thread or in multiple
threads.

Note: If you want to launch an application in multiple UI sessions, you have to execute the base state
for each UI session.

Example

Assume that the server machine that is hosting the UI sessions is named ui-srv. You
can create three UI sessions by using the ports 22902, 22903, and 22904.

In the first session, open the command line window, navigate to the
MultiSessionLauncher directory, and type the following:

 MicroFocus.SilkTest.MultiSessionLauncher.exe 22902

Do the same for the other two sessions with the respective ports 22903 and 22904.

To connect to the Open Agent instances, add the following code to your Silk4J script:

Desktop desktopSession1 = new Desktop("ui-srv:22902");
Desktop desktopSession2 = new Desktop("ui-srv:22903");
Desktop desktopSession3 = new Desktop("ui-srv:22904");

The following sample script prints a simple text to each of the three UI sessions:

public class TestMultiSession {
 Desktop d1 = new Desktop("ui-srv:22902");
 Desktop d2 = new Desktop("ui-srv:22903");
 Desktop d3 = new Desktop("ui-srv:22904");

 @Test
 public void test() {
 BaseState basestate = new BaseState();
 basestate.execute(d1);
 basestate.execute(d2);
 basestate.execute(d3);

 d1.<Window>find("//Window").typeKeys("Hello to session 1!");
 d2.<Window>find("//Window").typeKeys("Hello to session 2!");
 d3.<Window>find("//Window").typeKeys("Hello to session 3!");
 }
}

Enhancing Tests | 201

Contacting Micro Focus
Micro Focus is committed to providing world-class technical support and consulting services. Micro Focus
provides worldwide support, delivering timely, reliable service to ensure every customer's business
success.

All customers who are under a maintenance and support contract, as well as prospective customers who
are evaluating products, are eligible for customer support. Our highly trained staff respond to your requests
as quickly and professionally as possible.

Visit http://supportline.microfocus.com/assistedservices.asp to communicate directly with Micro Focus
SupportLine to resolve your issues, or email supportline@microfocus.com.

Visit Micro Focus SupportLine at http://supportline.microfocus.com for up-to-date support news and access
to other support information. First time users may be required to register to the site.

Information Needed by Micro Focus SupportLine
When contacting Micro Focus SupportLine, please include the following information if possible. The more
information you can give, the better Micro Focus SupportLine can help you.

• The name and version number of all products that you think might be causing an issue.
• Your computer make and model.
• System information such as operating system name and version, processors, and memory details.
• Any detailed description of the issue, including steps to reproduce the issue.
• Exact wording of any error messages involved.
• Your serial number.

To find out these numbers, look in the subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

202 | Contacting Micro Focus

http://supportline.microfocus.com/assistedservices.asp
http://supportline.microfocus.com

Index
.NET support

overview 97
Silverlight 109
Windows Forms overview 97
Windows Presentation Foundation (WPF) overview

102

64-bit applications
support 133

A

Accessibility
enabling 195
improving object recognition 195
using 195

action recording
merging object map entries 166

ActiveX
invoking methods 51
overview 51

adding keywords
keyword-driven tests 145

adding root certificates
Android 94
Android emulators 95

Adobe Flex
adding configuration information 68
Adobe Air support 64
automationName property 71
coding containers 74
containers 74
creating applications 69
defining custom controls 55
FlexDataGrid control 65
implementing custom controls 60
invoking methods 54
multiview containers 75
passing parameters 68
passing parameters at runtime 68
passing parameters before runtime 68
run-time loading 67, 68
security settings 77
select method 64, 73
testing initialization 75
testing playback 76
testing recording 75

advanced
options 47

agents
configuring ports 17
configuring ports for Recorder 19
overview 17
port numbers 17
starting 17

AJAX applications

browser settings 122
script hangs 129

Android
configuring emulator 87
creating tests 32
enabling USB-debugging 86
installing USB drivers 85
prerequisites 94
recommended settings 87
setting proxy for emulator 86
testing 84
testing on emulators 85
testing on physical devices 84
troubleshooting 92

Android emulators
prerequisites 95

Ant
replaying test methods 39

Apache Flex
Component Explorer 53
attributes 77, 133
automationIndex property 70
automationName property 70
class definition file 62, 71
controls are not recognized 77
custom controls 53, 191
customizing scripts 63
enabling your application 65
Flash player settings 52
implementing custom controls 62, 71
invoking methods 54
invoking methods for custom controls 57
linking automation packages 65
overview 52
precompiling the application 66
styles 76
testing 53
testing multiple applications 63
workflow 75

Apache Flex applications
custom attributes 70, 160

API playback
compared to native playback 121

application configurations
adding 22
definition 22
errors 23
modifying 22
removing 22
troubleshooting 23

assets
opening from a script 178

attribute exclude list
setting 122

attribute types
Apache Flex 77, 133
Java AWT 78, 133
Java Swing 78, 133

Index | 203

Java SWT 82, 134
Oracle Forms 81
overview 133
SAP 115, 134
Silverlight 109, 134
Web applications 131, 136
Windows 102, 137
Windows Forms 98, 136
xBrowser 131, 136

attribute values
finding with Locator Spy 34

B
base state

definition 20
executing 21
keyword-driven tests 143
modifying 20

basestate
about 20

browser
defining 118

setting browser
command line 118

browser configuration settings
xBrowser 123

browser recording options 122
browser type

GetProperty 129
browsers

setting preferences 43
browsertype

using 129

C
calling dlls

example 183
Java 182
scripts 182

Chrome
configuration settings 123
cross-browser scripts 128
prerequisites 126

class names
finding with Locator Spy 34

classes
exposing 45
ignoring 45

Click
mobile Web 96

command line
running keyword-driven tests 146
running tests 36

Component Explorer
Apache Flex 53

configuration testing
Silk Central Connect 199

configuring port
Open Agent 18

contact information 202
continuous integration servers

running tests 37
running tests on Silk Central 38

creating stable locators
overview 158

creating tests
mobile Web applications 32
standard applications 31
Web applications 31

creating visual execution logs
TrueLog 40
TrueLog Explorer 40

custom attributes
Apache Flex applications 70, 160
controls 159
including in tests 35
setting 44, 122
Web applications 132, 160
Windows Forms applications 98, 161
WPF applications 103, 161

custom controls
adding code to AUT 188
creating custom classes 193
defining (Apache Flex) 62, 71
dialog box 194
dynamically invoking Apache Flex 57
FAQs about adding code to AUT 190
FAQs about dynamic invoke 188
injected code is not used in AUT 190
invoke call returns unexpected string 188
managing 191
overview 187
supporting 193
testing (Apache Flex) 53, 191

custom properties
controls 159

Customer Care 202

D

device not connected
mobile 92

Dialog
not recognized 130

dlls
aliasing names 186
calling conventions 186
calling from Java 182
calling from within a script 182
example call 183
function declaration syntax 183
passing arguments that can be modified to functions

185
passing arguments to functions 184
passing string arguments to functions 185

downloads 202
dynamic invoke

adding code to AUT FAQs 190
FAQs 188
input argument types do not match 190
overview 187
simplify scripts 188
unexpected return value 188

dynamic locator attributes
about 138

204 | Index

dynamic object recognition
creating test 32

dynamically invoke methods
SAP controls 116

dynamically invoking methods
ActiveX 51
Apache Flex 54
Apache Flex custom controls 57
Java AWT 79, 82
Java Swing 79, 82
Java SWT 79, 82
SAP 115
Silverlight 110
Visual Basic 51
Windows Forms 98
Windows Presentation Foundation (WPF) 104

DynamicInvoke
ActiveX 51
Apache Flex 54
Java AWT 79, 82
Java Swing 79, 82
SAP 115
Silverlight 110
Visual Basic 51
Windows Forms 98
Windows Presentation Foundation (WPF) 104

E

Eclipse RCP
support 81

enabling TrueLog
TrueLog Explorer 40

excluded characters
recording 35
replay 35

executing keyword-driven tests
variables 147

exposing WPF classes 45

F

FAQs
xBrowser 127

filtering
keywords 151

find references
keywords 151

Firefox
configuration settings 123
cross-browser scripts 128
locators 129

firewalls
port numbers 17
resolving conflicts 17

Flash player
opening applications in 52
security settings 77

Flex
adding configuration information 68
Adobe Air support 64
attributes 77, 133

automationIndex property 70
automationName property 70, 71
class definition file 62, 71
Component Explorer 53
containers 74
creating applications 69

custom controls
defining 55
implementing 60

customizing scripts 63
defining custom controls 55
enabling your application 65
Flash player settings 52
FlexDataGrid control 65
implementing custom controls 60, 62, 71
invoking methods 54
invoking methods for custom controls 57
linking automation packages 65
multiview containers 75
overview 52
passing parameters 68
passing parameters at runtime 68
passing parameters before runtime 68
precompiling the application 66
run-time loading 67, 68
security settings 77
select method 64, 73
styles 76
testing 53
testing multiple applications 63
testing playback 76
testing recording 75
workflow 75

Flex applications
creating tests 31

frequently asked questions
adding code to AUT 190
dynamic invoke 188

G

Google Chrome
configuration settings 123
limitations 127
prerequisites 126

grouping
keywords 151
object map items 174

GWT
locating controls 158

I

identifiers
stable 157

identifying controls
dynamic locator attributes 138
Locator Spy 163

identifying objects
objects

locating 153
overview 153

Index | 205

ignoring
classes 45

image assets
adding multiple images

adding multiple images
image assets 178

creating 177
overview 177
using in other projects 165, 180

image checks
overview 179

image click
recording 176

image click recording
overview 176

image recognition
enabling 176
methods 176
overview 176

image verifications
adding during recording 180
creating 179
overview 179
using in other projects 165, 180

importing
projects 30

improving object recognition
Accessibility 195

information service
communication with Open Agent 17

innerHTML
xBrowser 128

innerText
xBrowserf 128

input argument types do not match
dynamic invoke 190

installing USB drivers
Android 85

integrations
configuring Silk Central location 148

Internet Explorer
configuration settings 123
cross-browser scripts 128
link.select focus issue 130
locators 129
misplaced rectangles 129

Internet Explorer 10
unexpected Click behavior 131

invalidated-handle error
troubleshooting 130

invoke
ActiveX 51
Java AWT 79, 82
Java SWT 79, 82
SAP 115
Silverlight 110
Swing 79, 82
Visual Basic 51
Windows Forms 98
Windows Presentation Foundation (WPF) 104

invoke method
callable methods 188

InvokeMethods
ActiveX 51
Apache Flex 54
Java AWT 79, 82
Java Swing 79, 82
SAP 115
Silverlight 110
Visual Basic 51
Windows Forms 98
Windows Presentation Foundation (WPF) 104

iOS
installing Silk Test application 89
installing Silk Test application automatically 90
recommended settings 91
setting proxy 91
testing 89
testing on physical devices 89

J

Java AWT
attribute types 78, 133
attributes 78, 133
custom attributes 35
invoking methods 79, 82
overview 78

Java AWT/Swing
priorLabel 80

Java Network Launching Protocol (JNLP)
configuring applications 24, 80

Java Swing
attributes 78, 133
invoking methods 79, 82
overview 78

Java SWT
attribute types 82, 134
custom attributes 35, 44
invoking methods 79, 82
support 81

Java SWT applications
creating tests 31

JNLP
configuring applications 24, 80

JUnit test case
creating 32

K

keyword sequences
creating 145

keyword-driven
testing 140

keyword-driven testing
advantages 140
marking test methods 144
overview 140
troubleshooting 152

keyword-driven tests
adding keywords 145
base state 143
creating 141
editing 145

206 | Index

executing from Silk Central 37
implementing keywords 143
recording 142
removing keywords 145
replaying 146
running from command line 146
running from Eclipse 36
searching for keywords 150
specifying variables, execution 147
uploading keywords, Silk Central 148

keywords
about 140
combining 145
filtering 151
find references 151
finding in project 151
grouping 151
implementing 143
marking test methods 144
recording 144
uploading to Silk Central 148

L
Lab Manager

configuring Agent settings 19
licensing

available license types 10
LoadAssembly

assembly cannot be copied 190
locator attributes

dynamic 138
excluded characters 35
Rumba controls 114, 135
Silverlight controls 109, 134
WPF controls 102, 137

locator generator
configuring for xBrowser 125

Locator Spy
adding locators to test methods 34
adding object map items to test methods 34
overview 163

locators
attributes 43
basic concepts 153
customizing 157
incorrect in xBrowser 129
mapping 164
modifying in object maps 169
navigating to object map entry in scripts 173
object types 153
search scopes 153
setting options 122
setting xBrowser recording options 122
supported constructs 154
supported subset 156
syntax 154
unsupported constructs 154
using attributes 154
xBrowser 129

M
Microsoft Accessibility

improving object recognition 195

missing peripherals
test machines 11

mobile
troubleshooting 92

mobile applications
recording 91
testing 84

mobile browsers
limitations 95

mobile devices
interacting with 92
performing actions against 92

mobile recording
about 91

mobile testing
Android 84
Android emulators 85
iOS 89
overview 84
physical Android devices 84
physical iOS devices 89

mobile Web
Click 96

mobile Web applications
creating tests 32
limitations 95

mouse move actions 42
mouse move preferences 123
Mozilla Firefox

configuration settings 123
multiple agents

single machine 200
multiple applications

single machine 200
testing 24

N

native playback
compared to API playback 121

native user input
advantages 121
recording 122

network address translation (NAT), configuring 19

O

object map items
adding 171
copying 171
deleting 174
finding errors 173
grouping 174
highlighting 172
identifying 169, 172
locating in test application 172
modifying locators 169
renaming 168
updating from test application 170

object maps
adding items 171
advantages 165

Index | 207

benefits 165
best practices 174
copying items 171
deleting items 174
grouping items 174
merging during action recording 166
modifying 168
navigate from locator to object map in a script 173
opening from a script 172
overview 164
recording 165
renaming items 168
turning off 165
turning on 165
using in other projects 165, 180
Web applications 167
xBrowser 167

object recognition
creating stable locators 157
custom attributes 159
Exists method 156
FindAll method 157
identifying multiple objects 157
improving with Accessibility 195
overview 153
using attributes 154

object types
locators 153

objects
checking for existence 156

Open Agent
configuring connection port 18
configuring for network address translation (NAT) 19
configuring ports 17
location 17
overview 17
port numbers 17
starting 17

OPT_ALTERNATE_RECORD_BREAK
options 42

OPT_ASSET_NAMESPACE
option 47

OPT_ENABLE_ACCESSIBILITY
option 47

OPT_ENSURE_ACTIVE_OBJDEF
option 47

OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE
option 47

OPT_RECORD_MOUSEMOVE_DELAY
options 42

OPT_RECORD_MOUSEMOVES
options 42

OPT_RECORD_SCROLLBAR_ABSOLUT
options 42

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT
option 47

OPT_REPLAY_MODE
option 47

OPT_WAIT_RESOLVE_OBJDEF 46
OPT_WAIT_RESOLVE_OBJDEF_RETRY 46
OPT_XBROWSER_RECORD_LOWLEVEL 43
OPT_XBROWSER_SYNC_EXCLUDE_URLS 46

OPT_XBROWSER_SYNC_MODE 46
OPT_XBROWSER_SYNC_TIMEOUT 46
options

advanced 47
setting browser recording options 122

Oracle Forms
about 81
attributes 81
prerequisites 81
supported versions 81

ordering
tests 39

P

page synchronization
xBrowser 120

parameters
Silk Central 199

port conflicts
resolving 19

ports
Open Agent 17
Recorder 19

preferences
turning off error messages 49

prerequisites
Google Chrome 126

priorLabel
Java AWT/Swing technology domain 80
Win32 technology domain 118

Product Support 202
project dependencies

adding 165, 180
project properties

converting 50
projects

importing 30
Silk4NET 29

proxy server
setting for Android emulator 86
setting for iOS 91

Q

Quick Start tutorial
creating test 27
introduction 26
replaying tests 28

R

recognizing objects
xBrowser 119

Record Break keys 42
Recorder

configuring ports 19
recording

actions into existing tests 182
adding image verifications 180
available actions 33

208 | Index

keyword-driven tests 142
keywords 144
mobile applications 91
object maps 165
preferences 42

recording actions
existing tests 182

removing keywords
keyword-driven tests 145

replay
Dialog not recognized 130
options 47

resolving
categories 199

result comments
adding to scripts 199

root certificates
adding 94
adding, Android emulators 95
generating 94
generating, Android emulators 95

Rumba
about 113
enabling and disabling support 113
locator attributes 114, 135
Unix display 114
using screen verifications 114

Rumba locator attributes
identifying controls 114, 135

running tests
continuous integration servers 37
Silk Central 37

S
SAP

attribute types 115, 134
custom attributes 44
invoking methods 115
overview 115
security settings 117

SAP controls
dynamically invoke methods 116

scripts
adding result comments 199
adding verifications while recording 33
marking tests as keywords 144
navigate from locator to object map 173
object mapping 164
specifying options 42

scroll events 42
search scopes

locators 153
searching for keywords

keyword-driven tests 150
security settings

SAP 117
select application

dialog box 23
serial number 202
SetText 43
setting browser recording options 122
setting mouse move preferences 123

shortcut key combination 42
Silk Central

configuring location 148
parameters 199
running tests 37
running tests on continuous integration servers 38
uploading keywords 148

Silk Central Connect
configuration testing 199

Silk Performer
measure execution time 200

Silk4J
creating project 26, 29
quick start tutorial 26

Silk4J tests
grouping 198

Silk4NET
projects 29

SilkTest Open Agent
configuring for network address translation (NAT) 19

Silverlight
attribute types 109, 134
invoking methods 110
locator attributes 109, 134
overview 109
scrolling 112
support 109
troubleshooting 112

sleep
adding to tests 200

slowing down
tests 200

specifying options
scripts 42

stable identifiers
about 157

stable locators
creating 158

standard applications
creating tests 31

styles
in Flex applications 76

SupportLine 202
Swing

attributes 78, 133
configuring JNLP applications 24, 80
custom attributes 35
invoking methods 79, 82
overview 78

synchronization options 46

T

test automation
obstacles 11

test case
creating 32

test class
creating 27

test machines
missing peripherals 11

test method

Index | 209

recording 27
test methods

adding locators 34
adding object map items 34
marking as keywords 144
running 39
running from Eclipse 36

testing
best practices 11

testing custom controls
adding code to AUT 188

tests
creating 31
enhancing 182
ordering 39
recording actions 182
replaying 28
running from command line 36
slowing down 200

text click recording
overview 196

text recognition
overview 196

textContents
xBrowser 128

timestamps 129
transparent classes

setting 45
troubleshooting

category cannot be resolved 199
invalidated-handle error 130
keyword-driven testing 152
mobile 92
Silverlight 112

troubleshooting XPath 162
TrueLog

configuring 42
creating visual execution logs 40
enabling 40, 42
replacement characters for non-ASCII 41
SilkTestCategories class 198
wrong non-ASCII characters 41

TrueLog Explorer
configuring 42
creating visual execution logs 40
enabling 42
enabling TrueLog 40

tutorial
quick start 26

TypeKeys 43

U
unexpected Click behavior

Internet Explorer 131
Unicode content

support 196
Unix display

Rumba 114

V
variables

executing keyword-driven tests 147

verification logic
adding to scripts while recording 33

verifications
adding to scripts 33

virtual machines
configuring for network address translation (NAT) 19

Visual Basic
invoking methods 51
overview 51

W

Web applications
creating tests 31
custom attributes 35, 44, 122, 132, 160
supported attributes 131, 136
xBrowser test objects 119

WebSync 202
welcome 8
Win32

priorLabel 118
Windows

64-bit application support 133
attribute types 102, 137

Windows API-based
64-bit application support 133

Windows applications
creating tests 31
custom attributes 44

Windows Forms
64-bit application support 133
attribute types 98, 136
custom attributes 44
invoking methods 98
overview 97

Windows Forms applications
custom attributes 98, 161

Windows Presentation Foundation (WPF)
64-bit application support 133
custom controls 104
exposing classes 108
invoking methods 104
locator attributes 102, 137
overview 102
WPFItemsControl class 104

Windows-API
support 117

WinForms applications
custom attributes 98, 161

works order number 202
WPF

64-bit application support 133
custom attributes 35
custom controls 104
exposing classes 45, 108
invoking methods 104
locator attributes 102, 137
WPFItemsControl class 104

WPF applications
custom attributes 44, 103, 161

WPF locator attributes
identifying controls 102, 137

210 | Index

writing TrueLogs
SilkTestCategories class 198

X

xBrowser
API and native playback 121
attribute types 131, 136
browser configuration settings 123
browser type distinctions 129
class and style not in locators 130
configuring locator generator 125
cross-browser scripts 128
custom attributes 44, 122
Dialog not recognized 130
DomClick not working like Click 130
exposing functionality 130
FAQs 127
FieldInputField.DomClick not opening dialog 130
font type verification 127
innerHTML 128

innerText 128
innerText not being used in locators 128
Internet Explorer misplaces rectangles 129
link.select focus issue 130
mouse move preferences 123
mouse move recording 130
navigating to new pages 129
object maps 167
object recognition 119
overview 118
page synchronization 120
playback options 121
recording an incorrect locator 129
recording locators 129
recording options 122
test objects 119
textContents 128
timestamps 129

XPath
creating query strings 163
troubleshooting 162

Index | 211

	Contents
	Welcome to Silk4J 16.0
	Licensing Information
	Silk4J
	Best Practices for Using Silk4J
	Automation Under Special Conditions (Missing Peripherals)
	Silk Test Product Suite

	What's New in Silk4J
	Keyword-Driven Tests
	Future-Proof Google Chrome Support
	Oracle Forms Support
	Testing in Multiple UI Sessions on a Single Machine
	Usability Enhancements
	Technology Updates
	Mozilla Firefox Support
	Google Chrome Support
	Android Support
	iOS Support

	API Enhancements

	Silk Test Open Agent
	Starting the Silk Test Open Agent
	Open Agent Port Numbers
	Configuring the Port that Clients Use to Connect to the Information Service
	Configuring the Port that the Silk Test Client or the Test Application Uses to Connect to the Open Agent
	Configuring the Port that the Silk Test Client Uses to Connect to Silk Test Recorder

	Configuring the Open Agent to Run Remotely in a Network Address Translation (NAT) Environment

	Base State
	Modifying the Base State
	Running the Base State

	Application Configuration
	Modifying an Application Configuration
	Select Application Dialog Box
	Application Configuration Errors
	Configuring Silk4J to Launch an Application that Uses the Java Network Launching Protocol (JNLP)
	Creating a Test that Tests Multiple Applications

	Silk4J Quick Start Tutorial
	Creating a Silk4J Project
	Recording a Test for the Insurance Company Web Application
	Replaying the Test for the Insurance Company Web Application

	Working with Silk4J Projects
	Creating a Silk4J Project
	Importing a Silk4J Project

	Creating Tests
	Creating a Test
	Creating a Test for a Web Application
	Creating a Test for a Standard Application
	Creating a Test for a Mobile Web Application
	Creating a Test Case Manually
	Actions Available During Recording

	Adding a Verification to a Script while Recording
	Adding a Locator or an Object Map Item to a Test Method Using the Locator Spy
	Including Custom Attributes in a Test
	Characters Excluded from Recording and Replaying

	Replaying Tests
	Replaying Tests from Eclipse
	Replaying a Test from the Command Line
	Replaying Tests from a Continuous Integration Server
	Replaying Silk4J Tests from Silk Central
	Triggering Tests on Silk Central from a Continuous Integration Server
	Troubleshooting when Replaying Test Methods from Ant
	Replaying Tests in a Specific Order
	Visual Execution Logs with TrueLog
	Enabling TrueLog
	Why is TrueLog Not Displaying Non-ASCII Characters Correctly?

	Setting Script Options
	Setting TrueLog Options
	Setting Recording Preferences
	Setting Browser Recording Options
	Setting Custom Attributes
	Setting Classes to Ignore
	Setting WPF Classes to Expose During Recording and Playback
	Setting Synchronization Options
	Setting Replay Options
	Setting Advanced Options

	Setting Silk4J Preferences
	Converting Projects to and from Silk4J
	Converting a Java Project to a Silk4J Project
	Converting a Silk4J Project to a Java Project

	Testing Specific Environments
	Active X/Visual Basic Applications
	Dynamically Invoking ActiveX/Visual Basic Methods

	Apache Flex Support
	Configuring Flex Applications to Run in Adobe Flash Player
	Launching the Component Explorer
	Testing Apache Flex Applications
	Testing Apache Flex Custom Controls
	Dynamically Invoking Flex Methods
	Defining a Custom Control in the Test Application
	Testing a Flex Custom Control Using Dynamic Invoke
	Testing a Custom Control Using Automation Support
	Implementing Automation Support for a Custom Control
	Flex Class Definition File

	Customizing Apache Flex Scripts
	Testing Multiple Flex Applications on the Same Web Page
	Adobe AIR Support
	Overview of the Flex Select Method Using Name or Index
	Selecting an Item in the FlexDataGrid Control
	Enabling Your Flex Application for Testing
	Linking Automation Packages to Your Flex Application
	Precompiling the Flex Application for Testing
	Run-Time Loading
	Run-Time Loading

	Using the Command Line to Add Configuration Information
	Passing Parameters into a Flex Application
	Passing Parameters into a Flex Application Before Runtime
	Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

	Creating Testable Flex Applications
	Custom Attributes for Apache Flex Applications
	Flex AutomationName and AutomationIndex Properties
	Flex Class Definition File
	Setting the Flex automationName Property
	Setting the Flex Select Method to Use Name or Index

	Coding Flex Containers
	Adding and Removing Containers from the Automation Hierarchy
	Multiview Containers

	Flex Automation Testing Workflow
	Flex Automated Testing Initialization
	Flex Automated Testing Recording
	Flex Automated Testing Playback

	Styles in Apache Flex Applications
	Configuring Flex Applications for Adobe Flash Player Security Restrictions
	Attributes for Apache Flex Applications
	Why Cannot Silk4J Recognize Apache Flex Controls?

	Java AWT/Swing Support
	Attributes for Java AWT/Swing Applications
	Dynamically Invoking Java Methods
	Configuring Silk4J to Launch an Application that Uses the Java Network Launching Protocol (JNLP)
	Determining the priorLabel in the Java AWT/Swing Technology Domain
	Oracle Forms Support
	Prerequisites for Testing Oracle Forms
	Attributes for Oracle Forms Applications

	Java SWT and Eclipse RCP Support
	Java SWT Custom Attributes
	Attributes for Java SWT Applications
	Dynamically Invoking Java Methods

	Testing Mobile Web Applications
	Testing Mobile Web Applications on Android
	Testing Mobile Web Applications on a Physical Android device
	Testing Mobile Web Applications on an Android Emulator
	Installing a USB Driver
	Enabling USB-Debugging
	Manually Setting the Open Agent as a Proxy for an Android Emulator
	Recommended Settings for Android Devices
	Configuring the Android Emulator for Silk4J

	Testing Mobile Web Applications on iOS
	Testing Mobile Web Applications on a Physical iOS Device
	Installing the Silk Test Application on an iOS Device
	Automatically Installing the Silk Test Application on an iOS Device
	Setting the Proxy for an iOS Device
	Recommended Settings for iOS Devices

	Recording Mobile Applications
	Interacting with a Mobile Device
	Troubleshooting when Testing Mobile Web Applications
	Manually Adding a Root Certificate to Test a Secure Web Application
	Installing the Root Certificate to Test a Secure Web Application

	Limitations for Testing Mobile Web Applications
	Clicking on Objects in a Mobile Website

	.NET Support
	Windows Forms Support
	Attributes for Windows Forms Applications
	Custom Attributes for Windows Forms Applications
	Dynamically Invoking Windows Forms Methods

	Windows Presentation Foundation (WPF) Support
	Attributes for Windows Presentation Foundation (WPF) Applications
	Custom Attributes for WPF Applications
	Classes that Derive from the WPFItemsControl Class
	Custom WPF Controls
	Dynamically Invoking WPF Methods
	Setting WPF Classes to Expose During Recording and Playback

	Silverlight Application Support
	Locator Attributes for Identifying Silverlight Controls
	Dynamically Invoking Silverlight Methods
	Scrolling in Silverlight
	Troubleshooting when Testing Silverlight Applications

	Rumba Support
	Enabling and Disabling Rumba
	Locator Attributes for Identifying Rumba Controls
	Using Screen Verifications with Rumba
	Testing a Unix Display

	SAP Support
	Attributes for SAP Applications
	Dynamically Invoking SAP Methods
	Dynamically Invoking Methods on SAP Controls
	Configuring Automation Security Settings for SAP

	Windows API-Based Application Support
	Attributes for Windows API-based Client/Server Applications
	Determining the priorLabel in the Win32 Technology Domain

	xBrowser Support
	Selecting the Browser for Test Replay
	Test Objects for xBrowser
	Object Recognition for xBrowser Objects
	Page Synchronization for xBrowser
	Comparing API Playback and Native Playback for xBrowser
	Setting Browser Recording Options
	Setting Mouse Move Preferences
	Browser Configuration Settings for xBrowser
	Configuring the Locator Generator for xBrowser
	Prerequisites for Replaying Tests with Google Chrome
	Limitations for Testing with Google Chrome
	xBrowser Frequently Asked Questions
	How do I Verify the Font Type Used for the Text of an Element?
	What is the Difference Between textContents, innerText, and innerHtml?
	I Configured innerText as a Custom Class Attribute, but it Is Not Used in Locators
	What Should I Take Care Of When Creating Cross-Browser Scripts?
	How Can I See Which Browser I Am Currently Using?
	Which Locators are Best Suited for Stable Cross-Browser Testing?
	Logging Output of My Application Contains Wrong Timestamps
	My Test Script Hangs After Navigating to a New Page
	Recorded an Incorrect Locator
	Rectangles Around Elements in Internet Explorer are Misplaced
	Link.Select Does Not Set the Focus for a Newly Opened Window in Internet Explorer
	DomClick(x, y) Is Not Working Like Click(x, y)
	FileInputField.DomClick() Will Not Open the Dialog
	The Move Mouse Setting Is Turned On but All Moves Are Not Recorded. Why Not?
	I Need Some Functionality that Is Not Exposed by the xBrowser API. What Can I Do?
	Why Are the Class and the Style Attributes Not Used in the Locator?
	Dialog is Not Recognized During Replay
	Why Do I Get an Invalidated-Handle Error?
	Why Are Clicks Recorded Differently in Internet Explorer 10?

	Attributes for Web Applications
	Custom Attributes for Web Applications

	64-bit Application Support
	Supported Attribute Types
	Attributes for Apache Flex Applications
	Attributes for Java AWT/Swing Applications
	Attributes for Java SWT Applications
	Attributes for SAP Applications
	Locator Attributes for Identifying Silverlight Controls
	Locator Attributes for Identifying Rumba Controls
	Attributes for Web Applications
	Attributes for Windows Forms Applications
	Attributes for Windows Presentation Foundation (WPF) Applications
	Attributes for Windows API-based Client/Server Applications
	Dynamic Locator Attributes

	Keyword-Driven Tests
	Advantages of Keyword-Driven Testing
	Keywords
	Creating a Keyword-Driven Test in Silk4J
	Recording a Keyword-Driven Test in Silk4J
	Setting the Base State for a Keyword-Driven Test in Silk4J
	Implementing a Keyword in Silk4J
	Recording a Keyword in Silk4J
	Marking a Test Method in a Script as a Keyword
	Editing a Keyword-Driven Test
	Combining Keywords into Keyword Sequences
	Replaying Keyword-Driven Tests
	Replaying Keyword-Driven Tests Which Are Stored in Silk Central
	Replaying Keyword-Driven Tests from the Command Line
	Replaying a Keyword-Driven Test with Specific Variables
	Integrating Silk4J with Silk Central
	Uploading a Keyword Library to Silk Central
	Searching for a Keyword
	Filtering Keywords
	Finding All References of a Keyword
	Grouping Keywords
	Troubleshooting for Keyword-Driven Testing

	Object Recognition
	Locator Basic Concepts
	Object Type and Search Scope
	Using Attributes to Identify an Object

	Locator Syntax
	Using Locators
	Using Locators to Check if an Object Exists
	Identifying Multiple Objects with One Locator
	Locator Customization
	Stable Identifiers
	Creating Stable Locators
	Example: Locating the Expand Icon in a Dynamic GWT Tree

	Custom Attributes
	Custom Attributes for Apache Flex Applications
	Java SWT Custom Attributes
	Custom Attributes for Web Applications
	Custom Attributes for Windows Forms Applications
	Custom Attributes for WPF Applications

	Troubleshooting Performance Issues for XPath
	Locator Spy

	Object Maps
	Advantages of Using Object Maps
	Turning Object Maps Off and On
	Using Assets in Multiple Projects
	Merging Object Maps During Action Recording
	Using Object Maps with Web Applications
	Renaming an Object Map Item
	Modifying Object Maps
	Modifying a Locator in an Object Map
	Updating Object Maps from the Test Application
	Copying an Object Map Item
	Adding an Object Map Item
	Opening an Object Map from a Script
	Highlighting an Object Map Item in the Test Application
	Navigating from a Locator to an Object Map Entry in a Script
	Finding Errors in an Object Map
	Deleting an Object Map Item
	Initially Filling Object Maps
	Grouping Elements in Object Maps

	Image Recognition Support
	Image Click Recording
	Image Recognition Methods
	Image Assets
	Creating an Image Asset
	Adding Multiple Images to the Same Image Asset
	Opening an Asset from a Script

	Image Verifications
	Creating an Image Verification
	Adding an Image Verification During Recording

	Using Assets in Multiple Projects

	Enhancing Tests
	Recording Additional Actions Into an Existing Test
	Calling Windows DLLs
	Calling a Windows DLL from Within a Script
	DLL Function Declaration Syntax
	DLL Calling Example
	Passing Arguments to DLL Functions
	Passing Arguments that Can Be Modified by the DLL Function
	Passing String Arguments to DLL Functions
	Aliasing a DLL Name
	Conventions for Calling DLL Functions

	Custom Controls
	Dynamic Invoke
	Frequently Asked Questions About Dynamic Invoke
	Which Methods Can I Call With the invoke Method?
	Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?
	How Can I Simplify My Scripts When I Use Many Calls To invokeMethods?

	Adding Code to the Application Under Test to Test Custom Controls
	Frequently Asked Questions About Adding Code to the AUT
	Why is Code That I Have Injected Into the AUT With the LoadAssembly Method Not Updated in the AUT?
	Why Do the Input Argument Types Not Match When I Invoke a Method?
	How Do I Fix the Compile Error when an Assembly Can Not Be Copied?

	Testing Apache Flex Custom Controls
	Managing Custom Controls
	Supporting a Custom Control
	Custom Controls Options

	Improving Object Recognition with Microsoft Accessibility
	Using Accessibility
	Enabling Accessibility

	Overview of Silk4J Support of Unicode Content
	Text Recognition Support
	Grouping Silk4J Tests
	Why Do I Get the Error: Category cannot be resolved to a type?

	Inserting a Result Comment in a Script
	Consuming Parameters from Silk Central
	Configuration Testing with Silk Central Connect
	Measuring Execution Time
	Slowing Down Tests
	Testing Applications in Multiple UI Sessions on a Single Machine

	Contacting Micro Focus
	Information Needed by Micro Focus SupportLine

